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Abstract—There have been many recent attempts to extend
the successes of convolutional neural networks (CNNs) from 2-
dimensional (2D) image classification to 3-dimensional (3D) video
recognition by exploring 3D CNNs. Considering the emerging
growth of mobile or Internet of Things (IoT) market, it is essential
to investigate the deployment of 3D CNNs on edge devices.
Previous works have implemented standard 3D CNNs (C3D)
on hardware platforms, however, they have not exploited model
compression for acceleration of inference. This work proposes
a hardware-aware pruning approach that can fully adapt to
the loop tiling technique of FPGA design and is applied onto
a novel 3D network called R(2+1)D. Leveraging the powerful
ADMM, the proposed pruning method achieves simultaneous
high accuracy and significant acceleration of computation on
FPGA. With layer-wise pruning rates up to 10x and negligible
accuracy loss, the pruned model is implemented on a Xilinx
ZCU102 FPGA board, where the pruned model achieves 2.6x
speedup compared with the unpruned version, and 2.3x speedup
and 2.3x power efficiency improvement compared with state-of-
the-art FPGA implementation of C3D.

Index Terms—3D CNNs, video analysis, DNN weight pruning,
ADMM, FPGA.

I. INTRODUCTION

Deep learning has made great achievements in the field of
image classification with a sequence of remarkable milestones
driven by convolutional neural networks (CNNs). However,
the achievement in the video domain is not as significant as
that in the image domain. The image-based 2D CNNs are
unable to model temporal information and motion patterns,
which are the critical aspects of video analysis. To perform
accurate action recognition, 3D CNNs have been proposed to
investigate the temporal reasoning with 3D convolutions over
the spatiotemporal video volume [1], [2]. The standard 3D
CNNs (C3D) may be storage and computation intensive and
do not differentiate between spatial and temporal information.
To address this, some variant architectures of 3D CNNs have
been proposed, among which R(2+1)D CNNs exhibit superior
accuracy with significantly reduced number of parameters.
R(2+1)D CNNs explicitly factorize 3D convolution into two
separate and successive operations i.e., a 2D spatial convolu-
tion and then a 1D temporal convolution [3]. The decomposi-
tion extends a model’s capability to represent more complex
functions with a lower training and testing loss. R(2+1)D
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CNNs achieve state-of-the-art performance on video datasets
including UCF101 [4], Kinetics [5] and Sports-1M [6].

It is desirable to move deep neural network (DNN) execu-
tions from the cloud servers to the edge devices for a variety
of applications such as sensor nodes, smartphones, wearable
devices, robotics, unmanned vehicles, smart health device, etc.
However, the huge amounts of storage and computation in
state-of-the-art DNNs are prohibitive for the resource lim-
ited edge devices. On the other hand, various DNN model
compression techniques, such as weight quantization and
weight pruning, have been proposed to reduce the storage
and accelerate the computation of DNNs. In particular, DNN
weight pruning can lead to a notable model size reduction.
In early work of non-structured weight pruning [7], [8],
the hardware performance (inference speed) improvement is
undermined by the irregular weight representation, although
high model pruning rates can be reached. The structured
weight pruning [9]-[12] is more hardware-friendly due to the
regular weight representation, but may induce accuracy loss.

In an attempt to accelerate execution of 3D CNNs5s for video
analysis, this work proposes a novel DNN weight pruning
approach that overcomes the shortcomings of the previous
DNN non-structured/structured pruning schemes in that sig-
nificant improvement in the end-to-end inference time can be
achieved on the FPGA prototypes with negligible accuracy
loss, leveraging the powerful ADMM (Alternating Direction
Method of Multipliers). Our contributions are summarized:

o We propose a blockwise pruning scheme for 3D DNNs
that can directly match the loop tiling technique of
FPGA designs. To the best of our knowledge, we are
the first to apply weight pruning to 3D CNNs for FPGA
implementations.

e We provide an ADMM-based solution framework that
can achieve the proposed blockwise pruning scheme with
negligible accuracy loss.

o We test our hardware-aware DNN weight pruning method
on a novel variant of 3D CNNs, R(2+1)D, and implement
the pruned model into FPGA prototypes, achieving 2.6 x
speedup compared with the unpruned version, and 2.3 x
speedup and 2.3x power efficiency improvement com-
pared with the state-of-the-art FPGA implementation of
C3D [13].



II. RELATED WORK ON 3D CNNS AND HARDWARE
IMPLEMENTATIONS

The standard 3D CNNs (C3D) [2], [14] are usually com-
putationally intensive, inspiring various methods to acceler-
ate computation. By improving the computation process, the
work [15] achieves speedup of a 3D CNN architecture based
on the Winograd minimal filter algorithm with uniform tiling
sizes in the three dimensions of feature maps. Besides, novel
model architectures are explored to improve storage and com-
putation efficiency. The “mixed convolutional” structure [3]
utilizes 3D convolution in either the bottom or top layers and
2D in the rest layers, and Inception 3D (I3D) [1] inflates the
2D convolutions in Inception-V1 to 3D convolutions. Other
architectures include Pseudo-3D ResNet (P3D) [16], separable
3D CNN (S3D) [17] and R(2+1)D [3], all of which contain
replacement of 3D convolutions with separable convolutions,
e.g., convolving first spatially in 2D and temporally in 1D.

For 3D CNN hardware acceleration, the work [13] firstly
implements the C3D network on FPGA with K, parallel 2D
convolution blocks where K, is the kernel depth of the 3D
convolution, utilizing blocking in pixel level and parallelism
in filter and pixel levels. The Winograd algorithm is adopted
in [18] with tiling for both feature maps and filters to generally
accelerate 2D and 3D CNNs. Another work [19] realizes the
acceleration of 2D and 3D CNNs with a customized mapping
module to generate the feature matrix tilings and eliminate the
need for storing the entire enlarged feature matrix. In addition,
attention has been paid to multiple-FPGA platforms to further
improve the computation parallelism [20]. Besides the above
FPGA implementations, an accelerator for 3D CNNs on ASIC
is designed in [21] to adaptively support different spatial and
temporal tiling strategies for different layers.

In previous works, the hardware acceleration of R(2+1)D
CNNs [3] has not been fully explored. R(2+1)D is a superior
variant of 3D CNNs in that it achieves high accuracy with
fewer parameters. Different from the standard 3D architecture,
R(2+1)D consists of different kinds of kernels to explore
spatial and temporal information separately, and contains
more types of layers such as batch normalization layers and
shortcuts between adjacent blocks, which makes the hardware
design space exploration of R(2+1)D is more challenging than
that of C3D. This paper proposes a hardware-aware weight
pruning algorithm, leveraging the powerful ADMM, to achieve
simultaneous high accuracy and significant acceleration of
computation on FPGAs.

III. HARDWARE-AWARE WEIGHT PRUNING OF 3D CNNS
LEVERAGING ADMM
A. Preliminaries of 3D CNNs and Proposed Weight Sparsity
Pattern

The weights W, of the i-th convolutional (CONV) layer
can be denoted as a 5D tensor, i.e., W; € RMXNxKaxKrxKec
where M and N represent the numbers of output and input
channels, and K4, K, and K. are kernel sizes corresponding
to the three dimensions D, R and C of the feature maps. R
and C' denote the spatial height and width which are similar to
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Fig. 1. A weight tensor can be divided into blocks and pruned blockwise.

2D CNNs, and D indicates the temporal depth. For efficiently
mapping to the FPGA hardware, a weight tensor W, can be
treated as multiple blocks of 3D kernels, as demonstrated in
Fig. 1 (left). For a weight tensor W; with M output channels
and N input channels, the M x N 3D kernels are divided into
blocks of size T, x T},, thus the weight tensor contains [%W X
[T—Aﬂ blocks. In the FPGA implementation, the buffer to store
weights has the same size as one weight block due to limited
amounts of memory and computation resources. The weight
blocks of the whole weight tensor are one by one loaded into
the buffer and then participate in the computation process,
which will be elaborated in Section IV-A.

Weight pruning sets a certain amount of weight values to
zeros to simultaneously reduce the model size and the amount
of computations. More specifically, for the ¢:-th CONV layer,
a pruning ratio n; € [0%, 100%)] is achieved if at least 7); of
all values in W are zeros. In our blockwise weight pruning
scheme, the basic pruning unit is one weight block as shown
in Fig. 1 (right), and the values of a pruned block are all set
to zeros. Hence, the sparsity requirement for the i-th layer is

Si = {WilE; < (1—n) x f%1 X f%ﬂ M

where E; denotes the number of non-zero blocks in the pruned
weight tensor W,. Please note that the proposed blockwise
weight pruning scheme can be applied to different types of
3D CNNs including C3D and R(2+1)D.

B. Weight Pruning Problem Formulation

The loss function of a 3D CNN can be expressed as
f ({W;}). As CONV layer weights account for the majority
of the storage and computation,we mainly focus on pruning
the CONV layer weights. So we omit the expression of inputs
and fully-connected (FC) weights in the above loss function.

Our objective is to prune the model weights so that the
parameters would satisfy the sparsity requirements, while the
pruned model can still maintain high test accuracy. To achieve
this, we mainly minimize the loss function subject to the
sparsity constraints on the weights, as specified below,

minimize W;}), st. W; €S, Vi
{W;} f({ }) @

As the constraint in problem (2) is combinatorial, it cannot
be directly solved through stochastic gradient descent (SGD)
methods. Therefore, we propose a systematic framework based
on ADMM. ADMM is shown to be effective when facing
such clustering-like constraints [22], [23]. The ADMM-based
solution framework is shown in the following.



C. ADMM Reformulation
We define the indicator function as

0 if W; € S,,
9:1(W5) _{

400 otherwise.
Besides, new auxiliary variables Z; for all ¢ are introduced
and the original problem (2) can be transformed to

3)

L
minimize W) + i(Z;),

imimize f({W:}) ;g (Z:) @
subject to W; =7Z;, Vi.

The augmented Lagrangian function [23] is expressed as

Lo({Wi},{Z:},{Vi}) = F({Wi}) + ZU? (Wi —Z;)

L L
+Y 9i(Zi) + Zg Wi — Zil[3, (5
i=1

i=1

where U; is the dual variable or Lagrange multiplier with the
same dimension as W;, p is the penalty parameter for the
ADMM loss, L is the number of CONV layers in the model
and || - || denotes the Frobenius norm. Inspired by the scaled
form of ADMM through defining U; = pV,, the augmented
Lagrangian function can be further expressed as

Ly({W:i} {Z:}, {Vi}) = F({W:}) + D> 6:(Zs)

i=1

L
p
+Z§HW1~—ZZ-+V¢H%— IVillz.  (®
i=1

D. ADMM Iteration
The ADMM solves problem (4) in an iterative manner as

{Wf"’l} = a?%vm%n L,({W.}, {Zf}y {Vf}) @)
{Zf'“} = ar{gzm}in Lp({Wi-H_l}» {Z:}, {Vf}) ®)
VI = v+ W -z i ©)

Initially, we set Z) = W? and V? = 0, Vi. The iteration stops
when the following conditions are satisfied,

Wit —Z7 < e 1257 - 27 < e, (10)

where ¢; is a threshold. The ADMM steps are equivalent to
the following Proposition 1.

Proposition 1: The ADMM subproblems (7) and (8) can be
equivalently transformed into a) W-minimization step and b)
Z-minimization step. More specifically,

W-minimization step: {W?™'} in (7) can be obtained
through solving the following equivalent problem,

L
minimize FEWD) +Z§|\Wi —ZF L VEZ. (D
’ i=1
Both terms in problem (11) are differentiable such that gradi-
ent descent method can be applied to obtain its solution. It is
similar to training a model with a loss function including an
additional regularization term.
Z-minimization step: {Z¥"'} is given by solving

L L
mi?%n;ize Zgi(zi) + Z g“wiﬁ—l —Zi+ V|7
‘ i=1

i=1

12)

First we note that Z; is not correlated with Z;,j # 7. So
the above problem can be solved layerwisely. For the i-th
layer, since g;(-) is the indicator function of S;, we can
directly obtain its optimal solution [24], which is the Euclidean

projection of Wf“ + V£ onto S;, as follows,
zit =TI (Wit + i), v
S;
where [](-) denotes Euclidean projection. More specifically,
we initially set Z¥*t = WH 1 VF vi. As S; requires 7;
blocks to zero, we first sort all of the blocks in Zf'H in
ascending order according to the ¢ norm of each block. Then
we are able to obtain a threshold ¢; = P(;, ZF™) which
computes the (7; x 100)-th percentile of the sorted {2 norm
of all block in Zf“. Finally, we set the blocks with an /5
norm under (; to zeros and obtain the solution {Zf'“} for
Problem 8.

Note that in problem (11), {Z*} and {V¥} are given values
from previous iterations and only {W;} are variables to be
updated. Similarly, in problem (12), {Wf“} are given values
from solving problem (11), and {Z;} are variables to be
updated. After {W*'} and {ZF*'} are obtained, we are able
to update {V;} as shown in Equation (9).

(13)

E. Masking and Retraining

After the ADMM iterations, we obtain W, and find that the
accuracy may suffer from a relatively significant degradation.
To improve the pruning accuracy, we perform a masking and
retraining step afterwards. In detail, we retrain the pruned
model and only the non-zero weights are updated during
retraining. The zero weights are masked out and not updated.
With the retraining step, we can further improve the accuracy.
Algorithm 1 summarizes our ADMM solution framework.

IV. FPGA IMPLEMENTATIONS OF 3D CNNS
A. Implementation of 3D CNNs on FPGA

This section discusses about the FPGA implementations of
3D CNNs, with the support of unpruned and pruned models

Algorithm 1: ADMM-based blockwise pruning framework

p = Penalty parameter of ADMM loss; r = Multi-p number;

‘W = Model weights; Z, V = ADMM sub-problem variables;

L = Number of CONV layers; B; = Number of blocks in layer i;
epoch, = Number of epochs in one round of ADMM training;
epochqdmm = Number of epochs between updates of Z, V;

¢; = Pruning threshold for layer ;

Initialize p, Z = W, V = 0;
for j; < 1 tor do
for jo < 1 to epoch, do
Update W by solving Eq. (6); //ADMM training
if epoch, mod epochadmm = 0 then
for i< 1t L,b<+ 11to B; do
| Zi[] =0if [WiL]||? < ¢; //Update Z
V=V +W -1Z; //[Update V

| Expand p;

Load W, hard prune and retrain with masks.
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Fig. 2. Hardware architecture of tiled convolution of 3D CNNs with support
of pruned/unpruned models by the block enable signal.

by the block enable signal, as shown in Fig. 2. For pruned
3D CNNs, the block enable signal is fetched from a pre-
stored array generated for the pruned model to decide whether
to load the corresponding input feature and weight tiles into
on-chip memory. If the block enable signal is active, the
corresponding weight block is retained and would participate
in the computation, while an inactive block enable signal
indicates that the weight block has been pruned and therefore
the loading and computing processes are skipped one time.
To save the computation resources and speedup the compu-
tations, the results from the convolution computations in the
processing unit are further handled by the post processing unit,
when there is a subsequent batch normalization, bias addition,
a shortcut layer from the last residual block, an activation
(ReLU) operation, or a pooling layer.

Algorithm 2 displays the tiled convolution procedure in
details. In addition to the output and input channels, the
three dimensions D, R and C of the output feature maps
are also tiled with tiling parameters Ty, 7, and 7.. For a
convolution layer with weights W [M|[N][K4]|[K,][K ], input
feature maps I[N][(D—1)x Sq+K4][(R—1) x S, + K, ][(C—
1) x S. + K], and output feature maps O[M][D][R][C],
the weight tile, the input tile, and the output tile on the
buffer are denoted as Wiy r[Ton][Tn] [ Ksizels Tous[Tnl[Lsizel,
and Oy ¢[Tn][Ta][T7][T¢], respectively. The kernel and stride
sizes of the convolutional layer are represented by K, and
S, where * = d,r,c. The computations are conducted in
a pipelined scheme in the processing unit with multiple
processing elements (PE). The unrolling of loops L2 and L3
in the computation module in Algorithm 2 enables T;, x T},
Multiply-and-Accumulate (MAC) operations in parallel in
one cycle. The accumulation of T}, multiplication results is
implemented via an adder tree with a depth of log,(T},).
Array partition is performed in corresponding dimensions of
the buffers to increase bandwidth. Additionally, the double
buffering technique is utilized to reduce the latency through
overlapping data transfer with computation.

B. Design Space Exploration

The tiling technique is required for FPGA computation
because of the limited resources on FPGA, and the tiling size
parameters need to be chosen delicately for efficient resource
utilization. The most critical resources are related to memory
and computation, corresponding to BRAMs and DSPs on the
FPGA board. The tiling method is leveraged in 5 dimensions,

Algorithm 2: Tiled Convolution for 3D CNNs

for (d=0:T3:D,r=0:T:R,c=0:T.:C) {
Je=x-Sp:(@x+Tp —1)-Sz + K, forz =d,r,c
for (m =0:Tn: M) {
for(n=0:T,:N) {
if (block is not enabled)
continue;
Load Wy, = Wm :m + Tp][n:n+ Tnl;
Load Iy,; = I[n:n+ Tu)[jal[jr][jc);
Compute(Iyu s, Wouy, Ovur);

Post processing;
Store O[m : m + Ty
[d:d+Tyllr : r+T)][c: c+ Te] = Opuy;
1}

Compute(ZTou s, Whuy, Obur) {
Ty = (Ty —1) X Sy + K, for x = d,r, c;
for (kg =0: Kg,kr =0: Ky ke =0: K.)
L1: for (tg = 0 : Ta,ty = 0:Tp te = 0:T2) {
Jo =tz X Sg + kg forx =d, 7, c;

#PIPELINE
L2: for (tm, =0: 1)) {
#UNROLL
L3: for (t, =0:T,) {
#UNROLL

jw = Wbuf[tm][tn“(kd x Kn + kh) X Ky + kw]a
Ji = Dyus[tn][(Ja X Tr + jr) X Te + jel;
Ovug[tm][talltrlte]+ = juw X ji;

3335

ie., Ty, Ty, Ty, T, and T, corresponding to the 5 dimensions
of the tensor blocks.

1) Resource Utilization: Considering double buffering, the
memory utilization of output, input and weight buffers can be
calculated as

Bouwt =2 x Ty, x Ty x T, x Ty, (14)
Bin =2 xT, x Isizea (15)
ngt =2 x Ty x Ty X Kgjze (16)

where [g;.. and Kg;.. considered integrally in three dimen-
sions to save the BRAM utilization and adapt to distinct kernel
and input feature shapes of different convolutional layers,
satisfying
Ksize = maX{Ké X Krl‘ X Ké}7
?

Tsize = max{((Td - 1) X Sé + K(’Li)x

((Ty = 1) x S+ Ki) x (T 1) x S+ K}

K and S for z = d,r,c are kernel and stride sizes of the
i-th convolutional layer. The overall utilization of BRAMs is
constrained by

[(Bout + Bin + ngt) X szt/36K-| S B7 (18)
where Np;; is 16 for 16-bit fixed-point data and B is the
number of available BRAMs on the board each with space
of 36K bits.

For the DSP utilization, as 7;, x T,, MAC operations are
performed in parallel for convolution computations and each
MAC utilizes one DSP block, the value T, x T, should be
no more than the number of available DSPs.

a7



TABLE I
R(2+1)D MODEL ARCHITECTURE
(Resi;;.laa)ielglock) Output Size Kernel/Filter Size
1x7x7,45
convl 16 x 56 x 56 3x1x1.64
X 3% 3,144 7
3x1x1,64
conv2_x 16 x 56 x 56 1x3x 3,144 X2
L 3x1x1,64 |
x 3 % 3,288(230) ]
3x1x1,128
conv3_x 8 X 28 x 28 1x3x 3, 288 X 2
L 3x1x1,128 ]
[ 1Xx3Xx3,576(460) 7
3x1x1,256
conv4_x 4x14x14 1x3x 3. 576 X 2
L 3x1x1,256 ]
1 x 3 x 3,1152(921)
3x1x1,512
conv5_x 2XTxT7 1x3x3 1152 X 2
L 3x1x1,512
spatio-temporal average pooling,
Ix1x1 FC layer with softmax

2) Performance Analysis: The running time of the design
depends on two aspects, i.e., the latency of data transmissions
between off-chip and on-chip memory, and the latency of
computations. Here the latency is discussed as indicated by the
number of cycles needed. Given the numbers of ports py,g¢, Pin
and p,.+ to transfer weights, input features and output features,
the latency required to load the data can be described by

twgt =T X Ty x Kg x K X Kc/pwgta (19)
tin =Ty x Ty X T X T%/pin, (20)
tout = Tm X Td X Tr X Tc/pouta (21)

where T, = (T,,—1) x S, + K, for x = d, r, c. The data in the
input and weight buffers would generate the output data with
Kix K, x K. xTygxT, xT,x T, xT, MAC operations.
Since the processing element could execute 7,, x T,, MACs
in parallel in one cycle, the computation latency is given by

teomp = Kag X K X Ko x Ty x T, x T¢. (22)
Benefiting from double buffering, the loading of input feature
and weight data and the computations of convolutions can

be processed simultaneously. Thus the latency in loop L3 is
determined by

trs = Inax{twgtvtin; tcomp}a (23)
and latency in loop L2 is
N
tLQ = max{tL3 X [?1 + tcampatout}' (24)
n
Therefore, the overall latency is given by
D R C M
tiot = [— — — —xt tout- (25
o = [ % [ DX T X T ] b o @25)

As the storing latency t,,: is overlapped by [N/T,] times
of the latency 13, t13 becomes crucial to the overall perfor-
mance, and the loading latency ¢,,4¢, t;, and the computation
latency tcomp need to be well balanced.

V. EXPERIMENTAL RESULTS

Although our proposed ADMM-based blockwise pruning
algorithm and FPGA implementation are general for different
types of 3D CNNs, we focus on the R(2+1)D CNN because
of its superior accuracy and significantly reduced number of
parameters. The R(2+1)D CNN consists of 40 convolutional

TABLE 11
RESULTS OF ADMM PRUNING ALGORITHM

Number of Parameters (M) Operations (giga)

Layer Before/After Pruning Before/After | Pruning
(Residual Block) Pruning Rate Pruning Rate
convl 0.015 N/A 1.53 N/A
conv2_x 0.444/0.045 9.85% 44.39/4.35 10.19x
conv3_x 1.56/0.322 4.85% 21.21/4.33 4.89x
conv4d_x 6.23 N/A 10.61 N/A
conv_x 24.92 N/A 5.31 N/A
Total 33.22/31.53 1.05x 83.05/26.13 3.18x
TABLE IIT
FGPA RESOURCE UTILIZATION
Design [ Resource [ DSP [ BRAM [ LUT | FF
Available 2520 912 274K | 548K
(T, Th) Used 695 710.5 74K 51K
= (64,8) Utilization | 28% 78% 27% 9%
(T, Thn) Used 1215 912 148K 76K
= (64,16) | Utilization | 48% 100% 54% 14%

(CONV) layers in 5 blocks and 1 additional fully-connected
(FC) layer. The first block contains 2 layers and the others
are residual blocks each containing 8 primary layers. In
addition, the last 3 blocks each have a shortcut with 2 layers.
Therefore, it makes a total of 2+4x8+3x2 CONV layers. The
only FC layer contributes little to the number of parameters,
so our weight pruning focuses on the CONV layers. More
details are in Table I. Specifically, different from C3D with
actual 3D kernels, the R(2+1)D network decomposes each
3D convolution into a 2D convolution in spatial dimensions
and a 1D convolution in the temporal dimension, i.e., the
feature maps are convoluted alternately by kernels with shape
1 x K x K and kernels with shape K x 1 x 1.

The original R(2+1)D model is pretrained on the Kinet-
ics dataset and transferred onto the UCF101 dataset as the
unpruned model. The pruned R(2+1)D model is obtained
by the proposed ADMM pruning and masked retraining on
UCF101. The initial learning rate is 5 x 10~3 when training
the unpruned model, and is reduced to 5 x 10~* in both
ADMM training and masked retraining for stability. The batch
size is fixed to 32, and the video clip length is 16 frames.
ADMM pruning is conducted four rounds each with 50 epochs
and the penalty factor p is set to 0.0001, 0.001, 0.01, and
0.1 corresponding to the four rounds, respectively. In each
round, the pruning framework has 5 ADMM iterations with 10
epochs for the W-minimization step in each iteration. Masked
retraining is performed for 100 epochs after ADMM pruning.
71; 18 90% for the second residual block and 80% for the third
residual block, corresponding to pruning rates of 10x and 5 x.
In addition, several tricks [25] are utilized to assist the training,
such as label smoothing in ADMM training, as well as warmup
and cosine scheduling of the learning rate in masked retraining.

We use two block size configurations (T;,,,T,) = (64,8)
and (T,,,T,) = (64,16) in the pruning algorithm with the
same pruning ratios 7, i.e., we mainly prune the second and
third residual-blocks as they are the most computation inten-
sive. The unpruned model has an accuracy of 89.0%, while
the accuracy after pruning is 88.66% for (T,,,T;,) = (64,8)
and 88.40% for (T),,T,) = (64,16). Table II demonstrates
the pruning results of (T,,7,) = (64,8), with significant
reduction of the number of operations (giga) by 3.18x for the
whole model.



TABLE IV
PERFORMANCE COMPARISON WITH PREVIOUS IMPLEMENTATIONS, CPU AND GPU

Network C3D R(2+1)D
Device ZC706 ‘ VC709 ‘ VUS440 Ours Ours GPU CPU Ours Ours
[13) [18] [18] (T =8) | (T, =16) | (GTX 1080 Ti) | (E5-1650 v#) | (T =8) | (Tn = 16)
Frequency (MHz) 176 I 150 I 200 I 150 I 150 1481 I 3600 150 I 150
Precision 16-bit fixed 32-bit float 16-bit fixed
Technology 28nm 28nm 20nm 16nm 16nm 14nm 16nm
Power (W) 9.7 25 26 54 6.7 230 B 54 6.7
Throughput (GOPS) 71.0 430.7 784.7 46.6 79.1 3256.9 68.1 67.7 1117
Power Efficiency (GOPS/W) 7.3 17.1 30.2 8.6 11.8 14.2 - 12.5 16.7
DSP Utilization 81090%) | 1536(42%) | 1536(53%) | 695(28%) | 1215(48%) - - 695(28%) | 1215(48%)
DSP Efficiency (GOPS/DSPs) 0.088 0.41 0.60 0.067 0.065 B B 0.097 0.092
Latency (ms) 5425 89.4 49.1 826 487 255 1220 386 (1044) | 234 (609)
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