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Abstract

We conduct the first large meta-analysis of overfitting due to test set reuse in the
machine learning community. Our analysis is based on over one hundred machine
learning competitions hosted on the Kaggle platform over the course of several
years. In each competition, numerous practitioners repeatedly evaluated their
progress against a holdout set that forms the basis of a public ranking available
throughout the competition. Performance on a separate test set used only once
determined the final ranking. By systematically comparing the public ranking
with the final ranking, we assess how much participants adapted to the holdout set
over the course of a competition. Our study shows, somewhat surprisingly, little
evidence of substantial overfitting. These findings speak to the robustness of the
holdout method across different data domains, loss functions, model classes, and
human analysts.

1 Introduction

The holdout method is central to empirical progress in the machine learning community. Competitions,
benchmarks, and large-scale hyperparameter search all rely on splitting a data set into multiple pieces
to separate model training from evaluation. However, when practitioners repeatedly reuse holdout
data, the danger of overfitting to the holdout data arises [6, 13].

Despite its importance, there is little empirical research into the manifested robustness and validity
of the holdout method in practical scenarios. Real-world use cases of the holdout method often
fall outside the guarantees of existing theoretical bounds, making questions of validity a matter of
guesswork.

Recent replication studies [16] demonstrated that the popular CIFAR-10 [10] and ImageNet [5, 18]
benchmarks continue to support progress despite years of intensive use. The longevity of these
benchmarks perhaps suggests that overfitting to holdout data is less of a concern than reasoning from
first principles might have suggested. However, this is evidence from only two, albeit important,
computer vision benchmarks. It remains unclear whether the observed phenomenon is specific to the
data domain, model class, or practices of vision researchers. Unfortunately, these replication studies
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required assembling new test sets from scratch, resulting in a highly labor-intensive analysis that is
difficult to scale.

In this paper, we empirically study holdout reuse at a significantly larger scale by analyzing data
from 120 machine learning competitions on the popular Kaggle platform [2]. Kaggle competitions
are a particularly well-suited environment for studying overfitting since data sources are diverse,
contestants use a wide range of model families, and training techniques vary greatly. Moreover,
Kaggle competitions use public and private test data splits which provide a natural experimental setup
for measuring overfitting on various datasets.

To provide a detailed analysis of each competition, we introduce a coherent methodology to char-
acterize the extent of overfitting at three increasingly fine scales. Our approach allows us both to
discuss the overall “health” of a competition across all submissions and to inspect signs of overfitting
separately among the top submissions. In addition, we develop a statistical test specific to the
classification competitions on Kaggle to compare the submission scores to those arising in an ideal
null model that assumes no overfitting. Observed data that are close to data predicted by the null
model is strong evidence against overfitting.

Overall, we conclude that the classification competitions on Kaggle show little to no signs of
overfitting. While there are some outlier competitions in the data, these competitions usually have
pathologies such as non-i.i.d. data splits or (effectively) small test sets. Among the remaining
competitions, the public and private test scores show a remarkably good correspondence. The
picture becomes more nuanced among the highest scoring submissions, but the overall effect sizes
of (potential) overfitting are typically small (e.g., less than 1% classification accuracy). Thus, our
findings show that substantial overfitting is unlikely to occur naturally in regular machine learning
workflows.

2 Background and setup

Before we delve into the analysis of the Kaggle data, we briefly define the type of overfitting we
study and then describe how the Kaggle competition format naturally lends itself to investigating
overfitting in machine learning competitions.

2.1 Adaptive overfitting

“Overfitting” is often used as an umbrella term to describe any unwanted performance drop of a
machine learning model. Here, we focus on adaptive overfitting, which is overfitting caused by test
set reuse. While other phenomena under the overfitting umbrella are also important aspects of reliable
machine learning (e.g. performance drops due to distribution shifts), they are beyond the scope of our
paper since they require an experimental setup different from ours.

Formally, let f : X — ) be a trained model that maps examples x € X to output values y € )
(e.g., class labels or regression targets). The standard approach to measuring the performance of
such a trained model is to define a loss function L : Y x ) — R and to draw samples S =
{(z1,91)y .-, (Tn,yn)} from a data distribution D which we then use to evaluate the test loss
Ls(f) = >7 y L(f(z;),y:). As long as the model f does not depend on the test set S, standard
concentration results [19] show that Lg(f) is a good approximation of the true performance given by
the population loss Lp(f) = Ep[L(f(z),v)].

However, machine learning practitioners often undermine the assumption that f does not depend
on the test set by selecting models and tuning hyperparameters based on the test loss. Especially
when algorithm designers evaluate a large number of different models on the same test set, the final
classifier may only perform well on the specific examples in the test set. The failure to generalize to
the entire data distribution D manifests itself in a large adaptivity gap Lp(f) — Ls(f) and leads to
overly optimistic performance estimates.

2.2 Kaggle

Kaggle is the most widely used platform for machine learning competitions, currently hosting 1,461
active and completed competitions. Various organizations (companies, educators, etc.) provide the



datasets and evaluation rules for the competitions, which are generally open to any participant. Each
competition is centered around a dataset consisting of a training set and a test set.

Considering the danger of overfitting to the test set in a competitive environment, Kaggle subdivides
each test set into public and private components. The subsets are randomly shuffled together and
the entire test set is released without labels, so that participants should not know which test samples
belong to which split. Hence participants submit predictions for the entire test set. The Kaggle server
then internally evaluates each submission on both public and private splits and updates the public
competition leaderboard only with the score on the public split. At the end of the competition, Kaggle
releases the private scores, which determine the winner.

Kaggle has released the MetaKaggle dataset”, which contains detailed information about competitions,
submissions, etc. on the Kaggle platform. The structure of Kaggle competitions makes MetaKaggle
a useful dataset for investigating overfitting empirically at a large scale. In particular, we can view
the public test split Spupiic as the regular test set and use the held-out private test split Sprivaie t0
approximate the population loss. Since Kaggle competitors do not receive feedback from Spyiyae until
the competition has ended, we assume that the submitted models may be overfit to Spupiic but not to
Sprivace> Under this assumption, the difference between private and public loss L, .. (f) — L. (f)
is an approximation of the adaptivity gap Lp(f) — Ls(f). Hence our setup allows us to estimate the
amount of overfitting occurring in a typical machine learning competition. In the rest of this paper,
we will analyze the public versus private score differences as a proxy for adaptive overfitting.

Due to the large number of competitions on the Kaggle platform, we restrict our attention to the
most popular classification competitions. In particular, we survey the competitions with at least
1,000 submissions before the competition deadline. Moreover, we include only competitions with
evaluation metrics that have at least 10 competitions. These metrics are classification accuracy, AUC
(area under curve), MAP@K (mean average precision), the logistic loss, and a multiclass variant of
the logistic loss. Appendix A provides more details about our selection criteria.

3 Detailed analysis of competitions scored with classification accuracy

We begin with a detailed look at classification competitions scored with the standard accuracy metric.
Classification is the prototypical machine learning task and accuracy is a widely understood perfor-
mance measure. This makes the corresponding competitions a natural starting point to understand
nuances in the Kaggle data. Moreover, there is a large number of accuracy competitions, which
enables us to meaningfully compare effect sizes across competitions. As we will see in Section 3.3,
accuracy competitions also offer the advantage that we can obtain measures of statistical uncertainty.
Later sections will then present an overview of the competitions scored with other metrics.

We conduct our analysis of overfitting at three levels of granularity that become increasingly stringent.
The first level considers all submissions in a competition and checks for systematic overfitting that
would affect a substantial number of submissions (e.g., if public and private score diverge early
in the competition). The second level then zooms into the top 10% of submissions (measured by
public accuracy) and conducts a similar comparison of public to private scores. The goal here is
to understand whether there is more overfitting among the best submissions since they are likely
most adapted to the test set. The third analysis level then takes a mainly quantitative approach and
computes the probabilities of the observed public vs. private accuracy differences under an ideal null
model. This allows us to check if the observed gaps are larger than purely random fluctuations.

In the following subsections, we will apply these three analysis methods to investigate four accuracy
competitions. These four competitions are the accuracy competitions with the largest number
of submissions and serve as representative examples for a typical accuracy competition in the
MetaKaggle dataset (see Table 1 for information about these competitions). Section 3.4 then
complements these analyses with a quantitative look at all competitions before we summarize our
findings for accuracy competitions in Section 3.5.

"https://wuw.kaggle.com/kaggle/meta-kaggle

3Since test examples without labels are available, contestants may still overfit to Sprivae using an unsupervised
approach. While such overfitting may have occurred in a limited number of competitions, we base our analysis
on the assumption that unsupervised overfitting did not occur widely with effect sizes that are large compared to
overfitting to the public test split.



Table 1: The four accuracy competitions with the largest number of submissions. npupic is the size of
the public test set and 7privace 18 the size of the private test set.

ID Name # Submissions Npublic Tlprivate
5275 Can we predict voting outcomes? 35,247 249,344 249,343
3788  Allstate Purchase Prediction Challenge 24,532 59,657 139,199
7634  TensorFlow Speech Recognition Challenge 24,263 3,171 155,365
7115 Cdiscount’s Image Classification Challenge 5,859 53,0455 1,237,727

3.1 First analysis level: visualizing the overall trend

As mentioned in Section 2.2, the main quantities of interest are the accuracies on the public and
private parts of the test set. In order to visualize this information at the level of all submissions to a
competition, we create a scatter plot of the public and private accuracies. In an ideal competition with
a large test set and without any overfitting, the public and private accuracies of a submission would
all be almost identical and lie near the y = x diagonal. On the other hand, substantial deviations
from the diagonal would indicate gaps between the public and private accuracy and present possible
evidence of overfitting in the competition.

Figure 1 shows such scatter plots for the four accuracy competitions mentioned above. In addition
to a point for each submission, the scatter plots also contain a linear regression fit to the data. All
four plots show a linear fit that is close to the y = z diagonal. In addition, three of the four plots
show very little variation around the diagonal. The variation around the diagonal in the remaining
competition is largely symmetric, which indicates that it is likely the effect of random chance.

These scatter plots can be seen as indicators of overall competition “health”: in case of pervasive
overfitting, we would expect a plateauing trend where later points mainly move on the x-axis (public
accuracy) but stagnate on the y-axis (private accuracy). In contrast, the four plots in Figure 1 show
that as submissions progress on the public test set, they see corresponding improvements also on the
private test set. Moreover, the public scores remain representative of the private scores.

As can be seen in Appendix B.3, this overall trend is representative for the 34 accuracy competitions.
All except one competition show a linear fit close to the main diagonal. The only competition with a
substantial deviation is the “TAU Robot Surface Detection” competition (ID 12598). We contacted
the authors of this competition and confirmed that there are subtleties in the public / private split
which undermine the assumption that the two splits are i.i.d. Hence we consider this competition to
be an outlier since it does not conform to the experimental setup described in Section 2.2. So at least
on the coarse scale of the first analysis level, there are little to no signs of adaptive overfitting: it is
easier to make genuine progress on the data distribution in these competitions than to substantially
overfit to the test set.

Competition 5275 Competition 3788 Competition 7634 Competition 7115
All (n=35247) All (n=24532) All (n=24263) All (n=5859)
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Figure 1: Private versus public accuracy for all submissions in the most popular Kaggle accuracy competitions.
Each point corresponds to an individual submission (shown with 95% Clopper-Pearson confidence intervals,
although the confidence intervals are smaller than the plotted data points).



3.2 Second analysis level: zooming in to the top submissions

While the scatter plots discussed above give a comprehensive picture of an entire competition, one
concern is that overfitting may be more prevalent among the submissions with the highest public
accuracy since they may be more adapted to the public test set. Moreover, the best submissions are
those where overfitting would be most serious since invalid accuracies there would give a misleading
impression of performance on future data. So to analyze the best submissions in more detail, we also
created scatter plots for the top 10% of submissions (as scored by public accuracy).

Figure 2 shows scatter plots for the same four competitions as before. Since the axes now encompass
a much smaller range (often only a few percent), they give a more nuanced picture of the performance
among the best submissions.

In the leftmost and rightmost plot, the linear fit for the submissions still closely tracks the y = =
diagonal. Hence there is little sign of overfitting also among the top 10% of submissions. On the
other hand, the middle two plots in Figure 2 show noticeable deviations from the main diagonal.
Interestingly, the linear fit is above the diagonal in Competition 7634 and below the main diagonal
in Competition 3788. The trend in Competition 3788 is more concerning since it indicates that the
public accuracy overestimates the private accuracy. However, in both competitions the absolute effect
size (deviation from the diagonal) is small (about 1%). It is also worth noting that the accuracies
in Competition 3788 are not in a high-accuracy regime but around 55%. So the relative error from
public to private test set is small as well.

Appendix B.4 contains scatter plots for the remaining accuracy competitions that show a similar
overall trend. Besides the Competition 12598 discussed in the previous subsection, there are two
additional competitions with a substantial public vs. private deviation. One competition is #3641,
which has a total test set size of about 4,000 but is only derived from 7 human test subjects (the dataset
consists of magnetoencephalography (MEG) recordings from these subjects). The other competition
is 12681, which contains a public test set of size 90. Very small (effective) test sets make it easier to
reconstruct the public / private split (and then to overfit), and also make the public and private scores
more noisy. Hence we consider these two competitions to be outliers. Overall, the second analysis
level shows that if overfitting occurs among the top submissions, it only does so to a small extent.
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Figure 2: Private versus public accuracy for the top 10% of submissions in the most popular Kaggle accuracy
competitions. Each point corresponds to an individual submission (shown with 95% Clopper-Pearson confidence
intervals).

3.3 Third analysis level: quantifying the amount of random variation

When discussing deviations from the ideal y = = diagonal in the previous two subsections, an
important question is how much variation we should expect from random chance. Due to the finite
sizes of the test sets, the public and private accuracies will never match exactly and it is a priori
unclear how much of the deviation we can attribute to random chance and how much to overfitting.

To quantitatively understand the expected random variation, we compute the probability of a given
public vs. private deviation (p-value) for a simple null model. By inspecting the distribution of the
resulting p-values, we can then investigate to what extent the observed deviations can be attributed to
random chance.

We consider the following null model under which we compute p-values for observing certain gaps
between the public and private accuracies. We fix a submission that makes a given number of mistakes



on the entire test set (public and private split combined). We then randomly split the test set into
two parts with sizes corresponding to the public and private splits of the competition. This leads to
a certain number of mistakes (and hence accuracy) on each of the two parts. The p-value for this
submission is then given by the probability of the event

|public_accuracy — private_accuracy| > ¢ (1)

where ¢ is the observed deviation between public and private accuracy. We describe the details of
computing these p-values in Appendix B.5.

Figure 3 plots the distribution of these p-values for the same four competitions as before. To see
potential effects of overfitting, we show p-values for all submissions, the top 10% of submissions (as
in the previous subsection), and for the first submission for each team in the competition. We plot
the first submissions separately since they should be least adapted to the test set and hence show the
smallest amount of overfitting.
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Figure 3: CDFs of the p-values for three (sub)sets of submissions in the four accuracy competitions with the
largest number of submissions.

Under our ideal null hypothesis, the p-values would have a uniform distribution with a CDF following
the y = x diagonal. However, this is only the case for Competition 5275 and the first submissions
in Competitions 7634 & 7115, and even there only approximately. Most other curves show a
substantially larger number of small p-values (large gaps between public and private accuracy) than
expected under the null model. Moreover, the top 10% of submissions always exhibit the smallest
p-values, followed by all submissions and then the first submissions.

When interpreting these p-value plots, we emphasize that the null model is highly idealized. In
particular, we assume that every submission is evaluated on its own independent random public /
private split, which is clearly not the case for Kaggle competitions. So for correlated submissions,
we would expect clusters of approximately equal p-values that are unlikely to arise under the null
model. Since it is plausible that many models are trained with standard libraries such as XGBoost [4]
or scikit-learn [14], we conjecture that correlated models are behind the jumps in the p-value CDFs.

In addition, it is important to note that for large test sets (e.g., the 198,856 examples in Competition
3788), even very small systematic deviations between the public and private accuracies are statistically
significant and hence lead to small p-values. So while the analysis based on p-value plots does point
towards irregularities such as overfitting, the overall effect size (deviation between public and private
accuracies) can still be small.

Given the highly discriminative nature of the p-values, a natural question is whether any competition
exhibits approximately uniform p-values. As can be seen in Appendix B.5, some competitions indeed
have p-value plots that are close to the uniform distribution under null model (Figure 11 in the same
appendix highlights four examples). Due to the idealized null hypothesis, this is strong evidence that
these competitions are free from overfitting.

3.4 Aggregate view of the accuracy competitions

The previous subsections provided tools for analyzing individual competitions and then relied on
a qualitative survey of all accuracy competitions. Due to the many nuances and failure modes in
machine learning competitions, we believe that this case-by-case approach is the most suitable for
the Kaggle data. But since this approach also carries the risk of missing overall trends in the data, we
complement it here with a quantitative analysis of all accuracy competitions.



In order to compare the amount of overfitting across competitions, we compute the mean accuracy
difference across all submissions in a competition. Specifically, let C be a set of submissions for a
given competition. Then the mean accuracy difference of the competition is defined as

mean_accuracy_difference = Z public_accuracy (i) — private_accuracy(z) . )

1
|C| ieC
A larger mean accuracy difference indicates more potential overfitting. Note that since accuracy is
in a sense the opposite of loss, our computation of mean accuracy difference is the opposite of our
earlier expression for the generalization gap.
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Figure 4: Left: Empirical CDF of the mean accuracy differences (%) for 34 accuracy competitions with at least
1,000 submissions. Right: Mean accuracy differences versus competition end date for the same competitions.

Figure 4 shows the empirical CDF of the mean accuracy differences for all accuracy competitions.
While the score differences between —2% to +2% are approximately symmetric and centered at
zero (as a central limit theorem argument would suggest), the plot also shows a tail with larger score
differences consisting of five competitions. Figure 8 in Appendix B.2 aggregates our three types of
analysis plots for these competitions.

We have already mentioned three of these outliers in the discussion so far. The worst outlier is
Competition 12598 which contains a non-i.i.d. data split (see Section 3.1). Section 3.2 noted that
Competitions 3641 and 12681 had very small test sets. Similarly, the other two outliers (#12349
and #5903) have small private test sets of size 209 and 100, respectively. Moreover, the public -
private accuracy gap decreases among the very best submissions in these competitions (see Figure 8
in Appendix B.2). Hence we do not consider these competitions as examples of adaptive overfitting.

As a second aggregate comparison, the right plot
in Figure 4 shows the mean accuracy differences
vs. competition end date and separates two types
of competitions: in-class and other, which are
mainly the “featured” competitions on Kaggle
with prize money. Interestingly, many of the com-
petitions with large public - private deviations are
from 2019. Moreover, the large deviations are
almost exclusively in-class competitions. This
may indicate that in-class competitions undergo
less quality control than the featured competi- 21 o o

tions (e.g., have smaller test sets), and that the To2 T0° Tot 105 Tos
quality control standards on Kaggle may change Test Set Size

over time.

Special Case Competitions
6 e Other Competitions

Mean Accuracy Difference

As a third aggregate comparison, Figure 5 shows Figure 5: Mean accuracy differences versus test set
the mean accuracy differences vs. test set sizes, Size (public and private combined) for 32 accuracy com-
with orange dots to indicate competitions we petitions with at least 1,000 submissions and available
flagged as having either a known or a non-i.i.d test set size (the test set sizes for two competitions with

. . - ~ 5. atleast 1,000 submissions were not available from the
public vs. private test set split. Although a reli-

. . : MetaKaggle dataset).

able recommendation for applied machine learn-
ing will require broader investigation, our results for accuracy competitions suggest that at least
10,000 examples is a reasonable minimum test set size to protect against adaptive overfitting.



3.5 Did we observe overfitting?

The preceding subsections provided an increasingly fine-grained analysis of the Kaggle competitions
evaluated with classification accuracy. The scatter plots for all submissions in Section 3.1 show a
good fit to the y = = diagonal with small and approximately symmetric deviations from the diagonal.
This is strong evidence that the overall competition is not affected by substantial overfitting. When
restricting the plots to the top submissions in Section 3.2, the picture becomes more varied but
the largest overfitting effect size (public - private accuracy deviation) is still small. Thus for some
competitions we observe evidence of mild overfitting, but always with small effect size. In both
sections we have identified outlier competitions that do not follow the overall trend but also have
issues such as small test sets or non-i.i.d. splits. At the finest level of our analysis (Section 3.3), the
p-value plots show that the data is only sometimes in agreement with an idealized null model for no
overfitting.

Overall we see more signs of overfitting as we sharpen our analysis to highlight smaller effect sizes.
So while we cannot rule out every form of overfitting, we view our findings as evidence that overfitting
did not pose a significant danger in the most popular classification accuracy competitions on Kaggle.
In spite of up to 35,000 submissions to these competitions, there are no large overfitting effects. So
while overfitting may have occurred to a small extent, it did not invalidate the overall conclusions
from the competitions such as which submissions rank among the top or how well they perform on
the private test split.

4 Classification competitions with further evaluation metrics

In addition to classification accuracy competitions, we also surveyed competitions evaluated with
AUC, MAP@K, LogLoss, and MulticlassLoss. Unfortunately, the Meta Kaggle dataset contains only
aggregate scores for the public and private test set splits, not the loss values for individual predictions.
For the accuracy metric, aggregate scores are sufficient to compute statistical measures of uncertainty
such as the error bars in the scatter plots (Sections 3.1 & 3.2) or the p-value plots (Section 3.3).
However, the aggregate data is insufficient to compute similar quantities for the other classification
metrics. For instance, the lack of example-level scores precludes the use of standard tools such as the
bootstrap or permutation tests, as we are unable to re-sample the test set. Hence our analysis here is
more qualitative than for accuracy competitions in the preceding section. Nevertheless, inspecting
the scatter plots can still convey overall trends in the data.
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Figure 6: Empirical CDF of mean score differences (across all pre-deadline submissions) for 40 AUC competi-
tions, 17 MAP@K competitions, 15 LogLoss competitions, and 14 MulticlassLoss competitions.

Appendices C to F contain the scatter plots for all submissions and for the top 10% of submissions
to these competitions. The overall picture is similar to the accuracy plots: many competitions have
scatter plots with a good linear fit close to the y = x diagonal. There is more variation in the top 10%
plots but due to the lack of error bars it is difficult to attribute this to overfitting vs. random noise. As
before, a small number of competitions show more variation that may be indicative of overfitting. In
all cases, the Kaggle website (data descriptions and discussion forums) give possible reasons for this
behavior (non-i.i.d. splits, competitions with two stages and different test sets, etc.). Thus, we view
these competitions as outliers that do not contradict the overall trend.

Figure 6 shows plots with aggregate statistics (mean score difference) similar to Section 3.4. As for
the accuracy competitions, the empirical distribution has an approximately symmetric part centered at
0 (no score change) and a tail with larger score differences that consists mainly of outlier competitions.



5 Related work

As mentioned in the introduction, the reproducibility experiment of Recht et al. [16] also points to-
wards a surprising absence of adaptive overfitting in popular machine learning benchmarks. However,
there are two important differences to our work. First, Recht et al. [16] assembled new test sets
from scratch, which makes it hard to disentangle the effects of adaptive overfitting and distribution
shifts. In contrast, most of the public / private splits in Kaggle competitions are i.i.d., which removes
distribution shifts as a confounder. Second, Recht et al. [16] only investigate two image classification
benchmarks on which most models come from the same model class (CNNs) [9, 11]. We survey
120 competitions on which the Kaggle competitors experimented with a broad range of models and
training approaches. Hence our conclusions about overfitting apply to machine learning more broadly.

The adaptive data analysis literature [6, 17] provides a range of theoretical explanations for how the
common machine learning workflow may implicitly mitigate overfitting [3, 8, 12, 23]. Our work
is complementary to these papers and conducts a purely empirical study of overfitting in machine
learning competitions. We hope that our findings can help test and refine the theoretical understanding
of overfitting in future work.

The Kaggle community has analyzed competition “shake-up”, i.e., rank changes between the public
and private leaderboards of a competition. We refer the reader to the comprehensive data analysis
conducted by Trotman [21] as a concrete example. Focusing on rank changes is complementary to our
approach based on submission scores. From a competition perspective where the winning submissions
are defined by the private leaderboard rank, large rank changes are indeed undesirable. However,
from the perspective of adaptive overfitting, large rank changes can be a natural consequence of
random noise in the evaluation. For instance, consider a setting where a large number of competitors
submits solutions with very similar public leaderboard scores. Due to the limited size of the public
and private test sets, the public scores are only approximately equal to the private scores (even in the
absence of any adaptive overfitting), which can lead to substantial rank changes even though all score
deviations are small and of (roughly) equal size. Since the ranking approach can result in such “false
positives” from the perspective of adaptive overfitting, we decided not to investigate rank changes in
our paper. Nevertheless, we note that we also manually compared the shake-up results to our analysis
and generally found agreement among the set of problematic competitions (e.g., competitions with
non-i.i.d. splits or known public / private splits).

6 Conclusion and future work

We surveyed 120 competitions on Kaggle covering a wide range of classification tasks but found
little to no signs of adaptive overfitting. Our results cast doubt on the standard narrative that adaptive
overfitting is a significant danger in the common machine learning workflow.

Moreover, our findings call into question whether common practices such as limiting test set re-use
increase the reliability of machine learning. We have seen multiple competitions where a non-i.i.d.
split lead to substantial gaps between public and private scores, suggesting that distribution shifts
[7, 15, 16, 20] may be a more pressing problem than test set re-use in current machine learning.

There are multiple directions for empirically understanding overfitting in more detail. Our analysis
here focused on classification competitions, but Kaggle also hosts many regression competitions. Is
there more adaptive overfitting in regression? Answering this questions will likely require access to
the individual predictions of the Kaggle submissions to appropriately handle outlier submissions. In
addition, there are still questions among the classification competitions. For instance, one refinement
of our analysis here is to obtain statistical measures of uncertainty for competitions evaluated with
metrics such as AUC (which will also require a more fine-grained version of the Kaggle data). Finally,
another important question is whether other competition platforms such as CodaLab [1] or EvalAl
[22] also show little signs of adaptive overfitting.
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A Overview of Kaggle competitions and our resulting selection criteria

At the time of writing, the MetaKaggle dataset has 1,461 competitions. Due to the variety of different
scoring mechanisms used on Kaggle and intricacies of individual competitions, it is challenging to
analyze the entire datast in a coherent way. To limit the scope of our investigation and allow for a
detailed analysis, we restricted our attention to a subset of competitions based on the following two
criteria.

Number of Submissions: Reverse CDF Competitions by Evaluation Metric
: 40
12000 & e Threshold * Bl Classification
% 1000 : g 301 B Regression
g 800 £20
=] Q.
600 £ 101
]
=3 o
£ 400 ol
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Figure 7: Overview of the Kaggle competitions. The left plot shows the distribution of submissions
per competition. The right plot shows the score types that are most common among the competitions
with at least 1,000 submissions.

Number of submissions. Kaggle competitions have a wide range of submissions, ranging from 0
for the bottom 10% to 3,159 for the most popular 10% of competitions (and 132,097 for the most
popular competition). The left plot in Figure 7 shows the distribution of competition sizes. From
the perspective of adaptive overfitting, competitions with many submissions are more interesting
since a larger number of submissions indicate more potential adaptivity. Moreover, overfitting on the
most popular competitions would also be more important to understand as it would undermine the
credibility of the competition paradigm. So to limit the number of competitions, we included only
competitions with at least 1,000 submissions before the corresponding competition deadline. This
left a total of 262 competitions.

Score type. Depending on the competition, the performance of a submissions is measured with one
of various scoring mechanisms. The list of scoring mechanisms involves well-known score types
(accuracy, AUC, RMSE) and a long tail of more specialized metrics (see the right plot in Figure
7. We focus on score types used for classification tasks with at least 10 competitions (passing our
submission count filter) so we can compare competitions with multiple other competitions using the
same score type. This avoids difficulties such as comparing classification vs. regression competitions
or bounded vs. unbounded scores. Moreover, the most popular score types are also the most relevant
for measuring the amount of overfitting in machine learning competitions. The classification score
types with at least 10 competitions are classification accuracy, AUC (area under curve), MAP@K
(mean average precision), the logistic loss, and a multiclass variant of the logistic loss.

In total, the above exclusion rules leave 120 competitions. It would be possible to restrict the set
of competitions even further, e.g., by only including “featured” competitions (the competitions
promoted by Kaggle, usually with prize money) and excluding other competition types such as “in
class” competitions which are mainly used for educational purposes. Another possible filter would be
to exclude competitions with only small test set sizes since the resulting scores are inherently more
noisy. However, we decided to minimize the exclusion rules so we can analyze a large number of
competitions and possibly find effects of features such as competition type and test set size.

B Accuracy

B.1 Accuracy: competition info
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Table 2: Competitions scored with accuracy with greater than 1000 submissions. 7puplic is the size of
the public test set and 7 pivaee 15 the size of the private test set. N/A means that we could not access
the competition data to compute the dataset sizes. A * after the competition name means the name
was slightly edited to fit into the table.

Accuracy
ID Name # Sub. Npublic Nprivate
3362 Dogs vs. Cats 1,225 3,750 8,751
3366 The Black Box Learning Challenge* 1,924 5,000 5,000
3428 Data Science London + Scikit-learn 1,477 2,700 6,299
3641 DecMeg2014 - Decoding the Human Brain 4,507 1,745 2,313
3649  CIFAR-10 - Object Recognition in Images 1,634 300 9,700
3788 Allstate Purchase Prediction Challenge 24,532 59,657 139,199
4554 MSU Visits* 1,288 30,000 270,000
4821 104-1 MLDS_Final 1,060 36,400 36,401
4857 Let’s Overfit 1,080 500,000 500,000
5275  Can we predict voting outcomes? 35,247 696 696
5896 Prediction Reviews Sentiment Analysis* 1,770 50 50
5903 Prediction Reviews Sentiment Analysis (Light)* 3,528 400 100
5942 Identify Me If You Can — Yandex & MIPT 1,242 20,588 20,589
6109 Identify Me If You Can 1,819 23,236 23,237
7042 Text Normalization Challenge - English Language 1,834 20,446 2,024,166
7115 Cdiscount’s Image Classification Challenge 5,859 530,455 1,237,727
7563 Cover Type Prediction of Forests 3,077 6,000 14,000
7634  TensorFlow Speech Recognition Challenge 24,263 3,171 155,365
8307  Data Science Nigeria Telecoms Churn 1,259 180 420
9051 Digit Recongnizer 1438 1,640 2,576 2,575
9491 ML-2018spring-hw5 2,247 100,000 100,000
10851 CSE158 fal8 Category Prediction 3,872 7,000 7,000
11842  AIA image classification by CNN 3,415 1,350 150
12187  CS 4740 Project 4 Revised 1,086 N/A N/A
12349 2019 1st ML month with KaKR 3,307 209 209
12357 UC Berkeley CS189 HW1 (MNIST) 1,480 3,000 7,000
12358 UC Berkeley CS189 HW1 (SPAM) 1,527 1,757 4,100
12359 UC Berkeley CS189 HW1 (CIFAR-10) 1,336 3,000 7,000
12598 TAU Robot Surface Detection 1,574 852 853
12681 PadhAlI: Text - Non Text Classification Level 2 1,185 90 210
13034 UC Berkeley CS189 HW3 (MNIST) 1,193 3,000 7,000
13036  UC Berkeley CS189 HW3 (SPAM) 1,080 1,757 4,100
13078 Homework 2 Part 2 - Classification 2,245 N/A N/A
13383 ML2019spring-hw?2 2,802 8,141 8,141
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B.2 Accuracy: outlier competitions

Figure 8 shows the plots corresponding to the three levels of overfitting analysis for the mean accuracy
difference outliers discussed in Section 3.4.

By reading the Kaggle forums and the description of the dataset construction, we were able to
determine a possible cause of overfitting for most of the outlier competitions. In some cases, the
competition hosts did not create the public and private test splits in a truly i.i.d. manner, and
competitors were able to exploit the difference in distribution. In other cases, the size of the test set
was extremely small. The list of outlier competitions and corresponding cause of overfitting follow.
We also include links to relevant descriptions of the data or discussions on the Kaggle forums.

Competition 3641: DecMeg2014 - Decoding the Human Brain The test set contains
data generated from 7 subjects and the public and private splits were created in a
non-i.i.d. manner using data from individual subjects. https://www.kaggle.com/c/
decoding-the-human-brain/data

Competition 5903: Prediction Reviews Sentiment Analysis (Light) The competition
uses a small test set consisting of 500 examples (400 in the public test set and 100 in the
private test set).

Competition 12349: 2019 1st ML month with KaKR The competition uses a small test
set consisting of 418 examples (209 in the private test set and 209 in the public test set.)

Competition 12598: TAU Robot Surface Detection The dataset is a time series that con-
sists of measurements of acceleration, velocity and orientation. In some of the measurement
locations, the floor has a slope that makes the orientation channels informative (though the
orientation terms are designed to not be informative for the particular task). In order to
mitigate this effect, the organizers split the time series data into shorter subsequences and
assigned separate subsequences to the public and private split. Thus, the public and private
data were not created from a truly i.i.d. split. 4

Competition 12681: PadhAI: Text - Non Text Classification Level 2 The competition
uses a small test set consisting of 300 examples (90 in the public test set and 210 in the
private test set).

“Personal communication with the competition organizer Heikki Huttunen.
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Figure 8: The three main plots for the outliers in mean score difference discussed in Section 3.4: private versus
public accuracy for all submissions (left), the top 10% of submissions ranked by public accuracy (center), and
the empirical CDFs of p-Values (right). For the scatter plots, each point corresponds to an individual submission
(shown with 95% Clopper-Pearson confidence intervals). The right figure includes empirical CDFs for an
idealized null model that assumes no overfitting (see Section 3.3).
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B.3 Accuracy: all submissions
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Figure 9: Private versus public accuracy for all submissions for the most popular Kaggle accuracy competitions.
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B.4 Accuracy: top 10% of submissions
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Figure 10: Private versus public accuracy for top 10% of submissions for the most popular Kaggle accuracy
competitions. Each point corresponds to an individual submission (shown with 95% Clopper-Pearson confidence
intervals).
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Figure 10: Private versus public accuracy for all submissions for the most popular Kaggle accuracy competitions.
Each point corresponds to an individual submission (shown with 95% Clopper-Pearson confidence intervals).
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B.5 Accuracy: p-values
B.5.1 Computation of P-Values

For a given submission, the public and private test accuracies will rarely exactly match. We would
like to understand exactly how much of this discrepancy can be attributed to random variation as

opposed to overfitting. Using only MetaKaggle data, we compute exact p-values for a simple null
mode.

Fix a classifier that correctly classifies m points out of a total test set of size Ny and incorrectly
classifies the remaining nyo, — m points. We randomly split these n, points into public and private
test sets of size npuplic And Nprivate, Tespectively, with 7puplic + Mprivate = Mot Under the null model,
every partition of the points is equally likely. Dividing points in this fashion leads to mpypiic and
Mprivare SUCCEsses on each subset. Let A be the observed difference in public and private accuracies.
Then, we’re interested in computing the p-value:

> A} .

o

Fixing Mprivare also determines mpypiic, and for any fixed mprivae = k, the probability of sampling a
private test set of with k correctly classified points is

(%) o)

Mprivate TMpublic

3)

Nprivate Npublic

(") “)
TNprivate
Therefore, we can compute the p-value in equation (3) as
Meprivate Mpublic (7/?) (n:“;e“ik)
S | Bl 2 oy )
private public )
. k___ (m—k) Mprivate
ke [m} : ’ T private " public A

where [m] = {0, 1,2, ..., m}. Evaluating this summation only requires access t0 Notal, public; Tprivates
and A, all of which are available in the MetaKaggle dataset. Hence, a p-value can be readily evaluated
for each submission. Computing ratios of binomial coefficients like (4) is numerically unstable and
computationally expensive for large n. Therefore, in our implementation, we work in log-space and
use Stirling’s approximation for the binomial coefficients to efficiently and reliably approximate (5).

B.5.2 Accuracy: p-value plots
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Figure 11: Empirical CDFs for an idealized null model that assumes no overfitting (full details in Section 3.3).
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Figure 12: Empirical CDFs for an idealized null model that assumes no overfitting (full details in Section 3.3)
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Figure 12: Empirical CDFs for an idealized null model that assumes no overfitting (full details in Section 3.3)
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C AUC

C.1 AUC: competition info

Table 3: Competitions scored with AUC with greater than 1000 submissions. npupiic 18 the size of the
public test set and npyivaee 18 the size of the private test set. N/A means that we could not access the
competition data to compute the dataset sizes. A * after the competition name means the name was
slightly edited to fit into the table.

AUC
1D Name # Sub. M public Mprivate
2439 INFORMS Data Mining Contest 2010 1,483 254 2,285
2445  Predict Grant Applications 2,800 544 1,632
2464 IJCNN Social Network Challenge 1,124 1,792 7,168
2478 Stay Alert! The Ford Challenge 1,402 36,252 84,588
2489 Don’t Overfit! 3,775 1,975 17,775
2551 Give Me Some Credit 7,724 30,451 71,052
3338 Amazon.com - Employee Access Challenge 16,896 17,676 41,245
3353 The Marinexplore and Cornell Univ. Whale Detection* 3,295 16,351 38,152
3469 Influencers in Social Networks 2,109 2,976 2,976
3509 The ICML 2013 Whale Challenge - Right Whale Redux 1,005 7,641 17,828
3524 Accelerometer Biometric Competition 7,130 8,102,160 18,905,040
3526  StumbleUpon Evergreen Classification Challenge 7,509 634 2,537
3774 CONNECTOMICS 1,458 75,742 75,743
3897  Acquire Valued Shoppers Challenge 25,205 N/A N/A
3926 Predicting Excitement at DonorsChoose.org* 12,530 11,193 33,579
3933 MLSP 2014 Schizophrenia Classification Challenge 2,246 0 119,749
3960  American Epilepsy Society Seizure Prediction Challenge 17,782 1,574 2,361
4031 Driver Telematics Analysis 36,072 N/A N/A
4043 BCI Challenge @ NER 2015 4,348 680 2,721
4294 Facebook Recruiting IV: Human or Robot? 13,559 1,410 3,290
4366 West Nile Virus Prediction 29,963 2,326 113,967
4487  Springleaf Marketing Response 39,439 43,570 101,662
4493 Truly Native? 3,224 1,360 2,040
4657 Homesite Quote Conversion 36,387 52,151 121,685
4986 Santander Customer Satisfaction 93,584 37,909 37,909
5167 PRED 411-2016_04-U2-INSURANCE-A* 1,436 1,070 1,071
5174 Avito Duplicate Ads Detection 8,157 657,602 657,603
5261 Predicting Red Hat Business Value 33,696 149,606 349,081
5390 Melbourne Univ. Seizure Prediction* 10,083 N/A N/A
6242 Catch Me If You Can: Intruder Detection* 2,479 41,398 41,399
7162 WSDM - KKBox’s Music Recommendation Challenge 15,555 1,278,396 1,278,395
8227 2018 Spring CSE6250 HW1 1,170 244,173 244,173
8540 TalkingData AdTracking Fraud Detection Challenge 68,594 3,382,284 15,408,185
9120 Home Credit Default Risk 132,097 9,749 38,995
10683 Microsoft Malware Prediction 43,702 4,947,549 2,905,704
11803 BGU - Machine Learning 2,079 6,849 5,603
11848 Histopathologic Cancer Detection 20,352 28,154 29,304
12512 2019 Spring CSE6250 BDH 1,396 244,173 244,173
12558 WiDS Datathon 2019 3,021 4,312 2,222
12904  Caltech CS 155 2019 Part 1 1,078 1,264,122 1,264,122

C.2 AUC: outlier competitions

For AUC, we also investigated competitions whose linear fit was a bad approximation to the diagonal
y = z line. We first identified these competitions using visual inspection of the plots in Section C.3.
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By reading the Kaggle forums and the description of the dataset construction, we were able to
determine a possible cause of overfitting for most of the outlier competitions. In most cases, the
competition hosts did not create the public and private test splits in a truly i.i.d. manner, and
competitiors were able to exploit the difference in distribution. In other cases, the size of the test set
was extremely small. The list of outlier competitions and corresponding cause of overfitting follow.
We also include links to relevant descriptions of the data or discussions on the Kaggle forums.

Competition 3774: CONNECTOMICS Participants knew which test data belonged in
the public and private splits because the splits were provided in separate files. https:
//www.kaggle.com/c/connectomics/data

Competition 3926: KDD Cup 2014 - Predicting Excitement at DonorsChoose.org:
Public and private splits are not i.i.d. and likely were created by separating do-
nations projects by the date they were proposed. https://www.kaggle.com/c/
kdd-cup-2014-predicting-excitement-at-donors-choose/discussion/9772#
latest-50827

Competition 3933: MLSP 2014 Schizophrenia Classification Challenge The test set
contains data generated from 58 subjects and the public and private splits were created in
a non-i.i.d. manner using data from individual subjects. https://www.kaggle.com/c/
mlsp-2014-mri/discussion/10135#1latest-54483

Competition 4043: BCI Challenge @ NER 2015: The test set contains data generated
from 10 subjects and the public and private splits were created in a non-i.i.d. manner using
data from individual subjects https://www.kaggle.com/c/inria-bci-challenge/
discussion/12613#latest-65652.

Competition 8540: TalkingData AdTracking Fraud Detection Challenge A
second, larger test set that was unintentionally released at the start of the
competition and then participants were permitted but not required to use the
data. https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/
discussion/52658#latest-315882

Competition 10683: Microsoft Malware Prediction The private test data included several
severe outliers not present in the public test data, indicating that the public and private
split are not i.i.d. https://www.kaggle.com/c/microsoft-malware-prediction/
discussion/84745
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C.3 AUC: all submissions

Figure 13 shows the private versus public AUC scatter plots for each AUC competition with over
1000 submissions in the MetaKaggle dataset.
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Figure 13: Private versus public AUC for all submissions for Kaggle AUC competitions.
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