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Abstract

We conduct the first large meta-analysis of overfitting due to test set reuse in the
machine learning community. Our analysis is based on over one hundred machine
learning competitions hosted on the Kaggle platform over the course of several
years. In each competition, numerous practitioners repeatedly evaluated their
progress against a holdout set that forms the basis of a public ranking available
throughout the competition. Performance on a separate test set used only once
determined the final ranking. By systematically comparing the public ranking
with the final ranking, we assess how much participants adapted to the holdout set
over the course of a competition. Our study shows, somewhat surprisingly, little
evidence of substantial overfitting. These findings speak to the robustness of the
holdout method across different data domains, loss functions, model classes, and
human analysts.

1 Introduction

The holdout method is central to empirical progress in the machine learning community. Competitions,
benchmarks, and large-scale hyperparameter search all rely on splitting a data set into multiple pieces
to separate model training from evaluation. However, when practitioners repeatedly reuse holdout
data, the danger of overfitting to the holdout data arises [6, 13].

Despite its importance, there is little empirical research into the manifested robustness and validity
of the holdout method in practical scenarios. Real-world use cases of the holdout method often
fall outside the guarantees of existing theoretical bounds, making questions of validity a matter of
guesswork.

Recent replication studies [16] demonstrated that the popular CIFAR-10 [10] and ImageNet [5, 18]
benchmarks continue to support progress despite years of intensive use. The longevity of these
benchmarks perhaps suggests that overfitting to holdout data is less of a concern than reasoning from
first principles might have suggested. However, this is evidence from only two, albeit important,
computer vision benchmarks. It remains unclear whether the observed phenomenon is specific to the
data domain, model class, or practices of vision researchers. Unfortunately, these replication studies
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required assembling new test sets from scratch, resulting in a highly labor-intensive analysis that is
difficult to scale.

In this paper, we empirically study holdout reuse at a significantly larger scale by analyzing data
from 120 machine learning competitions on the popular Kaggle platform [2]. Kaggle competitions
are a particularly well-suited environment for studying overfitting since data sources are diverse,
contestants use a wide range of model families, and training techniques vary greatly. Moreover,
Kaggle competitions use public and private test data splits which provide a natural experimental setup
for measuring overfitting on various datasets.

To provide a detailed analysis of each competition, we introduce a coherent methodology to char-
acterize the extent of overfitting at three increasingly fine scales. Our approach allows us both to
discuss the overall “health” of a competition across all submissions and to inspect signs of overfitting
separately among the top submissions. In addition, we develop a statistical test specific to the
classification competitions on Kaggle to compare the submission scores to those arising in an ideal
null model that assumes no overfitting. Observed data that are close to data predicted by the null
model is strong evidence against overfitting.

Overall, we conclude that the classification competitions on Kaggle show little to no signs of
overfitting. While there are some outlier competitions in the data, these competitions usually have
pathologies such as non-i.i.d. data splits or (effectively) small test sets. Among the remaining
competitions, the public and private test scores show a remarkably good correspondence. The
picture becomes more nuanced among the highest scoring submissions, but the overall effect sizes
of (potential) overfitting are typically small (e.g., less than 1% classification accuracy). Thus, our
findings show that substantial overfitting is unlikely to occur naturally in regular machine learning
workflows.

2 Background and setup

Before we delve into the analysis of the Kaggle data, we briefly define the type of overfitting we
study and then describe how the Kaggle competition format naturally lends itself to investigating
overfitting in machine learning competitions.

2.1 Adaptive overfitting

“Overfitting” is often used as an umbrella term to describe any unwanted performance drop of a
machine learning model. Here, we focus on adaptive overfitting, which is overfitting caused by test
set reuse. While other phenomena under the overfitting umbrella are also important aspects of reliable
machine learning (e.g. performance drops due to distribution shifts), they are beyond the scope of our
paper since they require an experimental setup different from ours.

Formally, let f : X → Y be a trained model that maps examples x ∈ X to output values y ∈ Y
(e.g., class labels or regression targets). The standard approach to measuring the performance of
such a trained model is to define a loss function L : Y × Y → R and to draw samples S =
{(x1, y1), . . . , (xn, yn)} from a data distribution D which we then use to evaluate the test loss
LS(f) =

∑n

i=1
L(f(xi), yi). As long as the model f does not depend on the test set S, standard

concentration results [19] show that LS(f) is a good approximation of the true performance given by
the population loss LD(f) = ED[L(f(x), y)].

However, machine learning practitioners often undermine the assumption that f does not depend
on the test set by selecting models and tuning hyperparameters based on the test loss. Especially
when algorithm designers evaluate a large number of different models on the same test set, the final
classifier may only perform well on the specific examples in the test set. The failure to generalize to
the entire data distribution D manifests itself in a large adaptivity gap LD(f)− LS(f) and leads to
overly optimistic performance estimates.

2.2 Kaggle

Kaggle is the most widely used platform for machine learning competitions, currently hosting 1,461
active and completed competitions. Various organizations (companies, educators, etc.) provide the
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datasets and evaluation rules for the competitions, which are generally open to any participant. Each
competition is centered around a dataset consisting of a training set and a test set.

Considering the danger of overfitting to the test set in a competitive environment, Kaggle subdivides
each test set into public and private components. The subsets are randomly shuffled together and
the entire test set is released without labels, so that participants should not know which test samples
belong to which split. Hence participants submit predictions for the entire test set. The Kaggle server
then internally evaluates each submission on both public and private splits and updates the public
competition leaderboard only with the score on the public split. At the end of the competition, Kaggle
releases the private scores, which determine the winner.

Kaggle has released the MetaKaggle dataset2, which contains detailed information about competitions,
submissions, etc. on the Kaggle platform. The structure of Kaggle competitions makes MetaKaggle
a useful dataset for investigating overfitting empirically at a large scale. In particular, we can view
the public test split Spublic as the regular test set and use the held-out private test split Sprivate to
approximate the population loss. Since Kaggle competitors do not receive feedback from Sprivate until
the competition has ended, we assume that the submitted models may be overfit to Spublic but not to

Sprivate.3 Under this assumption, the difference between private and public loss LSprivate
(f)−LSpublic

(f)
is an approximation of the adaptivity gap LD(f)− LS(f). Hence our setup allows us to estimate the
amount of overfitting occurring in a typical machine learning competition. In the rest of this paper,
we will analyze the public versus private score differences as a proxy for adaptive overfitting.

Due to the large number of competitions on the Kaggle platform, we restrict our attention to the
most popular classification competitions. In particular, we survey the competitions with at least
1,000 submissions before the competition deadline. Moreover, we include only competitions with
evaluation metrics that have at least 10 competitions. These metrics are classification accuracy, AUC
(area under curve), MAP@K (mean average precision), the logistic loss, and a multiclass variant of
the logistic loss. Appendix A provides more details about our selection criteria.

3 Detailed analysis of competitions scored with classification accuracy

We begin with a detailed look at classification competitions scored with the standard accuracy metric.
Classification is the prototypical machine learning task and accuracy is a widely understood perfor-
mance measure. This makes the corresponding competitions a natural starting point to understand
nuances in the Kaggle data. Moreover, there is a large number of accuracy competitions, which
enables us to meaningfully compare effect sizes across competitions. As we will see in Section 3.3,
accuracy competitions also offer the advantage that we can obtain measures of statistical uncertainty.
Later sections will then present an overview of the competitions scored with other metrics.

We conduct our analysis of overfitting at three levels of granularity that become increasingly stringent.
The first level considers all submissions in a competition and checks for systematic overfitting that
would affect a substantial number of submissions (e.g., if public and private score diverge early
in the competition). The second level then zooms into the top 10% of submissions (measured by
public accuracy) and conducts a similar comparison of public to private scores. The goal here is
to understand whether there is more overfitting among the best submissions since they are likely
most adapted to the test set. The third analysis level then takes a mainly quantitative approach and
computes the probabilities of the observed public vs. private accuracy differences under an ideal null
model. This allows us to check if the observed gaps are larger than purely random fluctuations.

In the following subsections, we will apply these three analysis methods to investigate four accuracy
competitions. These four competitions are the accuracy competitions with the largest number
of submissions and serve as representative examples for a typical accuracy competition in the
MetaKaggle dataset (see Table 1 for information about these competitions). Section 3.4 then
complements these analyses with a quantitative look at all competitions before we summarize our
findings for accuracy competitions in Section 3.5.

2https://www.kaggle.com/kaggle/meta-kaggle
3Since test examples without labels are available, contestants may still overfit to Sprivate using an unsupervised

approach. While such overfitting may have occurred in a limited number of competitions, we base our analysis
on the assumption that unsupervised overfitting did not occur widely with effect sizes that are large compared to
overfitting to the public test split.
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5 Related work

As mentioned in the introduction, the reproducibility experiment of Recht et al. [16] also points to-
wards a surprising absence of adaptive overfitting in popular machine learning benchmarks. However,
there are two important differences to our work. First, Recht et al. [16] assembled new test sets
from scratch, which makes it hard to disentangle the effects of adaptive overfitting and distribution
shifts. In contrast, most of the public / private splits in Kaggle competitions are i.i.d., which removes
distribution shifts as a confounder. Second, Recht et al. [16] only investigate two image classification
benchmarks on which most models come from the same model class (CNNs) [9, 11]. We survey
120 competitions on which the Kaggle competitors experimented with a broad range of models and
training approaches. Hence our conclusions about overfitting apply to machine learning more broadly.

The adaptive data analysis literature [6, 17] provides a range of theoretical explanations for how the
common machine learning workflow may implicitly mitigate overfitting [3, 8, 12, 23]. Our work
is complementary to these papers and conducts a purely empirical study of overfitting in machine
learning competitions. We hope that our findings can help test and refine the theoretical understanding
of overfitting in future work.

The Kaggle community has analyzed competition “shake-up”, i.e., rank changes between the public
and private leaderboards of a competition. We refer the reader to the comprehensive data analysis
conducted by Trotman [21] as a concrete example. Focusing on rank changes is complementary to our
approach based on submission scores. From a competition perspective where the winning submissions
are defined by the private leaderboard rank, large rank changes are indeed undesirable. However,
from the perspective of adaptive overfitting, large rank changes can be a natural consequence of
random noise in the evaluation. For instance, consider a setting where a large number of competitors
submits solutions with very similar public leaderboard scores. Due to the limited size of the public
and private test sets, the public scores are only approximately equal to the private scores (even in the
absence of any adaptive overfitting), which can lead to substantial rank changes even though all score
deviations are small and of (roughly) equal size. Since the ranking approach can result in such “false
positives” from the perspective of adaptive overfitting, we decided not to investigate rank changes in
our paper. Nevertheless, we note that we also manually compared the shake-up results to our analysis
and generally found agreement among the set of problematic competitions (e.g., competitions with
non-i.i.d. splits or known public / private splits).

6 Conclusion and future work

We surveyed 120 competitions on Kaggle covering a wide range of classification tasks but found
little to no signs of adaptive overfitting. Our results cast doubt on the standard narrative that adaptive
overfitting is a significant danger in the common machine learning workflow.

Moreover, our findings call into question whether common practices such as limiting test set re-use
increase the reliability of machine learning. We have seen multiple competitions where a non-i.i.d.
split lead to substantial gaps between public and private scores, suggesting that distribution shifts
[7, 15, 16, 20] may be a more pressing problem than test set re-use in current machine learning.

There are multiple directions for empirically understanding overfitting in more detail. Our analysis
here focused on classification competitions, but Kaggle also hosts many regression competitions. Is
there more adaptive overfitting in regression? Answering this questions will likely require access to
the individual predictions of the Kaggle submissions to appropriately handle outlier submissions. In
addition, there are still questions among the classification competitions. For instance, one refinement
of our analysis here is to obtain statistical measures of uncertainty for competitions evaluated with
metrics such as AUC (which will also require a more fine-grained version of the Kaggle data). Finally,
another important question is whether other competition platforms such as CodaLab [1] or EvalAI
[22] also show little signs of adaptive overfitting.
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Table 2: Competitions scored with accuracy with greater than 1000 submissions. npublic is the size of
the public test set and nprivate is the size of the private test set. N/A means that we could not access
the competition data to compute the dataset sizes. A * after the competition name means the name
was slightly edited to fit into the table.

Accuracy

ID Name # Sub. npublic nprivate

3362 Dogs vs. Cats 1,225 3,750 8,751
3366 The Black Box Learning Challenge* 1,924 5,000 5,000
3428 Data Science London + Scikit-learn 1,477 2,700 6,299
3641 DecMeg2014 - Decoding the Human Brain 4,507 1,745 2,313
3649 CIFAR-10 - Object Recognition in Images 1,634 300 9,700
3788 Allstate Purchase Prediction Challenge 24,532 59,657 139,199
4554 MSU Visits* 1,288 30,000 270,000
4821 104-1 MLDS_Final 1,060 36,400 36,401
4857 Let’s Overfit 1,080 500,000 500,000
5275 Can we predict voting outcomes? 35,247 696 696
5896 Prediction Reviews Sentiment Analysis* 1,770 50 50
5903 Prediction Reviews Sentiment Analysis (Light)* 3,528 400 100
5942 Identify Me If You Can – Yandex & MIPT 1,242 20,588 20,589
6109 Identify Me If You Can 1,819 23,236 23,237
7042 Text Normalization Challenge - English Language 1,834 20,446 2,024,166
7115 Cdiscount’s Image Classification Challenge 5,859 530,455 1,237,727
7563 Cover Type Prediction of Forests 3,077 6,000 14,000
7634 TensorFlow Speech Recognition Challenge 24,263 3,171 155,365
8307 Data Science Nigeria Telecoms Churn 1,259 180 420
9051 Digit Recongnizer 1438 1,640 2,576 2,575
9491 ML-2018spring-hw5 2,247 100,000 100,000
10851 CSE158 fa18 Category Prediction 3,872 7,000 7,000
11842 AIA image classification by CNN 3,415 1,350 150
12187 CS 4740 Project 4 Revised 1,086 N/A N/A
12349 2019 1st ML month with KaKR 3,307 209 209
12357 UC Berkeley CS189 HW1 (MNIST) 1,480 3,000 7,000
12358 UC Berkeley CS189 HW1 (SPAM) 1,527 1,757 4,100
12359 UC Berkeley CS189 HW1 (CIFAR-10) 1,336 3,000 7,000
12598 TAU Robot Surface Detection 1,574 852 853
12681 PadhAI: Text - Non Text Classification Level 2 1,185 90 210
13034 UC Berkeley CS189 HW3 (MNIST) 1,193 3,000 7,000
13036 UC Berkeley CS189 HW3 (SPAM) 1,080 1,757 4,100
13078 Homework 2 Part 2 - Classification 2,245 N/A N/A
13383 ML2019spring-hw2 2,802 8,141 8,141
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B.2 Accuracy: outlier competitions

Figure 8 shows the plots corresponding to the three levels of overfitting analysis for the mean accuracy
difference outliers discussed in Section 3.4.

By reading the Kaggle forums and the description of the dataset construction, we were able to
determine a possible cause of overfitting for most of the outlier competitions. In some cases, the
competition hosts did not create the public and private test splits in a truly i.i.d. manner, and
competitors were able to exploit the difference in distribution. In other cases, the size of the test set
was extremely small. The list of outlier competitions and corresponding cause of overfitting follow.
We also include links to relevant descriptions of the data or discussions on the Kaggle forums.

• Competition 3641: DecMeg2014 - Decoding the Human Brain The test set contains
data generated from 7 subjects and the public and private splits were created in a
non-i.i.d. manner using data from individual subjects. https://www.kaggle.com/c/
decoding-the-human-brain/data

• Competition 5903: Prediction Reviews Sentiment Analysis (Light) The competition
uses a small test set consisting of 500 examples (400 in the public test set and 100 in the
private test set).

• Competition 12349: 2019 1st ML month with KaKR The competition uses a small test
set consisting of 418 examples (209 in the private test set and 209 in the public test set.)

• Competition 12598: TAU Robot Surface Detection The dataset is a time series that con-
sists of measurements of acceleration, velocity and orientation. In some of the measurement
locations, the floor has a slope that makes the orientation channels informative (though the
orientation terms are designed to not be informative for the particular task). In order to
mitigate this effect, the organizers split the time series data into shorter subsequences and
assigned separate subsequences to the public and private split. Thus, the public and private
data were not created from a truly i.i.d. split. 4

• Competition 12681: PadhAI: Text - Non Text Classification Level 2 The competition
uses a small test set consisting of 300 examples (90 in the public test set and 210 in the
private test set).

4Personal communication with the competition organizer Heikki Huttunen.
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C AUC

C.1 AUC: competition info

Table 3: Competitions scored with AUC with greater than 1000 submissions. npublic is the size of the
public test set and nprivate is the size of the private test set. N/A means that we could not access the
competition data to compute the dataset sizes. A * after the competition name means the name was
slightly edited to fit into the table.

AUC

ID Name # Sub. npublic nprivate

2439 INFORMS Data Mining Contest 2010 1,483 254 2,285
2445 Predict Grant Applications 2,800 544 1,632
2464 IJCNN Social Network Challenge 1,124 1,792 7,168
2478 Stay Alert! The Ford Challenge 1,402 36,252 84,588
2489 Don’t Overfit! 3,775 1,975 17,775
2551 Give Me Some Credit 7,724 30,451 71,052
3338 Amazon.com - Employee Access Challenge 16,896 17,676 41,245
3353 The Marinexplore and Cornell Univ. Whale Detection* 3,295 16,351 38,152
3469 Influencers in Social Networks 2,109 2,976 2,976
3509 The ICML 2013 Whale Challenge - Right Whale Redux 1,005 7,641 17,828
3524 Accelerometer Biometric Competition 7,130 8,102,160 18,905,040
3526 StumbleUpon Evergreen Classification Challenge 7,509 634 2,537
3774 CONNECTOMICS 1,458 75,742 75,743
3897 Acquire Valued Shoppers Challenge 25,205 N/A N/A
3926 Predicting Excitement at DonorsChoose.org* 12,530 11,193 33,579
3933 MLSP 2014 Schizophrenia Classification Challenge 2,246 0 119,749
3960 American Epilepsy Society Seizure Prediction Challenge 17,782 1,574 2,361
4031 Driver Telematics Analysis 36,072 N/A N/A
4043 BCI Challenge @ NER 2015 4,348 680 2,721
4294 Facebook Recruiting IV: Human or Robot? 13,559 1,410 3,290
4366 West Nile Virus Prediction 29,963 2,326 113,967
4487 Springleaf Marketing Response 39,439 43,570 101,662
4493 Truly Native? 3,224 1,360 2,040
4657 Homesite Quote Conversion 36,387 52,151 121,685
4986 Santander Customer Satisfaction 93,584 37,909 37,909
5167 PRED 411-2016_04-U2-INSURANCE-A* 1,436 1,070 1,071
5174 Avito Duplicate Ads Detection 8,157 657,602 657,603
5261 Predicting Red Hat Business Value 33,696 149,606 349,081
5390 Melbourne Univ. Seizure Prediction* 10,083 N/A N/A
6242 Catch Me If You Can: Intruder Detection* 2,479 41,398 41,399
7162 WSDM - KKBox’s Music Recommendation Challenge 15,555 1,278,396 1,278,395
8227 2018 Spring CSE6250 HW1 1,170 244,173 244,173
8540 TalkingData AdTracking Fraud Detection Challenge 68,594 3,382,284 15,408,185
9120 Home Credit Default Risk 132,097 9,749 38,995
10683 Microsoft Malware Prediction 43,702 4,947,549 2,905,704
11803 BGU - Machine Learning 2,079 6,849 5,603
11848 Histopathologic Cancer Detection 20,352 28,154 29,304
12512 2019 Spring CSE6250 BDH 1,396 244,173 244,173
12558 WiDS Datathon 2019 3,021 4,312 2,222
12904 Caltech CS 155 2019 Part 1 1,078 1,264,122 1,264,122

C.2 AUC: outlier competitions

For AUC, we also investigated competitions whose linear fit was a bad approximation to the diagonal
y = x line. We first identified these competitions using visual inspection of the plots in Section C.3.
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By reading the Kaggle forums and the description of the dataset construction, we were able to
determine a possible cause of overfitting for most of the outlier competitions. In most cases, the
competition hosts did not create the public and private test splits in a truly i.i.d. manner, and
competitiors were able to exploit the difference in distribution. In other cases, the size of the test set
was extremely small. The list of outlier competitions and corresponding cause of overfitting follow.
We also include links to relevant descriptions of the data or discussions on the Kaggle forums.

• Competition 3774: CONNECTOMICS Participants knew which test data belonged in
the public and private splits because the splits were provided in separate files. https:
//www.kaggle.com/c/connectomics/data

• Competition 3926: KDD Cup 2014 - Predicting Excitement at DonorsChoose.org:
Public and private splits are not i.i.d. and likely were created by separating do-
nations projects by the date they were proposed. https://www.kaggle.com/c/
kdd-cup-2014-predicting-excitement-at-donors-choose/discussion/9772#
latest-50827

• Competition 3933: MLSP 2014 Schizophrenia Classification Challenge The test set
contains data generated from 58 subjects and the public and private splits were created in
a non-i.i.d. manner using data from individual subjects. https://www.kaggle.com/c/
mlsp-2014-mri/discussion/10135#latest-54483

• Competition 4043: BCI Challenge @ NER 2015: The test set contains data generated
from 10 subjects and the public and private splits were created in a non-i.i.d. manner using
data from individual subjects https://www.kaggle.com/c/inria-bci-challenge/
discussion/12613#latest-65652.

• Competition 8540: TalkingData AdTracking Fraud Detection Challenge A
second, larger test set that was unintentionally released at the start of the
competition and then participants were permitted but not required to use the
data. https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/
discussion/52658#latest-315882

• Competition 10683: Microsoft Malware Prediction The private test data included several
severe outliers not present in the public test data, indicating that the public and private
split are not i.i.d. https://www.kaggle.com/c/microsoft-malware-prediction/
discussion/84745
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C.4 AUC: top 10% of submissions
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D MAP@K

D.1 MAP@K: competition info

Our MAP@K (Mean Average Precision @ K) category includes competitions marked in the MetaK-
aggle dataset as MAP@{K}, MAP@k, MAP@3, AP@{K}, and MAP@{K}_OLD, as these metrics
are functionally equivalent. MAP@K is typically used for tasks that require predicting a ranked list
of items; for instance, listing K advertisements in order based on how likely a particular user is to
click on them. In this example, the ‘Mean’ in ‘Mean Average Precision’ is taken over all users. For
the i’th user, ‘Average Precision’ of the K predicted advertisements is defined as:

1

min(mi,K)

K∑

k=1

Pi(k)Ii(k),

where mi is the number of advertisements that user i actually clicked on, Pi(k) is the precision
of the first k recommendations for user i (the fraction of the first k recommended advertisements
that the user actually clicked on), and Ii(k) is an indicator variable representing whether the k’th
advertisement was clicked on. In the MetaKaggle dataset, MAP@{K} and MAP@k denote precisely
this Mean Average Precision @ K scoring metric, for varying values of K. MAP@3 is the same,
with K = 3. AP@{K} denotes Average Precision @ K, which is functionally equivalent to MAP@K
because such competitions require predicting a single list (and the mean of a single element is itself).
MAP@{K}_OLD is also effectively the same metric, except with no pre-specified limit on K. In our
earlier analogy, this would correspond to recommending all the available advertisements (rather than
only the top K), so the scoring metric is based solely on the ordering of the recommendations.

Table 4: Competitions scored with MAP@K with greater than 1000 submissions. npublic is the size of
the public test set and nprivate is the size of the private test set. A * after the competition name means
the name was slightly edited to fit into the table. A ** indicates competitions where the public test set
and the private test set are identical and both use all of the test data.

MAP@K

ID Name # Sub. npublic nprivate

2748 KDD Cup 2012, Track 1 13,077 710,267 629,860
2947 Facebook Recruiting Competition 3,554 65,647 196,941
3288 Event Recommendation Engine Challenge 3,021 10,238 10,238**
3445 KDD Cup 2013 (Track 1)* 9,426 2,244 2,244**
3929 The Hunt for Prohibited Content 5,001 675,622 675,621
4481 Coupon Purchase Prediction 18,487 6,870 16,030
5056 Expedia Hotel Recommendations 22,713 834,321 1,693,923
5186 Facebook V: Predicting Check Ins 15,127 4,445,370 4,445,369
5497 Outbrain Click Prediction 6,654 9,667,549 22,557,613
5558 Santander Product Recommendation 28,773 278,884 650,731
6818 Humpback Whale Identification 37,529 1,592 6,368
7666 CS5785 Fall 2017 Final Exam 3,898 1,000 1,000
8396 Google Landmark Retrieval Challenge 3,123 40,019 77,685
8857 Recipient prediction 2018 1,154 1,000 1,000
8900 Freesound Audio Tagging Challenge* 5,684 282 9,118
10200 Quick, Draw! Doodle Recognition Challenge 21,407 10,098 102,101
12088 CS5785 Fall 2018 Final 1,877 1,000 1,000

D.2 MAP@K: outlier competitions

For MAP@K, we also investigated competitions whose linear fit was a bad approximation to the
diagonal y = x line. We first identified these competitions using visual inspection of the plots in
Section D.3.

By reading the Kaggle forums and the description of the dataset construction, we were able to
determine a possible cause of overfitting for most of the outlier competitions. In most cases, the
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public and private test set splits were known to the participants. We also include links to relevant
descriptions of the data or discussions on the Kaggle forums.

• Competition 2748: KDD Cup 2012, Track 1 Participants knew which test data belonged
in the public and private splits because the splits were based on timestamp. https://www.
kaggle.com/c/kddcup2012-track1/discussion/1632#latest-9759

• Competition 3288: Event Recommendation Engine Challenge The public and private
test sets were released in separate stages, so in the final stage of the competition par-
ticipants knew which test data belonged in each split. https://www.kaggle.com/c/
event-recommendation-engine-challenge/discussion/3840#latest-20556

• Competition 3445: KDD Cup 2013 - Author-Paper Identification Challenge (Track 1)
Participants knew which test data belonged in the public and private splits because the
splits were released at different stages of the competition. https://www.kaggle.com/c/
kdd-cup-2013-author-paper-identification-challenge/overview/timeline
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E MulticlassLoss

Our MulticlassLoss category includes competitions marked in the MetaKaggle dataset as Multiclass-
Loss and MulticlassLossOld, as these metrics are functionally equivalent.

E.1 MulticlassLoss: competition info

Table 5: Competitions scored with MulticlassLoss with greater than 1000 submissions. npublic is the
size of the public test set and nprivate is the size of the private test set.

MulticlassLoss

ID Name # Sub. npublic nprivate

3043 Predict Closed Questions on Stack Overflow 1,431 0 81,686
3978 National Data Science Bowl 15,121 9,128 121,273
4117 Microsoft Malware Classification Challenge (BIG 2015) 7,670 3,262 7,611
4280 Otto Group Product Classification Challenge 43,524 101,058 43,310
4521 Right Whale Recognition 4,789 2,424 4,501
4588 Telstra Network Disruptions 19,603 3,240 7,931
4654 Walmart Recruiting: Trip Type Classification 13,135 28,702 66,972
5048 State Farm Distracted Driver Detection 25,591 15,148 64,579
5340 TalkingData Mobile User Demographics 24,631 33,621 78,450
5568 The Nature Conservancy Fisheries Monitoring 2,100 1,132 13,021
5590 Two Sigma Connect: Rental Listing Inquiries 47,044 29,864 44,796
6243 Intel & MobileODT Cervical Cancer Screening 1,367 589 3,943
6841 Personalized Medicine: Redefining Cancer Treatment 3,056 2,267 3,401
7516 Spooky Author Identification 10,640 2,518 5,874

E.2 MulticlassLoss: outlier competitions

For MulticlassLoss, we investigated competitions whose linear fit was a bad approximation to the
diagonal y = x line. We first identified these competitions using visual inspection of the plots in
Section E.3.

By reading the Kaggle forums and the description of the dataset construction, we were able to
determine a possible cause of overfitting for most of the outlier competitions. In most cases, the
competition hosts did not create the public and private test splits in a truly i.i.d. manner, and
competitiors were able to exploit the difference in distribution. In other cases, the size of the test set
was extremely small. The list of outlier competitions and corresponding cause of overfitting follow.
We also include links to relevant descriptions of the data or discussions on the Kaggle forums.

• Competition 3043: Predict Closed Questions on Stack Overflow All test data was
considered private, and the public leaderboard was identical to the private leaderboard.
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/
leaderboard

• Competition 5568: The Nature Conservancy Fisheries Monitoring
The test set was released in two stages. https://www.kaggle.com/c/
the-nature-conservancy-fisheries-monitoring/data

• Competition 6243: Intel & MobileODT Cervical Cancer Screening
The test set was released in two stages. https://www.kaggle.com/c/
intel-mobileodt-cervical-cancer-screening/data

• Competition 6841: Personalized Medicine: Redefining Cancer Treatment The
test set was released in two stages because a team discovered the test data from
Stage 1, including labels, on a public website. https://www.kaggle.com/c/
msk-redefining-cancer-treatment/discussion/36383#latest-223033
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F LogLoss

F.1 LogLoss: competition info

Table 6: Competitions scored with LogLoss with greater than 1000 submissions. npublic is the size of
the public test set and nprivate is the size of the private test set. N/A means that we could not access
the competition data to compute the dataset sizes. A * after the competition name means the name
was slightly edited to fit into the table.

LogLoss

ID Name # Sub. npublic nprivate

2780 Predicting a Biological Response 8,843 625 1,876
2984 Practice Fusion Diabetes Classification 2,200 1,245 3,734
3377 ICDAR2013 - Gender Prediction from Handwriting 1,884 286 486
3934 Display Advertising Challenge 8,640 1,208,427 4,833,708
3984 Tradeshift Text Classification 5,659 163,525 381,557
4120 Click-Through Rate Prediction 31,019 915,493 3,661,972
4438 Avito Context Ad Clicks 5,951 4,788,454 11,173,061
4852 BNP Paribas Cardif Claims Management 54,519 37,750 76,643
4862 March Machine Learning Mania 2016 1,054 68 2,210
6004 Data Science Bowl 2017 1,694 N/A N/A
6277 Quora Question Pairs 53,927 140,748 2,205,048
7163 WSDM - KKBox’s Churn Prediction Challenge 6,256 361,788 542,683
7380 Statoil/C-CORE Iceberg Classifier Challenge 42,936 674 7,750
7823 Attrition de clientes 1,911 15,000 15,000
8310 Google Cloud & NCAA R© ML Competition 2018* 1,660 342 11,049

F.2 LogLoss: outlier competitions

For LogLoss, we observed one competition (Competition 6004: Data Science Bowl 2017) whose
linear fit was a bad approximation the diagonal y = x line. The competition shows approximately 13
outliers when looking at the scatter plot for the top 10% of submissions (see Figure 20).

The competition is unique in two aspects: first, the competition used two stages with separate test sets
released at different times and second, participants were allowed to use external data. Participants were
eventually given all the labels to the Stage 1 test data, but the Stage 2 test data was different in distribu-
tion from the Stage 1 test data (see https://www.kaggle.com/c/data-science-bowl-2017/
discussion/31383#latest-174302). It is unclear whether the final private test data was gener-
ated from an i.i.d. split with either the Stage 1 test data or the Stage 2 data. Moreover, training the
model on external data violates our assumption that the models were only trained and evaluated on
i.i.d. data.
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