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Abstract—There have been many recent attempts to extend
the successes of convolutional neural networks (CNNs) from 2-
dimensional (2D) image classification to 3-dimensional (3D) video
recognition by exploring 3D CNNs. Considering the emerging
growth of mobile or Internet of Things (IoT) market, it is essential
to investigate the deployment of 3D CNNs on edge devices.
Previous works have implemented standard 3D CNNs (C3D)
on hardware platforms, however, they have not exploited model
compression for acceleration of inference. This work proposes
a hardware-aware pruning approach that can fully adapt to
the loop tiling technique of FPGA design and is applied onto
a novel 3D network called R(2+1)D. Leveraging the powerful
ADMM, the proposed pruning method achieves simultaneous
high accuracy and significant acceleration of computation on
FPGA. With layer-wise pruning rates up to 10× and negligible
accuracy loss, the pruned model is implemented on a Xilinx
ZCU102 FPGA board, where the pruned model achieves 2.6×
speedup compared with the unpruned version, and 2.3× speedup
and 2.3× power efficiency improvement compared with state-of-
the-art FPGA implementation of C3D.

Index Terms—3D CNNs, video analysis, DNN weight pruning,
ADMM, FPGA.

I. INTRODUCTION

Deep learning has made great achievements in the field of

image classification with a sequence of remarkable milestones

driven by convolutional neural networks (CNNs). However,

the achievement in the video domain is not as significant as

that in the image domain. The image-based 2D CNNs are

unable to model temporal information and motion patterns,

which are the critical aspects of video analysis. To perform

accurate action recognition, 3D CNNs have been proposed to

investigate the temporal reasoning with 3D convolutions over

the spatiotemporal video volume [1], [2]. The standard 3D

CNNs (C3D) may be storage and computation intensive and

do not differentiate between spatial and temporal information.

To address this, some variant architectures of 3D CNNs have

been proposed, among which R(2+1)D CNNs exhibit superior

accuracy with significantly reduced number of parameters.

R(2+1)D CNNs explicitly factorize 3D convolution into two

separate and successive operations i.e., a 2D spatial convolu-

tion and then a 1D temporal convolution [3]. The decomposi-

tion extends a model’s capability to represent more complex

functions with a lower training and testing loss. R(2+1)D

?Equal contribution

CNNs achieve state-of-the-art performance on video datasets

including UCF101 [4], Kinetics [5] and Sports-1M [6].

It is desirable to move deep neural network (DNN) execu-

tions from the cloud servers to the edge devices for a variety

of applications such as sensor nodes, smartphones, wearable

devices, robotics, unmanned vehicles, smart health device, etc.

However, the huge amounts of storage and computation in

state-of-the-art DNNs are prohibitive for the resource lim-

ited edge devices. On the other hand, various DNN model

compression techniques, such as weight quantization and

weight pruning, have been proposed to reduce the storage

and accelerate the computation of DNNs. In particular, DNN

weight pruning can lead to a notable model size reduction.

In early work of non-structured weight pruning [7], [8],

the hardware performance (inference speed) improvement is

undermined by the irregular weight representation, although

high model pruning rates can be reached. The structured

weight pruning [9]–[12] is more hardware-friendly due to the

regular weight representation, but may induce accuracy loss.

In an attempt to accelerate execution of 3D CNNs for video

analysis, this work proposes a novel DNN weight pruning

approach that overcomes the shortcomings of the previous

DNN non-structured/structured pruning schemes in that sig-

nificant improvement in the end-to-end inference time can be

achieved on the FPGA prototypes with negligible accuracy

loss, leveraging the powerful ADMM (Alternating Direction

Method of Multipliers). Our contributions are summarized:
• We propose a blockwise pruning scheme for 3D DNNs

that can directly match the loop tiling technique of

FPGA designs. To the best of our knowledge, we are

the first to apply weight pruning to 3D CNNs for FPGA

implementations.

• We provide an ADMM-based solution framework that

can achieve the proposed blockwise pruning scheme with

negligible accuracy loss.

• We test our hardware-aware DNN weight pruning method

on a novel variant of 3D CNNs, R(2+1)D, and implement

the pruned model into FPGA prototypes, achieving 2.6×
speedup compared with the unpruned version, and 2.3×
speedup and 2.3× power efficiency improvement com-

pared with the state-of-the-art FPGA implementation of

C3D [13].



II. RELATED WORK ON 3D CNNS AND HARDWARE

IMPLEMENTATIONS

The standard 3D CNNs (C3D) [2], [14] are usually com-

putationally intensive, inspiring various methods to acceler-

ate computation. By improving the computation process, the

work [15] achieves speedup of a 3D CNN architecture based

on the Winograd minimal filter algorithm with uniform tiling

sizes in the three dimensions of feature maps. Besides, novel

model architectures are explored to improve storage and com-

putation efficiency. The “mixed convolutional” structure [3]

utilizes 3D convolution in either the bottom or top layers and

2D in the rest layers, and Inception 3D (I3D) [1] inflates the

2D convolutions in Inception-V1 to 3D convolutions. Other

architectures include Pseudo-3D ResNet (P3D) [16], separable

3D CNN (S3D) [17] and R(2+1)D [3], all of which contain

replacement of 3D convolutions with separable convolutions,

e.g., convolving first spatially in 2D and temporally in 1D.

For 3D CNN hardware acceleration, the work [13] firstly

implements the C3D network on FPGA with Kc parallel 2D

convolution blocks where Kc is the kernel depth of the 3D

convolution, utilizing blocking in pixel level and parallelism

in filter and pixel levels. The Winograd algorithm is adopted

in [18] with tiling for both feature maps and filters to generally

accelerate 2D and 3D CNNs. Another work [19] realizes the

acceleration of 2D and 3D CNNs with a customized mapping

module to generate the feature matrix tilings and eliminate the

need for storing the entire enlarged feature matrix. In addition,

attention has been paid to multiple-FPGA platforms to further

improve the computation parallelism [20]. Besides the above

FPGA implementations, an accelerator for 3D CNNs on ASIC

is designed in [21] to adaptively support different spatial and

temporal tiling strategies for different layers.

In previous works, the hardware acceleration of R(2+1)D

CNNs [3] has not been fully explored. R(2+1)D is a superior

variant of 3D CNNs in that it achieves high accuracy with

fewer parameters. Different from the standard 3D architecture,

R(2+1)D consists of different kinds of kernels to explore

spatial and temporal information separately, and contains

more types of layers such as batch normalization layers and

shortcuts between adjacent blocks, which makes the hardware

design space exploration of R(2+1)D is more challenging than

that of C3D. This paper proposes a hardware-aware weight

pruning algorithm, leveraging the powerful ADMM, to achieve

simultaneous high accuracy and significant acceleration of

computation on FPGAs.

III. HARDWARE-AWARE WEIGHT PRUNING OF 3D CNNS

LEVERAGING ADMM

A. Preliminaries of 3D CNNs and Proposed Weight Sparsity

Pattern

The weights Wi of the i-th convolutional (CONV) layer

can be denoted as a 5D tensor, i.e., Wi ∈ R
M×N×Kd×Kr×Kc ,

where M and N represent the numbers of output and input

channels, and Kd, Kr and Kc are kernel sizes corresponding

to the three dimensions D, R and C of the feature maps. R
and C denote the spatial height and width which are similar to

Fig. 1. A weight tensor can be divided into blocks and pruned blockwise.

2D CNNs, and D indicates the temporal depth. For efficiently

mapping to the FPGA hardware, a weight tensor Wi can be

treated as multiple blocks of 3D kernels, as demonstrated in

Fig. 1 (left). For a weight tensor Wi with M output channels

and N input channels, the M×N 3D kernels are divided into

blocks of size Tm×Tn, thus the weight tensor contains d M
Tm

e×

d N
Tn

e blocks. In the FPGA implementation, the buffer to store

weights has the same size as one weight block due to limited

amounts of memory and computation resources. The weight

blocks of the whole weight tensor are one by one loaded into

the buffer and then participate in the computation process,

which will be elaborated in Section IV-A.
Weight pruning sets a certain amount of weight values to

zeros to simultaneously reduce the model size and the amount
of computations. More specifically, for the i-th CONV layer,
a pruning ratio ηi ∈ [0%, 100%] is achieved if at least ηi of
all values in Wi are zeros. In our blockwise weight pruning
scheme, the basic pruning unit is one weight block as shown
in Fig. 1 (right), and the values of a pruned block are all set
to zeros. Hence, the sparsity requirement for the i-th layer is

Si = {Ŵi|Ei ≤ (1− ηi)× d
M

Tm

e × d
N

Tn

e} (1)

where Ei denotes the number of non-zero blocks in the pruned

weight tensor Ŵi. Please note that the proposed blockwise

weight pruning scheme can be applied to different types of

3D CNNs including C3D and R(2+1)D.

B. Weight Pruning Problem Formulation

The loss function of a 3D CNN can be expressed as

f ({Wi}). As CONV layer weights account for the majority

of the storage and computation,we mainly focus on pruning

the CONV layer weights. So we omit the expression of inputs

and fully-connected (FC) weights in the above loss function.

Our objective is to prune the model weights so that the

parameters would satisfy the sparsity requirements, while the

pruned model can still maintain high test accuracy. To achieve

this, we mainly minimize the loss function subject to the

sparsity constraints on the weights, as specified below,

minimize
{Wi}

f
(

{Wi}
)

, s.t. Wi ∈ Si, ∀i (2)

As the constraint in problem (2) is combinatorial, it cannot

be directly solved through stochastic gradient descent (SGD)

methods. Therefore, we propose a systematic framework based

on ADMM. ADMM is shown to be effective when facing

such clustering-like constraints [22], [23]. The ADMM-based

solution framework is shown in the following.



C. ADMM Reformulation

We define the indicator function as

gi(Wi) =

{

0 if Wi ∈ Si,

+∞ otherwise.
(3)

Besides, new auxiliary variables Zi for all i are introduced
and the original problem (2) can be transformed to

minimize
{Wi}

f
(

{Wi}
)

+
L
∑

i=1

gi(Zi),

subject to Wi = Zi, ∀i.

(4)

The augmented Lagrangian function [23] is expressed as

Lρ({Wi}, {Zi}, {Vi}) = f
(

{Wi}
)

+
L
∑

i=1

U
T
i (Wi − Zi)

+

L
∑

i=1

gi(Zi) +

L
∑

i=1

ρ

2
‖Wi − Zi‖

2

F , (5)

where Ui is the dual variable or Lagrange multiplier with the
same dimension as Wi, ρ is the penalty parameter for the
ADMM loss, L is the number of CONV layers in the model
and ‖ · ‖F denotes the Frobenius norm. Inspired by the scaled
form of ADMM through defining Ui = ρVi, the augmented
Lagrangian function can be further expressed as

Lρ({Wi},{Zi}, {Vi}) = f
(

{Wi}
)

+

L
∑

i=1

gi(Zi)

+
L
∑

i=1

ρ

2
‖Wi − Zi +Vi‖

2

F − ‖Vi‖
2

F . (6)

D. ADMM Iteration

The ADMM solves problem (4) in an iterative manner as

{Wk+1

i } = argmin
{Wi}

Lρ({Wi}, {Z
k
i }, {V

k
i }) (7)

{Zk+1

i } = argmin
{Zi}

Lρ({W
k+1

i }, {Zi}, {V
k
i }) (8)

V
k+1

i = V
k
i +W

k+1

i − Z
k+1

i , ∀i. (9)

Initially, we set Z0
i = W

0
i and V

0
i = 0, ∀i. The iteration stops

when the following conditions are satisfied,

‖Wk+1

i − Z
k+1

i ‖ ≤ εi, ‖Z
k+1

i − Z
k
i ‖ ≤ εi, (10)

where εi is a threshold. The ADMM steps are equivalent to

the following Proposition 1.

Proposition 1: The ADMM subproblems (7) and (8) can be

equivalently transformed into a) W-minimization step and b)

Z-minimization step. More specifically,

W-minimization step: {Wk+1

i } in (7) can be obtained
through solving the following equivalent problem,

minimize
{Wi}

f
(

{Wi}
)

+

L
∑

i=1

ρ

2
‖Wi − Z

k
i +V

k
i ‖

2
F . (11)

Both terms in problem (11) are differentiable such that gradi-

ent descent method can be applied to obtain its solution. It is

similar to training a model with a loss function including an

additional regularization term.

Z-minimization step: {Zk+1

i } is given by solving

minimize
{Zi}

L
∑

i=1

gi(Zi) +

L
∑

i=1

ρ

2
‖Wk+1

i − Zi +V
k
i ‖

2
F . (12)

First we note that Zi is not correlated with Zj , j 6= i. So
the above problem can be solved layerwisely. For the i-th
layer, since gi(·) is the indicator function of Si, we can
directly obtain its optimal solution [24], which is the Euclidean
projection of Wk+1

i +V
k
i onto Si, as follows,

Z
k+1

i =
∏

Si

(

W
k+1

i +V
k
i

)

, ∀i. (13)

where
∏
(·) denotes Euclidean projection. More specifically,

we initially set Z
k+1

i = W
k+1

i + V
k
i , ∀i. As Si requires ηi

blocks to zero, we first sort all of the blocks in Z
k+1

i in

ascending order according to the `2 norm of each block. Then

we are able to obtain a threshold ζi = P (ηi,Z
k+1

i ) which

computes the (ηi × 100)-th percentile of the sorted `2 norm

of all block in Z
k+1

i . Finally, we set the blocks with an `2
norm under ζi to zeros and obtain the solution {Zk+1

i } for

Problem 8.

Note that in problem (11), {Zk
i } and {Vk

i } are given values

from previous iterations and only {Wi} are variables to be

updated. Similarly, in problem (12), {Wk+1

i } are given values

from solving problem (11), and {Zi} are variables to be

updated. After {Wk+1

i } and {Zk+1

i } are obtained, we are able

to update {Vi} as shown in Equation (9).

E. Masking and Retraining

After the ADMM iterations, we obtain Wi and find that the

accuracy may suffer from a relatively significant degradation.

To improve the pruning accuracy, we perform a masking and

retraining step afterwards. In detail, we retrain the pruned

model and only the non-zero weights are updated during

retraining. The zero weights are masked out and not updated.

With the retraining step, we can further improve the accuracy.

Algorithm 1 summarizes our ADMM solution framework.

IV. FPGA IMPLEMENTATIONS OF 3D CNNS

A. Implementation of 3D CNNs on FPGA

This section discusses about the FPGA implementations of

3D CNNs, with the support of unpruned and pruned models

Algorithm 1: ADMM-based blockwise pruning framework

ρ = Penalty parameter of ADMM loss; r = Multi-ρ number;
W = Model weights; Z, V = ADMM sub-problem variables;
L = Number of CONV layers; Bi = Number of blocks in layer i;
epochρ = Number of epochs in one round of ADMM training;
epochadmm = Number of epochs between updates of Z, V;
ζi = Pruning threshold for layer i;

Initialize ρ, Z = W, V = 0;
for j1 ← 1 to r do

for j2 ← 1 to epochρ do
Update W by solving Eq. (6); //ADMM training
if epochρ mod epochadmm = 0 then

for i← 1 to L, b← 1 to Bi do

Z
i
b[:] = 0 if ‖Wi

b[:]‖
2 < ζi; //Update Z

V = V +W − Z; //Update V

Expand ρ;

Load W, hard prune and retrain with masks.



Fig. 2. Hardware architecture of tiled convolution of 3D CNNs with support
of pruned/unpruned models by the block enable signal.

by the block enable signal, as shown in Fig. 2. For pruned

3D CNNs, the block enable signal is fetched from a pre-

stored array generated for the pruned model to decide whether

to load the corresponding input feature and weight tiles into

on-chip memory. If the block enable signal is active, the

corresponding weight block is retained and would participate

in the computation, while an inactive block enable signal

indicates that the weight block has been pruned and therefore

the loading and computing processes are skipped one time.

To save the computation resources and speedup the compu-

tations, the results from the convolution computations in the

processing unit are further handled by the post processing unit,

when there is a subsequent batch normalization, bias addition,

a shortcut layer from the last residual block, an activation

(ReLU) operation, or a pooling layer.

Algorithm 2 displays the tiled convolution procedure in

details. In addition to the output and input channels, the

three dimensions D, R and C of the output feature maps

are also tiled with tiling parameters Td, Tr and Tc. For a

convolution layer with weights W [M ][N ][Kd][Kr][Kc], input

feature maps I[N ][(D−1)×Sd+Kd][(R−1)×Sr+Kr][(C−
1) × Sc + Kc], and output feature maps O[M ][D][R][C],
the weight tile, the input tile, and the output tile on the

buffer are denoted as Wbuf [Tm][Tn][Ksize], Ibuf [Tn][Isize],
and Obuf [Tm][Td][Tr][Tc], respectively. The kernel and stride

sizes of the convolutional layer are represented by Kx and

Sx where x = d, r, c. The computations are conducted in

a pipelined scheme in the processing unit with multiple

processing elements (PE). The unrolling of loops L2 and L3

in the computation module in Algorithm 2 enables Tm × Tn

Multiply-and-Accumulate (MAC) operations in parallel in

one cycle. The accumulation of Tn multiplication results is

implemented via an adder tree with a depth of log2(Tn).
Array partition is performed in corresponding dimensions of

the buffers to increase bandwidth. Additionally, the double

buffering technique is utilized to reduce the latency through

overlapping data transfer with computation.

B. Design Space Exploration

The tiling technique is required for FPGA computation

because of the limited resources on FPGA, and the tiling size

parameters need to be chosen delicately for efficient resource

utilization. The most critical resources are related to memory

and computation, corresponding to BRAMs and DSPs on the

FPGA board. The tiling method is leveraged in 5 dimensions,

Algorithm 2: Tiled Convolution for 3D CNNs

for (d = 0 : Td : D, r = 0 : Tr : R, c = 0 : Tc : C) {
jx = x · Sx : (x+ Tx − 1) · Sx +Kx for x = d, r, c
for (m = 0 : Tm : M ) {

for (n = 0 : Tn : N ) {
if (block is not enabled)

continue;
Load Wbuf = W [m : m+ Tm][n : n+ Tn];
Load Ibuf = I[n : n+ Tn][jd][jr][jc];
Compute(Ibuf ,Wbuf , Obuf );
}
Post processing;
Store O[m : m+ Tm]

[d : d+ Td][r : r + Tr][c : c+ Tc] = Obuf ;
}}

Compute(Ibuf ,Wbuf , Obuf ) {
T ′
x = (Tx − 1)× Sx +Kx for x = d, r, c;

for (kd = 0 : Kd, kr = 0 : Kr, kc = 0 : Kc)
L1: for (td = 0 : Td, tr = 0 : Tr, tc = 0 : Tc) {

jx = tx × Sx + kx for x = d, r, c;
#PIPELINE

L2: for (tm = 0 : Tm) {
#UNROLL

L3: for (tn = 0 : Tn) {
#UNROLL

jw = Wbuf [tm][tn][(kd×Kh +kh)×Kw +kw];
ji = Ibuf [tn][(jd × T ′

r + jr)× T ′
c + jc];

Obuf [tm][td][tr][tc]+ = jw × ji;
}}}}

i.e., Tm, Tn, Td, Tr, and Tc corresponding to the 5 dimensions

of the tensor blocks.

1) Resource Utilization: Considering double buffering, the

memory utilization of output, input and weight buffers can be

calculated as

Bout = 2× Tm × Td × Tr × Tc, (14)

Bin = 2× Tn × Isize, (15)

Bwgt = 2× Tm × Tn ×Ksize (16)

where Isize and Ksize considered integrally in three dimen-

sions to save the BRAM utilization and adapt to distinct kernel

and input feature shapes of different convolutional layers,

satisfying

Ksize = max
i

{Ki
d ×Ki

r ×Ki
c},

Isize = max
i

{((Td − 1)× Si
d +Ki

d)×

((Tr − 1)× Si
r +Ki

r)× ((Tc − 1)× Si
c +Ki

c)}.

(17)

Ki
x and Si

x for x = d, r, c are kernel and stride sizes of the

i-th convolutional layer. The overall utilization of BRAMs is

constrained by

d(Bout +Bin +Bwgt)×Nbit/36Ke ≤ B, (18)

where Nbit is 16 for 16-bit fixed-point data and B is the

number of available BRAMs on the board each with space

of 36K bits.

For the DSP utilization, as Tm × Tn MAC operations are

performed in parallel for convolution computations and each

MAC utilizes one DSP block, the value Tm × Tn should be

no more than the number of available DSPs.



TABLE I
R(2+1)D MODEL ARCHITECTURE

Layer
Output Size Kernel/Filter Size

(Residual Block)

conv1 16× 56× 56

[

1× 7× 7, 45
3× 1× 1, 64

]

conv2 x 16× 56× 56







1× 3× 3, 144
3× 1× 1, 64
1× 3× 3, 144
3× 1× 1, 64






× 2

conv3 x 8× 28× 28







1× 3× 3, 288(230)
3× 1× 1, 128
1× 3× 3, 288
3× 1× 1, 128






× 2

conv4 x 4× 14× 14







1× 3× 3, 576(460)
3× 1× 1, 256
1× 3× 3, 576
3× 1× 1, 256






× 2

conv5 x 2× 7× 7







1× 3× 3, 1152(921)
3× 1× 1, 512
1× 3× 3, 1152
3× 1× 1, 512






× 2

1× 1× 1
spatio-temporal average pooling,

FC layer with softmax

2) Performance Analysis: The running time of the design

depends on two aspects, i.e., the latency of data transmissions

between off-chip and on-chip memory, and the latency of

computations. Here the latency is discussed as indicated by the

number of cycles needed. Given the numbers of ports pwgt, pin
and pout to transfer weights, input features and output features,

the latency required to load the data can be described by

twgt = Tm × Tn ×Kd ×Kr ×Kc/pwgt, (19)

tin = Tn × T ′

d × T ′

r × T ′

c/pin, (20)

tout = Tm × Td × Tr × Tc/pout, (21)

where T ′

x = (Tx−1)×Sx+Kx for x = d, r, c. The data in the

input and weight buffers would generate the output data with

Kd ×Kr ×Kc × Td × Tr × Tc × Tm × Tn MAC operations.

Since the processing element could execute Tm × Tn MACs

in parallel in one cycle, the computation latency is given by

tcomp = Kd ×Kr ×Kc × Td × Tr × Tc. (22)

Benefiting from double buffering, the loading of input feature

and weight data and the computations of convolutions can

be processed simultaneously. Thus the latency in loop L3 is

determined by

tL3 = max{twgt, tin, tcomp}, (23)

and latency in loop L2 is

tL2 = max{tL3 × d
N

Tn

e+ tcomp, tout}. (24)

Therefore, the overall latency is given by

ttot = d
D

Td

e × d
R

Tr

e × d
C

Tc

e × d
M

Tm

e × tL2 + tout. (25)

As the storing latency tout is overlapped by dN/Tne times

of the latency tL3, tL3 becomes crucial to the overall perfor-

mance, and the loading latency twgt, tin and the computation

latency tcomp need to be well balanced.

V. EXPERIMENTAL RESULTS

Although our proposed ADMM-based blockwise pruning

algorithm and FPGA implementation are general for different

types of 3D CNNs, we focus on the R(2+1)D CNN because

of its superior accuracy and significantly reduced number of

parameters. The R(2+1)D CNN consists of 40 convolutional

TABLE II
RESULTS OF ADMM PRUNING ALGORITHM

Layer
Number of Parameters (M) Operations (giga)
Before/After Pruning Before/After Pruning

(Residual Block) Pruning Rate Pruning Rate

conv1 0.015 N/A 1.53 N/A
conv2 x 0.444/0.045 9.85× 44.39/4.35 10.19×
conv3 x 1.56/0.322 4.85× 21.21/4.33 4.89×
conv4 x 6.23 N/A 10.61 N/A
conv5 x 24.92 N/A 5.31 N/A

Total 33.22/31.53 1.05× 83.05/26.13 3.18×

TABLE III
FGPA RESOURCE UTILIZATION

Design Resource DSP BRAM LUT FF

Available 2520 912 274K 548K

(Tm, Tn) Used 695 710.5 74K 51K
= (64, 8) Utilization 28% 78% 27% 9%

(Tm, Tn) Used 1215 912 148K 76K
= (64, 16) Utilization 48% 100% 54% 14%

(CONV) layers in 5 blocks and 1 additional fully-connected

(FC) layer. The first block contains 2 layers and the others

are residual blocks each containing 8 primary layers. In

addition, the last 3 blocks each have a shortcut with 2 layers.

Therefore, it makes a total of 2+4×8+3×2 CONV layers. The

only FC layer contributes little to the number of parameters,

so our weight pruning focuses on the CONV layers. More

details are in Table I. Specifically, different from C3D with

actual 3D kernels, the R(2+1)D network decomposes each

3D convolution into a 2D convolution in spatial dimensions

and a 1D convolution in the temporal dimension, i.e., the

feature maps are convoluted alternately by kernels with shape

1×K ×K and kernels with shape K × 1× 1.

The original R(2+1)D model is pretrained on the Kinet-

ics dataset and transferred onto the UCF101 dataset as the

unpruned model. The pruned R(2+1)D model is obtained

by the proposed ADMM pruning and masked retraining on

UCF101. The initial learning rate is 5× 10−3 when training

the unpruned model, and is reduced to 5× 10−4 in both

ADMM training and masked retraining for stability. The batch

size is fixed to 32, and the video clip length is 16 frames.

ADMM pruning is conducted four rounds each with 50 epochs

and the penalty factor ρ is set to 0.0001, 0.001, 0.01, and

0.1 corresponding to the four rounds, respectively. In each

round, the pruning framework has 5 ADMM iterations with 10

epochs for the W-minimization step in each iteration. Masked

retraining is performed for 100 epochs after ADMM pruning.

ηi is 90% for the second residual block and 80% for the third

residual block, corresponding to pruning rates of 10× and 5×.

In addition, several tricks [25] are utilized to assist the training,

such as label smoothing in ADMM training, as well as warmup

and cosine scheduling of the learning rate in masked retraining.

We use two block size configurations (Tm, Tn) = (64, 8)
and (Tm, Tn) = (64, 16) in the pruning algorithm with the

same pruning ratios ηi, i.e., we mainly prune the second and

third residual-blocks as they are the most computation inten-

sive. The unpruned model has an accuracy of 89.0%, while

the accuracy after pruning is 88.66% for (Tm, Tn) = (64, 8)
and 88.40% for (Tm, Tn) = (64, 16). Table II demonstrates

the pruning results of (Tm, Tn) = (64, 8), with significant

reduction of the number of operations (giga) by 3.18× for the

whole model.



TABLE IV
PERFORMANCE COMPARISON WITH PREVIOUS IMPLEMENTATIONS, CPU AND GPU

Network C3D R(2+1)D

Device
ZC706 VC709 VUS440 Ours Ours GPU CPU Ours Ours

[13] [18] [18] (Tn = 8) (Tn = 16) (GTX 1080 Ti) (E5-1650 v4) (Tn = 8) (Tn = 16)

Frequency (MHz) 176 150 200 150 150 1481 3600 150 150

Precision 16-bit fixed 32-bit float 16-bit fixed

Technology 28nm 28nm 20nm 16nm 16nm 14nm 16nm

Power (W) 9.7 25 26 5.4 6.7 230 - 5.4 6.7

Throughput (GOPS) 71.0 430.7 784.7 46.6 79.1 3256.9 68.1 67.7 111.7

Power Efficiency (GOPS/W) 7.3 17.1 30.2 8.6 11.8 14.2 - 12.5 16.7

DSP Utilization 810(90%) 1536(42%) 1536(53%) 695(28%) 1215(48%) - - 695(28%) 1215(48%)

DSP Efficiency (GOPS/DSPs) 0.088 0.41 0.60 0.067 0.065 - - 0.097 0.092

Latency (ms) 542.5 89.4 49.1 826 487 25.5 1220 386 (1044) 234 (609)

The hardware design is implemented on the Xilinx ZCU102

FPGA board through Xilinx Vivado 2019.1 with high-level

synthesis. Two tiling settings are explored, respectively, with

tiling factors (Tm, Tn) = (64, 8) and (Tm, Tn) = (64, 16).
The other tiling factors are fixed as (Td, Tr, Tc) = (4, 14, 14).
The data precision is 16-bit fixed-point with 1 sign bit, 7

integer bits and 8 fractional bits. Table III shows the resource

utilization of the proposed design, indicating that the case with

larger tiling block size (Tm, Tn) = (64, 16) requires more

resources than those for (Tm, Tn) = (64, 8). Table IV displays

the performance comparison of the proposed framework with

previous implementations on FPGA platforms as well as an

Intel(R) Xoen(R) E5-1650 v4 CPU and a GeForce GTX 1080

Ti GPU. In order to compare with previous FPGA implementa-

tions we also implement unpruned C3D on our FPGA board.

For R(2+1)D, we report on the pruned model. In terms of

latency, the value in brackets is for unpruned R(2+1)D models.

Comparing with [13], we can achieve comparable latency on

C3D with less power consumption, and our pruned R(2+1)D

can have much lower latency (with around 2.3× speedup) and

much higher power efficiency (by 2.3×) than [13]. Comparing

with unpruned version, our pruned R(2+1)D achieves around

2.6× speedup in terms of latency. Please note that our work

focuses on a hardware-aware pruning approach, our FPGA

implementations are very basic. Therefore, there is still space

for improvements in FPGA design. In addition, the design

space exploration of R(2+1)D is more challenging due to

irregular kernel sizes, shortcuts, and more types of operations.

But we achieve significant improvements in terms of latency

and power efficiency comparing between pruned version and

unpruned version. Therefore, our novel pruning approach can

complement more advanced FPGA design.

VI. CONCLUSION

In this work, we propose a hardware-aware DNN weight

pruning algorithm for 3D CNNs leveraging ADMM. We target

for actual acceleration of the inference speed on FPGA with

negligible accuracy loss. We test our pruning approach on

R(2+1)D CNN i.e., a superior variant of C3D, and hardware

implementation on a Xilinx ZCU102 FPGA board.
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