2001.00138v4 [cs.LG] 22 Jan 2020

arxiv

PatDNN: Achieving Real-Time DNN Execution on
Mobile Devices with Pattern-based Weight Pruning

Wei Niu
College of William and Mary
whiu@email.wm.edu

Shihao Wang
Northeastern University
wang.shih@husky.neu.edu

Yanzhi Wang
Northeastern University
yanz.wang@northeastern.edu

Abstract

With the emergence of a spectrum of high-end mobile de-
vices, many applications that formerly required desktop-level
computation capability are being transferred to these devices.
However, executing Deep Neural Networks (DNNs) infer-
ence is still challenging considering the high computation
and storage demands, specifically, if real-time performance
with high accuracy is needed. Weight pruning of DNNs is
proposed, but existing schemes represent two extremes in
the design space: non-structured pruning is fine-grained,
accurate, but not hardware friendly; structured pruning is
coarse-grained, hardware-efficient, but with higher accuracy
loss.

In this paper, we advance the state-of-the-art by intro-
ducing a new dimension, fine-grained pruning patterns in-
side the coarse-grained structures, revealing a previously un-
known point in the design space. With the higher accuracy
enabled by fine-grained pruning patterns, the unique insight
is to use the compiler to re-gain and guarantee high hardware
efficiency. In other words, our method achieves the best of
both worlds, and is desirable across theory/algorithm, com-
piler, and hardware levels. The proposed PatDNN is an end-
to-end framework to efficiently execute DNN on mobile de-
vices with the help of a novel model compression technique—
pattern-based pruning based on an extended ADMM solution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378534

Xiaolong Ma
Northeastern University
ma.xiaol@husky.neu.ed

Xuehai Qian
University of Southern California
xuehai.qian@usc.edu

Sheng Lin
Northeastern University
lin.sheng@husky.neu.edu

Xue Lin
Northeastern University
xue.lin@northeastern.edu

Bin Ren
College of William and Mary
bren@cs.wm.edu

framework—and a set of thorough architecture-aware com-
piler/code generation-based optimizations, i.e., filter kernel
reordering, compressed weight storage, register load redun-
dancy elimination, and parameter auto-tuning. Evaluation
results demonstrate that PatDNN outperforms three state-of-
the-art end-to-end DNN frameworks, TensorFlow Lite, TVM,
and Alibaba Mobile Neural Network with speedup up to
44.5%, 11.4X, and 7.1X, respectively, with no accuracy com-
promise. Real-time inference of representative large-scale
DNNs s (e.g., VGG-16, ResNet-50) can be achieved using mo-
bile devices.

CCS Concepts. - Computing methodologies — Neural
networks; « Software and its engineering — Source code
generation; -« Human-centered computing — Mobile
computing.

Keywords. Deep Neural Network, Model Compression, Com-
piler Optimization, Mobile Devices

ACM Reference Format:

Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian,
Xue Lin, Yanzhi Wang, and Bin Ren. 2020. PatDNN: Achieving
Real-Time DNN Execution on Mobile Devices with Pattern-based
Weight Pruning. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS °20), March 16—20, 2020, Lausanne,
Switzerland. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3373376.3378534

1 Introduction

Deep learning or deep neural networks (DNNs) have become
the fundamental element and core enabler of ubiquitous arti-
ficial intelligence. After obtaining DNN models trained with
a huge amount of data, they can be deployed for inference,
perception and control tasks in various autonomous systems
and internet-of-things (IoT) applications. Recently, along

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

with the rapid emergence of high-end mobile devices!, ex-
ecuting DNNs on mobile platforms gains popularity and is
quickly becoming the mainstream [9, 28, 30, 43, 63] for broad
applications such as sensor nodes, wireless access points,
smartphones, wearable devices, video streaming, augmented
reality, robotics, unmanned vehicles, smart health devices,
etc. [2, 3, 29, 46, 50].

Considering the nature of these applications, achieving
real-time DNN inference is an ideal but yet a very challeng-
ing goal for mobile devices due to the limited computing re-
sources of embedded processors. For example, consider VGG-
16 [52], one of the key DNN models in transfer learning with
broad application scenarios. For an embedded GPU (Adreno
640, with 16-bit floating-point for weights/intermediate re-
sults), it takes 242ms to perform inference using TVM [5],
and is not even supported in TensorFlow-Lite (TFLite) [10]
— these are two representative mobile-oriented, end-to-end
DNN inference acceleration frameworks. It is clearly far from
real-time execution.

To achieve the goal, it is necessary to consider algorithm-
level innovations. To this end, DNN model compression tech-
niques, including weight pruning [8, 12, 14, 15, 19, 42, 54]
and weight/activation quantization [6, 7, 13, 22, 23, 35, 37, 45,
48, 56, 65], have been proposed and studied intensively for
model storage reduction and computation acceleration. Early
efforts on DNN model compression [8, 12, 14, 15, 19, 42, 54]
mainly rely on iterative and heuristic methods, with limited
and non-uniform model compression rates. Recently, a sys-
tematic DNN model compression framework (ADMM-NN)
has been developed using the powerful mathematical op-
timization tool ADMM (Alternating Direction Methods of
Multipliers) [4, 21, 39], currently achieving the best perfor-
mance (in terms of model compression rate under the same
accuracy) on weight pruning [49, 64] and one of the best on
weight quantization [35].

Despite the high compression ratio, there is a significant
gap between algorithm-level innovations and hardware-level
performance optimizations for DNN inference acceleration.
Specifically, the general but non-structured weight pruning
(i.e., arbitrary weight can be pruned) [12, 15] can seriously
affect processing throughput because the indices for the
compressed weight representation prevent achieving high
parallelism [19, 42, 54]. While ADMM-NN achieves higher
and more reliable compression ratios, hardware implemen-
tation obstacle due to the non-structured nature still stays
the same. Alternatively, the structured pruning [19, 42, 54],
e.g., filter and channel pruning, can generate more hardware-
friendly models but result in relatively higher accuracy drop.
To achieve the real-time inference for representative DNNs
in mobile devices, it is imperative to develop an end-to-end

!Modern mobile platforms become increasingly sophisticated, usually
equipped with both CPUs and GPUs, e.g., Qualcomm Snapdragon 855 [47]
has an octa-core Kryo 485 CPU and an Adreno 640 GPU.

Wei Niu and Xiaolong Ma, et al.

DNN acceleration framework that achieves both high accu-
racy and high hardware efficiency.

We make a key observation that the general non-structured
pruning and current structured pruning represent two ex-
tremes in the design space. In non-structured pruning, any
weight can be pruned, while in structured pruning, the prun-
ing is done for the whole filter or channel. Thus, non-structured
pruning is completely fine-grained, which achieves high com-
pression ratio but is not hardware or software optimization
friendly, while structured pruning is coarse-grained, which
generates hardware-efficient regular models with higher ac-
curacy loss.

In this paper, we advance the state-of-the-art by naturally
introducing a new dimension, fine-grained pruning patterns
inside the coarse-grained structures, revealing a previously
unknown point in design space. This new dimension allows
more flexible exploration of the trade-off between accuracy
and hardware efficiency. In this paradigm, the key question
is how to “recover” the hardware efficiency lost due to the fine-
grained patterns. The unique insight of our solution is to
use compiler to seamlessly close the gap between hardware
efficiency of fully structured pruning and the pattern-based
“semi-structured” pruning.

Specifically, we propose PatDNN, a novel end-to-end mo-
bile DNN acceleration framework that can generate highly
accurate DNN models using pattern-based pruning methods
and guarantee execution efficiency with compiler optimiza-
tions. PatDNN consists of two stages: (1) pattern-based train-
ing stage, which performs kernel pattern and connectivity
pruning (termed pattern-based pruning in general) with a pat-
tern set generation and an extended ADMM solution frame-
work. (2) execution code generation stage, which converts
DNN models into computational graphs and applies multi-
ple optimizations including: a high-level and fine-grained
DNN layerwise representation, filter kernel reorder, load
redundancy eliminations, and automatic parameter tuning.
All design optimizations are general, and applicable to both
mobile CPUs and GPUs.

In sum, this paper makes several major contributions:

e First, it proposes a novel pattern-based DNN prun-
ing approach that achieves the benefits of both non-
structured and structured pruning while avoiding their
weaknesses.

61] with pattern selection capability to map a pattern
to each kernel, and train non-zero weights.

Third, it identifies the compatibility of the proposed
pattern-based pruning scheme with compiler code gen-
eration, and develop multiple novel compiler optimiza-
tions for compressed DNN execution. These optimiza-
tion opportunities are enabled only by our pattern-
based design, and do not exist in any prior DNN exe-
cution frameworks.

Second, it enhances the recent ADMM-NN framework [49,

PatDNN
Filter 1:
I R Next Layer
InputFeature /| ~ | ~ | X Output Feature Input Feature
Map:x;, 9 Fitter): Map: J, Map: X411
1 i G conv 1 7 k+::5 1 it G
Ni\a . Filter Gt Nis1
[— 0?‘ Al A T < J
channels channels
kernels

Figure 1. DNN CONV layer computation.

e Fourth, it implements an end-to-end DNN acceleration
framework PatDNN on mobile platforms, compatible
with modern embedded CPU and GPU architectures,
achieving real-time performance on representative
DNNs without accuracy loss for the first time.

We compare PatDNN with three state-of-the-art end-to-
end DNN frameworks on both mobile CPU and GPU, Ten-
sorFlow Lite [10], TVM [5], and Alibaba Mobile Neural Net-
works [1] using three widely used DNNs, VGG-16, ResNet-50,
and MobileNet-V2 and two benchmark datasets, ImageNet
and CIFAR-10. Our evaluation results show that PatDNN
achieves up to 44.5X speedup without any accuracy compro-
mise. Using Adreno 640 embedded GPU, PatDNN achieves
18.9ms inference time of VGG-16 on ImageNet dataset. To
the best of our knowledge, it is the first time to achieve real-
time execution of such representative large-scale DNNs on
mobile devices.

2 Background and Motivation
2.1 Layerwise Computation of DNNs

DNN models can be viewed as cascaded connections of mul-
tiple functional layers, such as convolutional (CONV), fully-
connected (FC), and pooling (POOL) layers, to extract fea-
tures for classification or detection [26, 34, 62]. Take the most
computation-intensive CONV layer as an example, as shown
in Figure 1, the input feature map of the k-th layer has a size
of My X Ni X Cr, where Ci is the number of channels of the
input feature map. This layer uses Cy,; CONV filters, each
with a size of Py X Qk X Ck. Note that the number of kernels
Cy in a CONV filter should match the number of channels Cy,
in the input feature map to perform convolution. Each j-th
CONV filter performs convolution with the input feature
map, using a stride of Sk, resulting in the j-th channel in the
output feature map. Therefore, the number of channels in
the output feature map equals to the number of filters Cy,,
while the size of the output feature map i.e., M1 and Ni4q
is determined by My, N, Pk, Q, and Sx. The CONV layer is
followed by an activation layer, which performs an activa-
tion operation, typically ReLU, on the output feature map.
Besides the functional layers in DNNs, batch normalization
becomes an essential operation to increase the stability of

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Table 1. DNN acceleration frameworks on mobile devices.

DNNs Optimization Knobs TFLite TVM MNN Ours

Parameters auto-tuning N Y N Y
CPU/GPU support Y Y Y Y
Dense Half-floating support Y Y Y Y
Computation graph optimization Y Y’ Y Y”©
Tensor optimization Y Yt Y YT
Sparse DNN model support N N N Y
Pattern-based pruning N N N Y
Sparse Connectivity pruning N N N Y
Filter kernel reordering N N N Y
Opt. sparse kernel code generation N N N Y
Auto-tuning for sparse models N N N Y

* Operator fusion, constant folding, static memory plan, and data layout transform
** Besides above in *, operation replacement

T Scheduling, nested parallelism, tensorization, explicit memory latency hiding

T Besides above in 1, dense kernel reordering, SIMD operation optimization

! Similar optimizations as TVM, but less advanced

DNN training by overcoming the gradient vanishing issue
[25].

2.2 Mobile Acceleration of DNN's

In recent years, there have been intensive efforts on DNN
inference acceleration frameworks targeting mobile devices,
include DeepX [28], TFLite [10], DeepEar [31], TVM [5], Al-
ibaba Mobile Neural Network (MNN) [1], DeepCache [57],
DeepMon [24], DeepSense [60], and MCDNN [16]. Most of
these prior works do not fully utilize model compression
techniques. Other efforts that explore model sparsity and
model compression to accelerate the DNN execution include
Liu et al. [38], DeftNN [20], SCNN [44], AdaDeep [40]. How-
ever, they either do not target mobile platforms, or require
new hardware, or trade off compression rate and accuracy,
introducing various drawbacks compared to our work.

Table 1 compares the major optimization techniques of-
fered by three state-of-the-art, end-to-end DNN inference
frameworks (TFLite [10], TVM [5], and MNN [1]). We do not
include other efforts, e.g., DeepCache [57] and DeepMon [24],
since they mainly focus on specific DNN applications rather
than general DNNs. In this work, our goal is to find the
most appropriate weight pruning scheme for mobile DNN
acceleration and the corresponding full-stack acceleration
framework. We utilize 16-bit floating point representation
on GPU for both weights and intermediate results which is
supported in mobile devices and shown to incur no accuracy
loss [1, 5, 10] for DNNS.

2.3 DNN Model Compression and Challenges

DNN model compression has been proposed for simultane-
ously reducing the storage/computation and accelerating
inference with minor classification accuracy (or prediction
quality) loss. Model compression is performed during DNN
training. Two important categories of DNN model compres-
sion techniques are weight pruning [8, 12, 15, 19, 42, 54] and
weight quantization [6, 22, 35, 37, 45, 48, 56, 65].

Weight pruning reduces the redundancy in the number
of weights. As shown in Figure 2, two main approaches of

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

After pruning

Before pruning

pruning
synapses

g pr— =4
pruning S—~v
neurons

- S

(@)

Filter 1 Filter 2 Filter 4¢ '

27 2]

Pruning |

(b)

Figure 2. (a) Non-structured weight pruning and (b) two types of
structured weight pruning.

Filter Filter 2 Filter 4,
Channel I/‘ A A/

Pruning

weight pruning are (1) the general and non-structured prun-
ing; and (2) structured pruning, which produces irregular
and regular compressed DNN models.

Non-Structured Pruning;: In this method, arbitrary weight
can be pruned. It can result in a high pruning rate, i.e., re-
duction in the number of weights, which can reduce the
actual computation. For compiler and code optimization,
non-structured pruning incurs several challenges due to the
irregularity in computation and memory access. First, the
irregular and sparse kernel weights require heavy control-
flow instructions, which degrade instruction-level parallelism.
Second, it introduces thread divergence and load imbalance
due to the fact that kernels in different filters have divergent
workloads and they are usually processed by multiple threads
— a key concern for efficient thread-level parallelism. Third,
it usually incurs low memory performance due to poor data
locality and cache performance. More importantly, it pro-
hibits advanced memory optimizations such as eliminating
redundant loads that widely exist in convolution operations.
Similarly, for hardware acceleration, since the pruned mod-
els are stored in some sparse matrix format with indices,
they often lead to performance degradation in GPU and CPU
implementations [8, 12, 15].

Structured Pruning: This method can produce regular,
but smaller weight matrices. Figure 2 (b) illustrates the rep-
resentative structured pruning schemes: filter pruning and
channel pruning [54]. Filter and channel pruning can be con-
sidered as equivalent in that pruning a filter in the k-th layer
is equivalent to pruning the corresponding channel in the
(k + 1)-th layer. Filter/channel pruning is compatible with
Winograd algorithm [32, 55] that has been used to accelerate
computation of the original DNNs. Due to the regular struc-
ture, the GPU/CPU implementations typically lead to more
significant acceleration [19, 42, 54]. However, the structured
pruning suffers from notable accuracy loss [19, 54].

2.4 ADMM-based DNN Model Compression
Framework

Recent work ADMM-NN [49, 61] leverages Alternating Di-
rection Methods of Multipliers (ADMM) method for joint
DNN weight pruning and quantization. ADMM is a powerful
tool for optimization, by decomposing an original problem
into two subproblems that can be solved separately and ef-
ficiently. For example, considering optimization problem

Wei Niu and Xiaolong Ma, et al.

miny f(x) + g(x). In ADMM, this problem is decomposed
into two subproblems on x and z (auxiliary variable), which
will be solved iteratively until convergence. The first sub-
problem derives x given z: miny f(x) + q1(x|z). The second
subproblem derives z given x: min, g(z) + ¢»(z|x). Both ¢
and q; are quadratic functions.

As a unique property, ADMM can effectively deal with a
subset of combinatorial constraints and yield optimal (or at
least high quality) solutions [21, 39]. Luckily, the necessary
constraints in the DNN weight pruning and quantization
belong to this subset of combinatorial constraints, making
ADMM applicable to DNN model compression.

Due to the unprecedented results on accuracy and prun-
ing rate, ADMM-NN [49] is considered as the state-of-art
results for non-structured weight pruning and one of state-
of-art methods for weight quantization. For non-structured
pruning, ADMM-NN achieves 167X, 24x, and 7X weight
reductions on LeNet-5, AlexNet, and ResNet-50 models, re-
spectively, without accuracy loss. However, the framework
only focuses on non-structured weight pruning, in which
the pruning rate does not directly translate to performance
improvements.

ADMM-NN can be extended to perform structured prun-
ing, i.e., filter/channel pruning, and our results show that it
leads to 1.0% Top-5 accuracy degradation with 3.8x weight
reduction on VGG-16 CONV layers using ImageNet dataset.
Although better than prior work (1.7% in [19] and 1.4% in
AMC [18]), this accuracy loss is not negligible for many
applications.

2.5 Motivation

Based on the discussion of prior work on weight pruning,
we rethink the design space and observe that non-structured
and structured represent two extremes in the design space.
In non-structured pruning, any weight can be pruned, we
consider it as a fine-grained method; in structured pruning,
the weights of whole filter or channel are pruned together,
we consider it as a coarse-grained method. Correspondingly,
the two methods have different implications on hardware
acceleration and software optimization: non-structured prun-
ing is not hardware or software optimization friendly, so the
higher pruning ratio cannot fully translate to performance
gain, while structured pruning incurs higher accuracy loss.

The motivation of our study is to seek an approach that can
offer the best of both methods. To achieve that, we naturally
introduce a new dimension, fine-grained pruning patterns
inside the coarse-grained structures, revealing a previously
unknown point in design space. With the higher accuracy
enabled by fine-grained pruning pattern, the key question is
how to re-gain similar hardware efficiency as coarse-gained
structured pruning. We take a unique approach and lever-
age compiler optimizations to close the performance gap
between full structured pruning and pattern-based “semi-
structured” pruning.

PatDNN
[-F,“te-” ~ Kernel 3 Kernel 4 (b).
e E L] Connectivity
- ip-onn
pruning
,] Fiflte-'j, . Kernel 1 Kernel 3 Kernel 5_ Pruned
coad 7 weight
» (a).
|l Pattern pruning
T : remained
ilt) ight:
2 'I,:f'flt,e-r”, ! Kernel 2 Kernel 5 €9
| - E r

Figure 3. lllustration of (a) kernel pattern pruning on CONV ker-
nels, and (b) connectivity pruning by removing kernels.

3 Overview of PatDNN
3.1 Pattern-based Pruning

In pattern-based pruning, the key consideration is how to
design and select the patterns. To achieve high accuracy and
execution efficiency, we need to design the patterns con-
sidering the implication for theory and algorithm, compiler
optimization, and hardware execution. Good patterns should
have two key properties: flexibility and regularity.

The Flexibility is not only desirable at theory and algo-
rithm level but also enables efficient compiler code genera-
tion. Specifically, it allows compilers to maximize or maintain
both instruction-level and thread-level parallelism. The regu-
larity not only results in highly efficient hardware execution
but also enables efficient compiler optimizations such as re-
dundant load elimination to further improve performance.
Compared to irregular structures, recent works also show
from theory and algorithm level that high accuracy or func-
tion approximation capability can be achieved at the same
time with certain regularity. Given these two key properties,
we propose two pattern-based pruning techniques: kernel
pattern pruning and connectivity pruning,.

Kernel Pattern Pruning is illustrated in Figure 3. For
each kernel (in a CONV filter), a fixed number of weights
are pruned, and the remaining weights (white cells) form
specific “kernel patterns”. We define the example in Figure
3 as 4-entry pattern pruning, since every kernel reserves
4 non-zero weights out of the original 3 X 3 kernel (the
most commonly used kernel). The same approach is also
applicable to other kernel sizes and the FC layer. For each
kernel, it possesses flexibility in choosing among a number
of pre-defined patterns.

At theory and algorithm level, it is shown in [33, 36] that
the desirable kernel shape has certain patterns to match the
connection structure in human visual systems, instead of a
square shape. The selection of appropriate pattern for each
kernel can be naturally done by extending ADMM-based
framework. In Section 4.3, we achieve accuracy enhance-
ment in all representative DNNs in our testing. At compiler
level, the pre-defined pattern allows compiler to re-order and
generate codes at filter and kernel level so that kernels with
the same pattern can be grouped for consecutive executions
to maximize instruction-level parallelism. At hardware level,

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Output

feature Channel 1 Channel j Channel Cp

Input\Map

feature

Map
Channel 1
Channel i
Channel Cy, K'é"rneICk

P
_____ ¢--Filter Crt

Figure 4. Illustration of connectivity pruning.

Table 2. Qualitative comparison of different pruning schemes on
accuracy and speedup under the same pruning rate.

Pruning : Accuracy : Hardware Speedup

Scheme | Highest “fé”sir H'L%ZZS’ Highest | High Minor
Non-structured | X X
Filter/Channel X X

Pattern X
Connectivity X X

the 4-entry patterns are extremely friendly to the SIMD ar-
chitecture in embedded processors based on either GPUs or
CPUs. Note that our approach is general and can be applied
to any pre-defined patterns, not just the 4-entry considered
in the paper.

Connectivity Pruning is illustrated in Figure 4. The key
insight is to cut the connections between certain input and
output channels, which is equivalent to removal of corre-
sponding kernels. In CONV layers, the correlation between
input channel i and output channel j is represented by the i-
th kernel of filter j. This method is proposed for overcoming
the limited weight pruning rate by kernel pattern pruning.

At theory and algorithm levels, the connectivity pruning
matches the desirability of locality in layerwise computa-
tions inspired by human visual systems [58, 59]. It is more
flexible than the prior filter/channel pruning schemes that
remove whole filters/channels, thereby achieving higher ac-
curacy. At compiler and hardware level, removed kernels
and associated computations can be grouped by compiler
using the re-ordering capability without affecting the other
computations, thereby maintaining parallelism degree.

3.2 Overview of PatDNN Acceleration Framework

Based on the above discussions, we propose PatDNN, a novel
end-to-end mobile DNN acceleration framework that can
generate highly accurate DNN models using pattern-based
pruning methods and guarantee execution efficiency with
compiler optimizations. Compared to recent prior works
[18, 19, 49, 54], PatDNN uniquely enables cross-layer verti-
cal integration, making it desirable across theory/algorithm,
compiler and hardware. Allowing compilers to treat pruned

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Pattern-based pruning

Graph-optimization
*

Wei Niu and Xiaolong Ma, et al.

* '
Pre- de5|gned ADMM ExeCUtlon graph H
pattern pool regulanzatlon H . Y\!I_tt’l_we_l_g_f]ts_ o
> e /e N, Opt-code for
CNN weight matrix : : vggle :
21 epeens HH ." .. ; {device: [CPU] LR SEUGEY
2 : :layers: : for ..
s : - name: conv_opl fo.r' i |
s epochZD@ . @.. : storage:tight i P
= : : OF 244t
o H H pattern: for :
= H H type: [1, 2] r
s epochAO@ E @ E Compuition layout: FKW for ...:
= H H
= CONV kernel, H gra : . +
= : H tuning: Sl XXX 3456]] gy
Q epochm@ ﬁ @ E ; : unroll: [4, 2, 8, 1] : Compact model
H H tile: [16, 32, 8]
: H permute: cohwci_b
[@] Prune reg ', and fii H H oo
g ‘ H Graph : info:)
® i | optimization | strides: [1, 1]
| fine-tune @ W @E . : dilations: [1, 1]
v cposte ; ; ...

kernels as special patterns, our approach not only achieves
high pruning rate with high accuracy, but also effectively
converts into performance improvements due to hardware
friendly properties.

As shown in Table 2, PatDNN can achieve the benefits of
both non-structured and structured pruning. The key enabler
to achieving this goal is to leverage compiler to maintain the
efficiency of structured pruning based on kernel pattern and
connectivity pruning. Our approach is an excellent example
of hardware and software co-design, which can be compared
to an intuitive analogy: the multi-level cache memory hier-
archy provides sufficient hardware supports to hide memory
access latency and explore locality, but compiler and soft-
ware optimizations are still needed to fully realize effective
cache management policy.

Figure 5 shows the overview of PatDNN which consists of
two stages: (1) pattern-based training stage (Section 4), which
performs kernel pattern and connectivity pruning with an
extended ADMM solution framework. (2) execution code gen-
eration stage (Section 5), which performs multiple effective
optimizations based on the patterns. Similar to TVM [5],
PatDNN converts DNN models into computational graphs
and applies multiple graph-based optimizations. Based on
these optimizations, we focus on layerwise design and opti-
mization including a high-level and fine-grained DNN lay-
erwise representation (LR), filter kernel reorder, load redun-
dancy eliminations, and automatic parameter tuning. All of
these designs and optimizations are general, and applicable
to both mobile CPUs and GPUs. The second stage gener-
ates optimized execution codes as well as DNN models with
weights stored in a novel compact format.

4 PatDNN Training w/ Pattern-based
Pruning

This section describes the methods to generate compressed
DNN models for PatDNN. The procedure is composed of

R, 2=1-) (1<t S ,
: Pattern :
Masked Mapping Selection
& Retraining H H
E i Sub-problem 1: Sub-problem 2: :
Find W, b FindY, Z
Pattern and
Connectivity
pruned Model Update: U, V

Figure 6. The algonthm -level overview of PatDNN training.

two steps: (1) we design a set of desired patterns to be se-
lected for each kernel; (2) assign a pattern for each kernel
(kernel pattern pruning) or prune the whole kernel (con-
nectivity pruning), and train the pattern-based weights for
maintaining accuracy. The overall flow is shown in Figure 6.
Essentially, it reflects the algorithm aspects of PatDNN. Our
method can be applied to either a pre-trained DNN or train
a model from scratch.

4.1 Designing the Pattern Set

We need to determine the number of patterns, and design
each specific candidate pattern in the pattern set. The number
of patterns is an important hyperparameter that should be
carefully considered. If it is too large, it is more challenging
to generate efficient codes, thereby affecting performance;
if it is too small, the lack of flexibility may lead to accuracy
degradation. Through empirical study, we validate that 6-8
patterns in the set achieves as a desirable tradeoff for the
most common 3 X 3 kernel—ensuring low compiler overhead
while maintaining high accuracy.

When the number of patterns is determined and 4-entry
patterns are utilized, the compiler optimization and hard-
ware efficiency are oblivious to the specific pattern shapes.
However, the specific patterns to use need to be carefully
optimized to maintain high accuracy after kernel pattern
pruning. The key insights of pattern design are: (1) both

PatDNN

theory and empirical studies [58, 59] show that the central
weight in a 3 X 3 kernel is critical and shall not be pruned;
and (2) it is desirable that the distortion is small for each
kernel before and after kernel pattern pruning. Hence, we
propose the following heuristic. First, for the pre-trained
DNN, we scan all the kernels, and for each kernel, we find the
four weights with largest magnitudes (including the central
weight). These four weights form a 4-entry pattern, called
the natural pattern of the kernel. According to the definition
of natural patterns, there are a total of (g) = 56 number of
possible patterns. Suppose we aim at k different patterns
in the candidate set. We count and select the Top-k most
commonly appeared natural patterns across all kernels in the
DNN, thereby forming the pattern candidate set (to select
from in the subsequent step).

Our study on pattern number and pattern style selection
is consistent with the pattern pruning theory work that
is proposed in [41]. Different from pattern theory deriva-
tion in [41], our approach focuses on system-level design
and compiler optimization of the pattern-based acceleration
framework.

4.2 Kernel Pattern and Connectivity Pruning
Algorithm

Problem Formulation: Consider an N-layer DNN, and we
focus on the most computationally intensive CONV layers.
The weights and biases of layer k are respectively denoted
by Wy and by, and the loss function of DNN is denoted by
FEW . {bi}i.,). refer to [64] for more details. In our
discussion, {Wk}llj: , and {bk},}f:1 respectively characterize
the collection of weights and biases from layer 1 to layer N.
Then the pattern and connectivity pruning is formulated as
an optimization problem:

minimize W N_ b N_ !
(Wi b (b} FUWEhZ (k) o

subjectto Wy € Sk, Wi ESIQ, k=1,...,N.

The collection of weights in the k-th CONV layer forms a
four-dimensional tensor, i.e., Wy, € RPxXQeXCiexCrat wwhere
P, Qk, Ck, and Cy,q are respectively the height of kernel,
the width of kernel, the number of kernels, and the number
of filters, in layer k. Suppose X denotes the weight tensor in
a specific layer, then (X). . 5 » denotes a specific kernel.

In kernel pattern pruning, the constraint in the k-th CONV
layer is Wy € Sy := {X | each kernel in X needs to satisfy
one specific pattern shape in the pattern set (and non-zero
weight values can be arbitrary)}. In connectivity pruning,
the constraint in the k-th CONV layer is Wy € S; := {X |
the number of nonzero kernels in X is less than or equal
to ar} (ak is a predetermined hyperparameter with more
discussions later). Both constraints need to be simultaneously
satisfied.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Extended ADMM-based Solution Framework: The con-
straint Wy € Sy in problem (1) is different from the clustering-
like constraints in ADMM-NN [49], in that it is flexible to
select a pattern for each kernel from the pattern set. As
long as a pattern is assigned for each kernel, constraints in
problem (1) become clustering-like and ADMM compatible.
Similar to ADMM-NN [49], the ADMM-based solution is an
iterative process, starting from a pre-trained DNN model. We
assign an appropriate pattern for each kernel based on the
L,-norm metric in each iteration, to achieve higher flexibility.

By incorporating auxiliary variables Z;’s and Y’s, and
dual variables Uy ’s and V’s, we decompose (1) into three
subproblems, and iteratively solve until convergence. In iter-
ation I, after assigning patterns we sI?]lve the first subproblem

minimize f({Wk}kN:p {bk}zi\]:l) +

Pk 1 12
Ew, -zl +u
Wb (be) o Wk =2+ Ul

k=1
N
Pk
+ Z Ewy - YL + VL2)
k=1 2

The first term is the loss function of the DNN, while the other
quadratic terms are convex. As a result, this subproblem can
be solved by stochastic gradient descent (e.g., the ADAM
algorithm [27]) similar to training the original DNN.

The solution {W} of subproblem 1 is denoted by {Wf:l}.

Then we aim to derive {Z;:l} and {Y;:l} in subproblems 2
and 3. These subproblems have the same form as those in
ADMM-NN [49]. Thanks to the characteristics in combina-
torial constraints, the optimal, analytical solution of the two
subproblems are Euclidean projections, and are polynomial
time solvable. For example, for connectivity pruning, the
projection is: keeping ay kernels with largest L, norms and
setting the rest of kernels to zero. For kernel pattern pruning
it is similar. Finally, we update dual variables Uy and Vi
according to the ADMM rule [4] and thereby complete the
I-th iteration in the ADMM-based solution.

The hyperparameter determination process is relatively
straightforward for joint pattern and connectivity pruning.
There is no additional hyperparameters for kernel pattern
pruning when the pattern set has been developed. For con-
nectivity pruning we need to determine the pruning rate oy
for each layer. In this paper, we adopt a heuristic method of
uniform pruning rate for all layers except for the first layer
(which is smaller, yet more sensitive to pruning).

4.3 Accuracy Validation and Analysis

We validate the accuracy of ADMM-based joint kernel pat-
tern and connectivity pruning, based on ImageNet ILSVRC-
2012 and CIFAR-10 datasets, using VGG-16 [52], ResNet-50
[17], and MobileNet-V2 [51] DNN models. Our implementa-
tions are based on PyTorch, and the baseline accuracy results
are in many cases higher than prior work, which reflects the
recent progress in DNN training. With a pre-trained DNN
model, we limit the number of epochs in kernel pattern and

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

connectivity pruning to 120, similar to the original DNN
training in PyTorch and much lower than iterative pruning
[15].

Table 3. Top-5 accuracy comparison on kernel pattern pruning.

Network [Original DNN| 6-pattern 8-pattern 12-pattern
VGG16 91.7% 92.1% 92.3% 92.4%
ResNet50 92.7% 92.7% 92.8% 93.0%

Table 3 illustrates the Top-5 accuracy comparison on ker-
nel pattern pruning only, applied on the CONV layers of
VGG-16 and ResNet-50 using ImageNet dataset. The baseline
is the original DNN without patterns, and we demonstrate
the accuracy results with 6, 8, and 12 patterns (all 4-entry
patterns) in the pattern set. Our first observation is that the
accuracy will improve when the number of candidate patterns
is sufficient — typically 4 - 8 patterns are sufficient. This is at-
tributed to the compatibility of kernel pattern pruning with
human visual system and the ability to eliminate overfitting
(compared with square kernel shape). This observation has
been also validated for other types of DNNs and data sets
(e.g., CIFAR-10).

Table 4. Top-5 accuracy and CONV weight reduction on joint
kernel pattern pruning (8 patterns in the set) and connectivity

pruning.
Top-5 CONV
Method Accuracy _compression rate

Deep compression [14] 89.1% 3.5%

VGG16 | NeST[8] 89.4% 6.5%
ADMM-NN [49] (non-structured) 88.9% 10.2%

Our’s (8-pattern + connectivity) 91.6% 8.0x

Fine-grained Pruning [42] 92.3% 2.6%

ResNet50 |ADMM-NN [49] (non-structured) 92.3% 7.0%

Our’s (8-pattern + connectivity) 92.5% 4.4x

Table 4 illustrates the Top-5 accuracy comparison on joint
kernel pattern pruning (8 patterns in the set) and connec-
tivity pruning, on VGG-16 and ResNet-50 using ImageNet
dataset. For VGG-16, all kernels are 3 X 3. After applying
4-entry patterns on all kernels and 3.6 uniform connectivity
pruning, we achieve around 8x weight reduction on CONV
layers of VGG-16. For ResNet-50, a portion of kernels are
1 X 1 besides the majority of 3 X 3 kernels. We apply kernel
pattern pruning on all 3 X 3 ones, and apply uniform 3.6x
connectivity pruning on all kernels. We achieve 4.4x weight
reduction on CONV layers. One can observe from the table
that (1) no Top-5 accuracy drop with this setup; (2) under the
same accuracy, the weight reduction rate is close to ADMM-
based (and outperforms prior heuristic based) non-structured
pruning on CONV layers.

For the CIFAR-10 dataset, we observe consistent accu-
racy improvements with 8 patterns on 3x3 kernels and 3.6x
connectivity pruning, with results shown in Section 6.

Wei Niu and Xiaolong Ma, et al.

5 PatDNN Inference Code Optimization

For DNN models with kernel pattern and connectivity prun-
ing, PatDNN ensures hardware execution efficiency of DNN
inference with optimized compiler and code generation. As
aforementioned, compiler optimizations play the key role
in “recovering” the performance loss due to the fine-grained
pattern-based pruning compared to fully structured prun-
ing. This stage includes two-levels of optimizations: (1) op-
timizations on computational graphs that explore the po-
tential opportunities among multiple DNN layers; and (2)
optimizations within each layer. PatDNN adopts an enhanced
TVM [5]-like approach together with other innovations from
the latest efforts in this direction (e.g., Tensor Comprehen-
sions [53]) to implement the former (with major optimiza-
tions summarized in Table 1). Due to space limit, we do not
elaborate each as they are not the main research contribution
and not specific to DNN execution optimization leveraging
pattern-based pruning.

This section focuses on PatDNN’s layerwise optimizations
based on kernel pattern and connectivity pruning that are
specifically designed to address the challenges in DNN ac-
celeration with non-structured weight pruning, i.e., heavy
control-flow instructions, thread divergence and load imbal-
ance, and poor memory performance. These optimizations
are general, and applicable to both mobile CPUs and GPUs.
Our framework can generate both optimized CPU (vector-
ized C++) code and GPU (OpenCL) code. Figure 7 illustrates
PatDNN'’s compiler-based optimization and code generation
flow with a CONV layer example.

5.1 Compiler-based PatDNN Inference Framework

Layerwise Representation: The key feature of PatDNN is
its sparsity- and pruning-aware design. To support it, PatDNN
proposes a high-level fine-grained Layerwise Representation
(LR) to capture the sparsity information. This LR includes in-
tensive DNN layer specific information to enable aggressive
layerwise optimizations. In particular, it includes detailed
kernel pattern and connectivity-related information (e.g., the
pattern types presented in this layer, the pattern order in
each filter, the connection between kernels and input/output
channels, etc.); and tuning-decided parameters (e.g., the input
and output tile sizes, unrolling factors, the loop permutation
of this layer, etc.).

PatDNN extracts the pattern/connectivity information
from DNN models with computational graph optimizations,
and determines the tuning-related parameters by the auto-
tuning. This LR is used for PatDNN’s following optimizations:
(1) filter kernel reordering, which operates on kernel pat-
tern and connectivity-related information, i.e., specifically
the compressed weight storage structure; and (2) load re-
dundancy elimination, which requires each kernel’s pattern,
the connectivity between kernels and input/output channels,
and the exact input/output tile size and unroll factor. After

PatDNN

Graph opt code

for oh = 0 to tile_oh step unroll_h:
for ow = 0 to tile_ow step unroll_w:
for ic = @ to in_channel step unroll_ic:
switch (styleloc][ic])
case 0:
case
case

Nk, S

- J

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

+ Reorder

r N
for oc = 0 to tile_oc step 1: /"‘ LRE l

for oc = 0 to tile_oc step 1:
for oh = 0 to tile_oh step 1:
for ow = 0 to tile_ow step 1:
for ic = stride[0] to stride[1l] step
in = read_input(index[ic], oh, ow)

unroll_ic:

for ic = stride[1] to stride[2] step unroll_ic:

L

(for oc = 0 to tile_oc step unroll_oc:

for oh = 0 to tile_oh step unroll_h:
for ow = 0 to tile_ow step unroll_w:

for ic = stride[0] to stride[1] step unroll_ic:
in = read_input(index[ic], oh, ow)
for ic = stride[1] to stride[2] step unroll_ic:

J

Figure 7. PatDNN’s compiler-based optimization and code generation flow: compiler takes both model codes with graph-based
optimizations and a layerwise representation (as an example in Figure 8) to generate low-level C/C++ and OpenCL codes (as No-opt).
This low-level code is further optimized with filter kernel reorder and our FKW compact model storage (+Reorder), the register-level
load redundancy elimination (+LRE), and other optimizations like auto-tuning. Finally, the code is deployed on mobile devices.

device: [CPU]
layers:
- name: "conv_opl"
storage: "tight"
pattern: {"type": [1, 2], "layout": FKW, ...}
tuning: {"unroll": [4, 2, 8, 1], "tile": [16, 32, 8],
"permute": cohwci_b, ...}

info: {"strides": [1, 1], "dilations": [1, 1], ...}

Figure 8. An LR example for a CONV layer.

these optimizations, high-level LR can generate compressed
model and associated optimized model execution code by
using the pattern-related information and other basic layer
information extracted from DNN models, (e.g., the kernel
size, computation stride, computation dilation, etc). Figure 7
shows the optimization flow and two sample code skeletons
(+Reorder and +LRE) for these two optimizations, respec-
tively.

Figure 8 shows a simplified LR example for a CONV layer
(with 2-D kernels). This LR will generate execution code
for CPU (device). Two types of kernel patterns ([1, 21)
present in thislayer (patterns)and the filter kernels’ pattern
layout is specified by our FKW compressed weight storage
format (clarified in Section 5.3 in detail)®. Its computation
loop permutation is cohwci_b, i.e., in the order of output
channel, output height, output width, and input channel,
with blocking and unrolling. Their blocking sizes are speci-
fied in tile. Their unrolling factors are specified in unroll.
Figure 7 (+Reorder) also shows the execution code gener-
ated from this LR, in which the outer loops iterating on all
tiles are omitted. The inner-most iteration processes kernels
in each filter in the order of their pattern types, i.e., all ker-
nels with pattern 1 in each filter will be processed at first,

2This LR is used after our filter kernel reorder, so the pattern information
is stored in the optimized FKW format. Before reorder, a relatively loose
data format is used, which is omitted due to the space limit.

DNN layer /'_—'—’___’—\
2] [1 2| [1 TiTal
1 2 2 2 1
2]
E 2122 1 1 2 2
= 2|] 1| T2] |1
1 2 1 21212 1
112]1 2 11211 2
Kernels

Figure 9. An example of filter kernel reorder.

then kernels with pattern 2. This code optimization does
not require any loop control-flows. This is guaranteed by
our filter kernel reorder that is introduced in Section 5.2 in
details.

5.2 Filter Kernel Reorder (FKR)

Kernel pattern and connectivity pruning offer better op-
portunities to address the performance challenges in non-
structured pruning thanks to its better regularity. Specifically,
Filter kernel reorder (FKR) is designed to address two key
challenges, i.e., heavy control-flow instructions, and thread
divergence and load imbalance. Our basic insight is: for a spe-
cific DNN layer, the patterns of all kernels are already known
after model training, so the inference computation pattern
is also known before model deployment. FKR leverages this
knowledge to organize the filters with similar kernels to-
gether to improve inter-thread parallelization and order the
same kernels in a filter together to improve intra-thread par-
allelization.

Figure 9 explains FKR with a simplified example. Here, a
matrix represents a CONV layer of DNN and each cell is a
kernel with pattern type denoted by the number on it. Empty
kernels are the ones pruned by connectivity pruning. The
kernels in the same row belong to the same filter, and are
marked with the same color.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

_______________________ Offset array - Filter level
DNN layer : Reorder *

> T [Tz i Reorder array - Filter level
) : O I
212 1]2 ! Index array - Kernel level
T 222 i[2]2 b N I I O I B S P

2 B : 512 Stride array - Kernel level

: o feTol1TaToJol20oT0oTf3]
Weight array - Weight level
Kemels [Kernel o AR I T LTI T LTI

Figure 10. An example of FKW compressed weight storage.

Before the reorder, kernels with different patterns are
distributed in this DNN layer. When performing the con-
volution operation directly, the execution code will contain
many branches (as the +No-opt code in Figure 7) that incur
significant instruction pipeline stalls and thread divergences,
hurting both instruction- and thread-level parallelism. Ac-
cording to our experimental results in Section 6, this version
results in sub-optimal performance.

FKR is composed of two steps: filter reorder and kernel
reorder. The filter reorder organizes similar filters next to
each other and the kernel reorder groups kernels with iden-
tical patterns in each filter together. Particularly, the filter
similarity used in filter reorder is decided by two factors:
first, the number of non-empty kernels in each filter (i.e.,
the length of each filter); and second, for filters with the
same length, the number of kernels at identical positions
with identical pattern IDs when the kernels in each filter are
ordered according to these IDs.

After the reorder, the filters with the same length are
grouped together, and in each group, the filters with the
highest degree of similarity are ordered next to each other.
The code +Reorder in figure 7 is for the execution of this re-
ordered layer. This code shows much better instruction-level
parallelism because it eliminates all branches. In addition,
it also allows the better exploration of thread-level paral-
lelism, because it results in large thread execution similarity
and good load balance, particularly, considering the example
of mapping the filters in the same group to the same GPU
thread block.

5.3 Compressed DNN Weight Storage (FKW Format)

After FKR, our LR stores the DNN’s weights in a novel com-
pact format (called FKW, standing for Filter-Kernel-Weight
format). Compared with existing compact data formats (like
CSR), FKW is higher-level and results in much less extra
structure overhead (i.e., the total size of all index arrays that
are used for weights data access). In addition, FKW lever-
ages the pattern information, and stores the kernels with the
FKR information that will support later branch-less DNN
execution. Other compact data format cannot support this.
Figure 10 shows an example. This DNN layer consists of
four filters, each with 2, 2, 2, and 3 (after FKR) non-empty ker-
nels, respectively. The two kernels in the first filter (marked
as blue) have pattern 1 and 2, corresponding to the input
channel 3 and 1, respectively. FKW uses five arrays to repre-
sent this DNN layer: offset array, reorder array, index array,

Wei Niu and Xiaolong Ma, et al.

stride array, and weight array. The offset array and reorder
array store filter-level information, index array and stride
array store kernel-level, and the weight array stores actual
weights.

More specifically, the offset array stores the offset of each
filter (in terms of the number of non-empty kernels). In
Figure 10, the offset of filter 0 is 0, and the offset of filter 1
is 2 because there are two kernels in filter 0, and so on. The
reorder array shows the reorder information that is used for
accumulating the computation output to the correct output
channel. In Figure 10, the reorder array tells us that filter
2 and filter 3 have been switched and their computation
results should also be switched to the corresponding output
channel. The index array represents the corresponding input
channel for each non-empty kernel. In Figure 10, kernel 1
in filter 0 corresponds to the input channel 3, and kernel 2
corresponds to the input channel 1. So, the first two elements
in the index array are 3 and 1, respectively. The stride array
denotes the number of kernels in each pattern within the
same filter. In Figure 10, the filter 0 has the stride array values
0, 1, and 2, denoting that the filter 0 has 1 kernel with pattern
1(1 =1 - 0), and 1 kernel with pattern 2 (1 = 2 — 1). In this
example, each kernel has four (non-zero) weights, so each
filter has 8, 8, 8, and 12 weights (after FKR), respectively.

5.4 Load Redundancy Elimination (LRE)

As discussed before, irregular memory access (in the form of
array indirection) is also a major cause of inefficient execu-
tion of weight pruned DNNs. PatDNN uses two techniques to
address this issue: (1) a conventional input tiling to improve
the cache performance; and (2) the optimized code gener-
ation with the help of the pre-defined pattern information.
The first one, specifically the determination of the optimal
tiling size will be introduced in Section 5.5. This section
focuses on the second, specifically, introducing our novel
redundant register load elimination optimization applied in
code generation procedure.

Our key insight is: in DNN execution, such as a convo-
lution operation, the data access pattern of the input and
output is decided by the (none-zero elements) patterns of
kernels that are already known after training. Therefore,
it is possible to generate the optimized data access code
with this information for each pattern of kernels and call
them dynamically during the DNN execution. The gener-
ated codes consist of all statically determined data access
instructions for the kernel-level computation with a careful
instruction reorganization to 1) eliminate all indirect mem-
ory accesses; and 2) eliminate all redundant register load
operations. The elimination of all indirect memory accesses
is relatively straightforward, because in all data access in-
structions, the index of input data can be directly calculated
from kernel pattern. We next explain two novel register-level
load redundancy elimination methods in details.

PatDNN

A filter Input feature map Computation phase Output feature map

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Filter 0_—1—1—
1] x| xH] Output channel 0
2[x[xH] ,‘ [15]18]a1]24]
XXX—_x 1{2[3]4]x]x n =

Filter 1.1 7]8]910[x[x Output channel 1
x>l [Slxlx|x[x|x ,‘ [o[12[15]13]
1 x| xH x|x|x|x[x]x ﬂﬂ BBE
x[x[xH

Filters Input feature map Computation phase Output feature map

Figure 11. Load redundancy elimination (left: kernel-level; right: filter-level).

Figure 11 illustrates both register-level load redundancy
eliminations: the left one is within each kernel, and the right
one is among multiple kernels. Within each kernel, the load
redundancy is caused by the convolution operation. In the
example (shown on the left part of Figure 11), the kernel
value 1 requires the elements in the first two rows of the
input matrix while value 2 requires the second and third
rows. The elements in the second row [7, 8, 9, 10] are loaded
twice (from cache to register). PatDNN eliminates this load
redundancy by explicitly reusing the (SIMD) registers that
already hold the required data (like the second row in the
above example).

Multiple kernels on the same position of different filters
may share the same pattern and input channel. The input
data required by these kernels are exactly identical. The
right-hand side of Figure 11 shows a concrete example. If
the computation of these filters on identical data is packed
together, the possible redundant load of this input can be
eliminated. PatDNN explores this optimization when it gen-
erates the optimized memory access code. The FKR organizes
the kernels (in different filters) with identical patterns to-
gether. Together with a filter-level (or output channel) loop
unrolling when processing these kernels, the redundant reg-
ister load is eliminated. Figure 7 (+LRE) shows an example
of this unrolling code.

It is worth noting that the above two redundancy elimi-
nation opportunities are more straightforward to exploit for
dense models where the memory accesses of kernel weights
are continuous and the data reuse pattern is periodically re-
peated. However, it is very challenging (or even not possible)
to exploit for pruned sparse models with irregular memory
accesses, because it is hard to detect the data reuse pattern
(or the data reuse pattern does not even exist). Our pattern-
based pruning can preserve the data reuse patterns and help
the compiler to detect them, thus re-enabling these two kinds
of register-level load redundancy elimination.

5.5 Parameter Auto-tuning

Many configuration parameters require careful tuning to
guarantee the performance of the generated execution code.
However, manual tuning is tedious, and hard to yield the op-
timal code. Therefore, PatDNN also includes an auto-tuning
component for selecting the best execution configuration.
It consists of two parts: first, an explorer model based on
Genetic Algorithm to generate the configuration exploration
space; and second, a performance estimation model created

Table 5. DNNs characteristics (under kernel pattern and connectiv-
ity pruning): Accu: ImageNet top-5, CIFAR top-1; the negative
values in Accuracy Loss actually mean accuracy improvement.

Name | Network | Dataset | Layers | Conv | Patterns | Accu(%) [Accu Loss (%)
ImageNet 16 13 8 91.6 0.1
VGG | VGG-16
CIFAR-10 16 13 8 93.9 -0.4
ImageNet 50 49 8 925 0.2
RNT | ResNet-50
CIFAR-10| 50 49 8 95.6 -1.0
f ImageNet 53 52 8 90.3 0.0
MBNT Mo?{l/;Net
CIFAR-10| 54 53 8 94.6 -0.1

Table 6. VGG unique CONV layers’ filter shapes and given names.

Name Filter shape Name Filter shape Name Filter shape
L1 [64,3,3,3] L4 [128,128,3,3] L7 [512,256,3,3]
L2 [64,64,3,3] L5 [256,128,3,3] L8 [5612,512,3,3]
L3 [128,64,3,3] L6 [256,256,3,3] L9 [512,512,3,3]

from our historical data to predict the possible best config-
uration and performance for a given hardware. Compared
with the simulated annealing in TVM, our explorer model
supports better parallelism because it allows the initializa-
tion of an arbitrary number of chromosomes to start the
search. For a typical (large-scale) DNN like VGG-16, our ex-
ploration can complete in 3-5ms. During the exploration,
history data is also collected for training the performance
estimator (based on Multilayer Perceptron and least square
regression loss). The advantage of this approach is that when
deploying PatDNN on a new platform, it can give a quick
prediction of the optimal configuration parameters as well as
the possible execution time. In addition, these tuning parame-
ters are crucial to the performance of our PatDNN execution,
thus need to be carefully tuned by our auto-tuning mod-
ule including: data placement configurations on GPU, tiling
sizes, loop permutations, and loop unrolling factors.

6 Evaluation

This section evaluates the execution performance of PatDNN
by comparing it with three state-of-the-art DNN inference
acceleration frameworks, TFLite [10], TVM [5], and MNN [1].
All major optimizations of these frameworks (and our PatDNN)
are summarized in Table 1.

6.1 Methodology

Evaluation Objective: Our overall evaluation demonstrates
that achieving real-time inference of large-scale DNNs on

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Wei Niu and Xiaolong Ma, et al.

B0l 8181 6989 [ITFLite JTVM | 2 757 1h53 13)0 Ziool 1764 1433 51,6 63.8
E300F DN @ Paonn| £ E120 30
g £ g @
=200 F 50 E sof £ 20
c c c
S S S £
g g g E
§100- —’_|_‘ L § 1 ’_l_’_‘—\ § i)
< > x
w [L

o 0 0 .| L

VGG RNT MBNT VGG RNT MBNT VGG RNT MBNT VGG RNT MBNT

(a) ImageNet-CPU (b) CIFAR-10-CPU

Figure 12. Overall performance:

modern mobile devices is possible with PatDNN. Specifically,
the evaluation has five objectives: (1) demonstrating that
PatDNN outperforms existing state-of-the-art DNN frame-
works without any accuracy compromise; (2) studying the
performance effect of our key compiler optimizations and
explaining the reasons for performance improvement; (3)
further confirming the performance of PatDNN by compar-
ing its pure GFLOPS with our optimized dense baseline; (4)
showing that PatDNN performs similarly on different mo-
bile platforms, i.e., PatDNN has a good portability; and (5)
unveiling the impact of pattern count selections on both the
accuracy and performance.

DNNs and Datasets: PatDNN is evaluated on three main-
stream DNNs, VGG-16 (VGG), ResNet-50 (RNT), and Mobile-
Net-V2 (MBNT). They are trained on two datasets, ImageNet
and CIFAR-10. Table 5 characterizes these trained DNNGs.
Some information is omitted due to the space constraint,
e.g., a uniform CONV pruning rate for VGG and RNT is
8%, and 4.4X, respectively (with uniform 3.6Xx connectivity
pruning rate). VGG has 13 CONV layers, and 5 of them have
identical structures to others. Table 6 lists the filter shape
([#output channel, #input channel, kernel height,
and kernel width]) of these 9 unique layers and gives them
a short name each.

Evaluation Platforms and Running Configurations: Our
experiments are conducted on a Samsung Galaxy S10 cell
phone with the latest Qualcomm Snapdragon 855 mobile
platform that consists of a Qualcomm Kryo 485 Octa-core
CPU and a Qualcomm Adreno 640 GPU. Our portability tests
are conducted on a Xiaomi POCOPHONE F1 phone with a
Qualcomm Snapdragon 845 that consists of a Kryo 385 Octa-
core CPU and an Adreno 630 GPU, and an Honor Magic 2
phone with a Kirin 980 that consists of an ARM Octa-core
CPU and a Mali-G76 GPU. All tests run 50 times on different
input (images) with 8 threads on CPU, and all pipelines on
GPU. Because multiple runs do not vary significantly, this
section only reports the average time for readability. Because
CONYV layers are most time-consuming, accounting for more
than 95% (90% for VGG) of the total execution time, our eval-
uation focuses on the CONV layers. All runs are tuned to
their best configurations, e.g., Winograd optimization [32]
is used for all dense runs, and 16-bit float point is used for
all GPU runs.

(c) ImageNet-GPU (d) CIFAR-10-GPU

x-axis: different trained DNN models; y-axis: average DNN inference execution time on a single input.

39x 8.15x

O | No-Opt [Reorder o

§ [Reorder+LRE [Reorder+LRE+Tune 2

% 6Xf 5 10xf

> > i

o O i

a o M f

33+ il 3 5xf I

o} @

o} o}

o o

%) 0 5] 0 d
11 12 L3 L4 L5 L6 L7 L8 L9 11 12 L3 L4 L5 L6 L7 L8 L9

(a) CPU (b) GPU
Figure 13. Speedup of opt/no-opt on each unique CONV layer.

6.2 Overall Performance

Figure 12 shows the overall CPU and GPU performance of
PatDNN compared to TFLite, TVM, MNN on all six trained
DNNs. PatDNN outperforms all other frameworks for all
cases. On CPU, PatDNN achieves 12.3X to 44.5X speedup
over TFLite, 2.4X to 5.1X over TVM, and 1.9%X to 7.1X over
MNN, respectively. On GPU, PatDNN achieves 2.5X to 20X,
2.8X to 11.4%, and 1.6x to 6.2x speedup over TFLite, TVM,
and MNN, respectively®. For the largest DNN (VGG) and
largest data set (ImageNet), PatDNN completes CONV layers
on a single input within 18.9 ms on GPU. Even including the
other rest layers (like FC), PatDNN can still meet the real-
time requirement (usually 30 frames/sec, i.e., 33 ms/frame).

PatDNN outperforms other frameworks because of two
major reasons. First, its dense version is already 1.1X to 1.6X
faster than TVM and MNN on mobile platforms because of
some extra optimizations (as shown in Table 1). Figure 17(a)
shows that PatDNN’s dense version is faster than MNN on
VGG, our largest DNN. Second, the pattern-based pruning
reduces the overall computation by 3X to 8x. Such computa-
tion reduction unfortunately cannot transfer to performance
gains directly. We confirmed this by implementing an opti-
mized sparse matrix version of PatDNN based on CSR [11],
which shows almost the same speed to PatDNN’s dense ver-
sion. However, the subsequent compiler-level optimizations
(filter kernel reorder, load redundancy elimination, auto-
tuning, and compressed weight storage) successfully convert
this computation reduction into real performance gains. We
conduct a more detailed study on these optimizations in the
next Section, and Figure 13 shows a break-down of these
optimizationsaAZ contributions. Figures 14 to 16 provide a
detailed analysis of the underlying reasons.

3TFLite does not support executing VGG on ImageNet data set on GPU due
to its too large memory footprint.

PatDNN

60 3x108

No-Reorder — Reorder [No-Eliminate [] Eliminate

e -—
qg):so | 32x108
- (&)
8 400 114 1 alls AL AL LY ®
g4 S1x108 Hj HT Hj

sof oL, L.

0 50 100 L1 L2 L3 L4 L5 L6 L7 L8 L9

(a) Filter length distribution before(b) Register load counts before and after
and after filter kernel reorder for elimination
L4

Figure 14. Profiling result: reorder and redundancy elimination.

80, 80,
<+ CoCiHW CoCiHW-Block
CoHWCi CoHWCi-Block
o 60F ., 60}
o] o]
i40- - . i40-
O] o s o
20F - 20 . .
b ol o o .
L1 L2 L3 L4 L5 L6 L7 L8 L9 L1 L2 L3 L4 L5 L6 L7 L8 L9

(a) ImageNet (b) CIFAR-10

Figure 15. Effect of different loop permutations and loop tiling.

[18 - Pruning rate
15%| @ 12 - Pruning rate
[l 8 - Pruning rate

FKW/CSR
3
R

4 2 38 L4 L5 L6 L7 L8 Lo Al
Figure 16. Extra data structure overhead: FKW over CSR on unique
VGG CONV layers with different pruning rates.

6.3 Optimization Evaluation

This section studies the effect of our key compiler opti-
mizations and shows that our PatDNN’s good performance
mainly comes from these pattern-enabled optimizations. This
part also compares the extra structure overhead between
FKW and CSR. Constrained by space, we only report the
results of VGG, our most complex DNN, on the most widely
accepted dataset (ImageNet). Experiments on other DNNs
and datasets show the same trend. The rest parts also use
VGG on ImageNet as a representative example.

Figure 13 reports the speedup of the versions with opti-
mizations over the version without any optimization on each
unique CONV layer of VGG on CPU and GPU, respectively.
On CPU, reorder brings 1.6X to 3.0 speedup, load redun-
dancy eliminations bring additional 1.6X to 2.8 speedup,
and parameter tuning brings additional 1.2X to 1.9X speedup.
On GPU, these numbers are 2.7X to 6.1X, 1.5X to 3.3X and
1.4X to 3.8x. It is interesting that FKR brings more bene-
fits on GPU than on CPU, because GPU’s performance is
more sensitive to the thread divergence and load balance
due to its massive parallel nature. We next study why these
optimizations work.

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

= IMNN [] CPU-Dense(No Wino) [] CPU-Pattern
% 450 150
% [PatDNN " [GPU-Dense(No Wino) [l GPU-Pattern
£ 300 % 100
c)
g [T
2 150 © 50
i
0=CcPU — GPU 7 2 13 4 (5 L6 L7 L8 L9

(a) Dense w/o Wino
Figure 17. GFLOPS performance study: PatDNN vs dense.

(b) Performance in GFLOPS: pattern vs dense

Filter Kernel Reorder: Figure 14 (a) reports the filter length
distribution of VGG L4 before and after FKR. Before reorder,
the filters with varied lengths are distributed randomly, re-
sulting in significant load imbalance if assigning them to
different threads. After reorder, the filters are grouped into
three groups, and the filters within each group have identi-
cal lengths. Each group could be executed by CPU threads
simultaneously, or mapped to the same GPU thread block.
Load Redundant Elimination: Figure 14 (b) reports the
register load counts before and after LRE for each unique
CONV of VGG. It shows that our register LRE can signifi-
cantly reduce the number of register loads. Note that even
if register load has lower latency than cache or memory
load, the memory/cache performance has nevertheless been
aggressively optimized by conventional tiling. Thus, the sig-
nificant performance gains must have been achieved with
the reduced number of register loads.

Auto-tuning: Figure 15 reports the CPU performance (in
GFLOPS) of each unique VGG CONYV layer with varied loop
permutations, and with or w/o blocking on ImageNet and
CIFAR-10, respectively. It shows that different inputs and lay-
ers may require different configurations. Proper tuning will
bring significant benefits. Constrained by space, we omit the
GPU results and tuning results about GPU data placement.
Compressed Weight Storage: Figure 16 shows the extra
data structure overhead (i.e., the size of data structures other
than weights) of FKW over CSR on each unique VGG CONV
layer with three kinds of pruning rates, 18x, 12X, and 8x
respectively. For each one, FKW saves 93.4%, 91.6%, and 87.9%
extra data structure overhead over CSR in total, resulting in
46.7%, 45.8%, and 43.9% overall storage space saving.

6.4 PatDNN Performance Analysis in GFLOPS

To further analyze the performance of PatDNN, this part
compares its pure GFLOPS with our dense implementation.
To conduct an apple-to-apple comparison, we turn off the
Winograd optimization that transforms the convolution op-
eration to matrix-multiplication for a trade-off between the
computation reduction and operation conversion overhead.
Figure 17 (a) shows that our dense version can serve as an
optimized baseline, because it is even faster than MNN.
Figure 17 (b) shows that our pattern-based (sparse) PatDNN
achieves comparable GFLOPS to our optimized dense base-
line on CPU, and outperforms it on GPU. It implies that the

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

‘24501 919 OTFLite [JTVM | Zas0 1032
° COOMNN [PatDNN| &

£ 300 £ 300}

c c

9o oS

3 150 m 3 1501

(%] Q

x x

w w

o o

CPU GPU CPU GPU
(a) Kirin 980 (b) Snapdragon 845

Figure 18. Portability study: performance on two other platforms.

Table 7. Pattern counts impact (with 3.6X connectivity pruning):
accuracy loss and exe time for VGG.

Network | Dataset | #Patterns | Accu (%) | Accu Loss (%) | Device | Time (ms)
CPU 50.5
6 91.4 0.3
GPU 18.6
CPU 51.8
VGG-16 | ImageNet 8 91.6 0.1
GPU 18.9
CPU 92.5
12 91.7 0.0
GPU 27.6

memory performance of PatDNN is comparable to the dense
baseline on CPU and even better than it on GPU. This ben-
efits from our model compression and memory load (and
register load) reductions. Without pattern-based pruning,
the input, output, and DNN model compete for the limited
memory/cache resource; after pruning, only the input and
output compete for it. PatDNN also reduces the overall com-
putation; thus, it significantly outperforms all other mobile
frameworks. We cannot achieve this performance without
our pattern-based design, and our other sparse implemen-
tation with conventional sparse matrix optimizations can
only get either comparable or even slower speed than other
mobile frameworks.

6.5 Portability Study

PatDNN is also evaluated on two other platforms to confirm
its portability. Figure 18 shows the result. On these platforms,
PatDNN also outperforms other frameworks. Particularly,
other frameworks run much slower on Magic 2 than on
Snapdragon 855; however, PatDNN performs more stably.
This is because our pattern-based pruning leads to fewer
computations and fewer memory accesses thus reducing the
memory bandwidth pressure.

6.6 Impact of Pattern Counts

Table 7 reports the impact of the pattern count selection on
both the accuracy and execution time, under 3.6X uniform
connectivity pruning rate. As increasing pattern counts, the
accuracy increases slightly, however, the performance drops
quickly. Our evaluation selects 8 patterns that result in ideal
performance with a negligible accuracy loss.

Wei Niu and Xiaolong Ma, et al.

7 Discussion

Generality: The techniques proposed in PatDNN are gen-
eral enough to be applied to other platforms. Compared
to laptops or servers, mobile platforms are more resource-
constrained, making it is more challenging to achieve real-
time execution. However, the need for real-time DNN execu-
tion is crucial due to many important mobile applications.
In fact, in addition to the mobile platforms in our paper, we
also tested PatDNN on the latest Raspberry Pi 4 platform. It
shows a similar speedup over other frameworks like TVM.
We believe that it is a promising research direction to im-
prove PatDNN’s portability by incorporating it with TVM
that emphasizes the DNN execution on varied computing
devices.

Dense vs. Sparse DNNs: General end-to-end DNN infer-
ence acceleration frameworks like TFLite, TVM, and MNN do
not support sparse DNN execution. If we simply add sparse
DNN support with random pruning and general compression
storage (like CSR) to these frameworks, it is expected that
their speed cannot be improved significantly as shown in the
results of PatDNN’s CSR implementation. Although there is
potential to improve the performance with coarse-grained
structured pruning (that prunes whole filters/channels), the
accuracy will be obviously degraded as we discussed be-
fore. From this perspective, PatDNN opens a new door to
accelerate DNN execution with a compression/compiler-
optimization co-design. With such co-design, sparse (or com-
pressed) DNN execution becomes a more promising solution
in resource-constraint environments than dense DNN.

8 Conclusion

This paper presents PatDNN, an end-to-end framework to
achieve real-time DNN execution on mobile devices. PatDNN
consists of two stages, a pattern-based pruning stage based
on extended ADMM solution framework, and an optimized
execution code generation stage including a high-level, fine-
grained DNN layerwise representation and a set of archi-
tecture-aware optimizations. This design allows PatDNN to
benefit from both high accuracy and hardware efficiency. Our
evaluation results demonstrate that PatDNN outperforms
other state-of-the-art end-to-end DNN execution frameworks
with up to 44.5X speedup and no accuracy compromise, and
achieves real-time execution of large-scale DNNs on mobile
devices.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their valuable and thorough comments. The authors are
especially grateful to the shepherd Yufei Ding for her exten-
sive feedback and constructive suggestions that help improve
this paper substantially. This work was supported in part by
the NSF awards CNS-1739748, CCF-1937500, CCF-1919117,
CCF-1901378, and CCF-1919289.

PatDNN

References

(1]
(2]

(9]
[10]

(11]

(14]

[15]

[16]

(17]

(18]

Alibaba. 2019. MNN. https://github.com/alibaba/MNN

Sourav Bhattacharya and Nicholas D Lane. 2016. From smart to deep:
Robust activity recognition on smartwatches using deep learning.
In 2016 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops). IEEE, 1-6.

Ivica Boticki and Hyo-Jeong So. 2010. Quiet captures: A tool for
capturing the evidence of seamless learning with mobile devices. In
Proceedings of the 9th International Conference of the Learning Sciences-
Volume 1. International Society of the Learning Sciences, 500-507.
Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. 2011. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends®
in Machine Learning 3, 1 (2011), 1-122.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578-594.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015.
Binaryconnect: Training deep neural networks with binary weights
during propagations. In Advances in neural information processing
systems. 3123-3131.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830 (2016).

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. 2017. NeST: a neural
network synthesis tool based on a grow-and-prune paradigm. arXiv
preprint arXiv:1711.02017 (2017).

Yunbin Deng. 2019. Deep Learning on Mobile Devices — A Review.
arXiv preprint arXiv:1904.09274 (2019).

Google. 2019. TensorFlow Lite. https://www.tensorflow.org/mobile/
tflite/

Joseph L Greathouse, Kent Knox, Jakub Pola, Kiran Varaganti, and
Mayank Daga. 2016. cISPARSE: A Vendor-Optimized Open-Source
Sparse BLAS Library. In Proceedings of the 4th International Workshop
on OpenCL. ACM, 7.

Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network
surgery for efficient dnns. In Advances In Neural Information Processing
Systems. 1379-1387.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. 2015. Deep learning with limited numerical precision. In
International Conference on Machine Learning. 1737-1746.

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both
weights and connections for efficient neural network. In Advances in
Neural Information Processing Systems. 1135-1143.

Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agar-
wal, Alec Wolman, and Arvind Krishnamurthy. 2016. Mcdnn: An
approximation-based execution framework for deep stream processing
under resource constraints. In Proceedings of the 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services. ACM,
123-136.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 770-778.
Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han.
2018. AMC: AutoML for Model Compression and Acceleration on
Mobile Devices. In European Conference on Computer Vision. Springer,
815-832.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for
Accelerating Very Deep Neural Networks. In Computer Vision (ICCV),
2017 IEEE International Conference on. IEEE, 1398-1406.

Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong
Hsu, Michael A Laurenzano, Scott Mahlke, Lingjia Tang, and Jason
Mars. 2017. Deftnn: Addressing bottlenecks for dnn execution on
GPUs via synapse vector elimination and near-compute data fission.
In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 786-799.

Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. 2016. Con-
vergence analysis of alternating direction method of multipliers for a
family of nonconvex problems. SIAM Journal on Optimization 26, 1
(2016), 337-364.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized neural networks. In Advances in neural
information processing systems. 4107-4115.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2017. Quantized neural networks: Training neural
networks with low precision weights and activations. The Journal of
Machine Learning Research 18, 1 (2017), 6869-6898.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon:
Mobile gpu-based deep learning framework for continuous vision
applications. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 82-95.

Sergey loffe and Christian Szegedy. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167 (2015).

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. 2014. Large-scale video classifica-
tion with convolutional neural networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. 1725-1732.
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Sto-
chastic Optimization. In Proceedings of the International Conference on
Learning Representations (ICLR).

Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A
software accelerator for low-power deep learning inference on mo-
bile devices. In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks. IEEE Press, 23.

Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, and Fahim Kawsar. 2015. An early resource characterization
of deep learning on wearables, smartphones and internet-of-things
devices. In Proceedings of the 2015 international workshop on internet
of things towards applications. ACM, 7-12.

Nicholas D Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev,
Claudio Forlivesi, and Fahim Kawsar. 2017. Squeezing deep learning
into mobile and embedded devices. IEEE Pervasive Computing 16, 3
(2017), 82-88.

Nicholas D Lane, Petko Georgiev, and Lorena Qendro. 2015. DeepEar:
robust smartphone audio sensing in unconstrained acoustic environ-
ments using deep learning. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. ACM, 283—
294.

Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4013-4021.

Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-
wise brain damage. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2554-2564.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng.
2009. Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Proceedings of the 26th
annual international conference on machine learning. ACM, 609-616.
Cong Leng, Hao Li, Shenghuo Zhu, and Rong Jin. 2017. Extremely low
bit neural network: Squeeze the last bit out with admm. arXiv preprint

ASPLOS ’20, March 16-20, 2020, Lausanne, Switzerland

(36]

(37]

(39

—

(40]

[41

—

(42]

(43]

[44]

(45]

[46]

(47]

(48]

(49]

(50]

arXiv:1707.09870 (2017).

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. 2017. Pruning filters for efficient convnets. In International
Conference on Learning Representations (ICLR).

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed
point quantization of deep convolutional networks. In International
Conference on Machine Learning. 2849-2858.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-
anna Pensky. 2015. Sparse convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
806-814.

Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred Hero. 2018. Zeroth-Order
Online Alternating Direction Method of Multipliers: Convergence
Analysis and Applications. In International Conference on Artificial
Intelligence and Statistics. 288-297.

Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Jun-
zhao Du. 2018. On-demand deep model compression for mobile devices:
A usage-driven model selection framework. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 389-400.

Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma,
Bin Ren, and Yanzhi Wang. 2019. Pconv: The missing but desirable
sparsity in dnn weight pruning for real-time execution on mobile
devices. arXiv preprint arXiv:1909.05073 (2019).

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang,
and William J Dally. 2017. Exploring the regularity of sparse structure
in convolutional neural networks. arXiv preprint arXiv:1705.08922
(2017).

Kaoru Ota, Minh Son Dao, Vasileios Mezaris, and Francesco GB De Na-
tale. 2017. Deep learning for mobile multimedia: A survey. ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM) 13, 3s (2017), 34.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
Stephen W Keckler, and William J Dally. 2017. SCNN: An Accelerator
for Compressed-sparse Convolutional Neural Networks. In Proceedings
of the 44th Annual International Symposium on Computer Architecture.
ACM, 27-40.

Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Weighted-
entropy-based quantization for deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
7197-7205.

Damian Philipp, Frank Durr, and Kurt Rothermel. 2011. A sensor
network abstraction for flexible public sensing systems. In 2011 IEEE
Eighth International Conference on Mobile Ad-Hoc and Sensor Systems.
IEEE, 460-469.

Qualcomm. 2019. Snapdragon 855. https://www.qualcomm.com/
products/snapdragon-855-mobile-platform

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. 2016. Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In European Conference on Computer Vision.
Springer, 525-542.

Ao Ren, Tianyun Zhang, Shaokai Ye, Wenyao Xu, Xuehai Qian, Xue
Lin, and Yanzhi Wang. 2019. ADMM-NN: an algorithm-hardware
co-design framework of DNNs using alternating direction methods
of multipliers. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM.
Mary M Rodgers, Vinay M Pai, and Richard S Conroy. 2014. Recent
advances in wearable sensors for health monitoring. IEEE Sensors

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Wei Niu and Xiaolong Ma, et al.

Journal 15, 6 (2014), 3119-3126.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 4510-4520.
Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730 (2018).

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016.
Learning structured sparsity in deep neural networks. In Advances in
Neural Information Processing Systems. 2074-2082.

Shmuel Winograd. 1980. Arithmetic complexity of computations. Vol. 33.
Siam.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
2016. Quantized convolutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4820-4828.

Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xu-
anzhe Liu. 2018. DeepCache: Principled Cache for Mobile Deep Vision.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking. ACM, 129-144.

Daniel LK Yamins and James] DiCarlo. 2016. Using goal-driven deep
learning models to understand sensory cortex. Nature neuroscience 19,
3 (2016), 356.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon,
Darren Seibert, and James J DiCarlo. 2014. Performance-optimized
hierarchical models predict neural responses in higher visual cortex.
Proceedings of the National Academy of Sciences 111, 23 (2014), 8619-
8624.

Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek
Abdelzaher. 2017. Deepsense: A unified deep learning framework for
time-series mobile sensing data processing. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 351-360.

Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng
Lin, Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu, Jian Tang, et al.
2019. Progressive DNN Compression: A Key to Achieve Ultra-High
Weight Pruning and Quantization Rates using ADMM. arXiv preprint
arXiv:1903.09769 (2019).

Dong Yu and Li Deng. 2011. Deep learning and its applications to signal
and information processing [exploratory dsp]. IEEE Signal Processing
Magazine 28, 1 (2011), 145-154.

Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep learning
in mobile and wireless networking: A survey. IEEE Communications
Surveys & Tutorials (2019).

Tianyun Zhang, Shaokai Ye, Yipeng Zhang, Yanzhi Wang, and Makan
Fardad. 2018. Systematic Weight Pruning of DNNs using Alternat-
ing Direction Method of Multipliers. arXiv preprint arXiv:1802.05747
(2018).

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen.
2017. Incremental network quantization: Towards lossless cnns with
low-precision weights. In International Conference on Learning Repre-
sentations (ICLR).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Layerwise Computation of DNNs
	2.2 Mobile Acceleration of DNNs
	2.3 DNN Model Compression and Challenges
	2.4 ADMM-based DNN Model Compression Framework
	2.5 Motivation

	3 Overview of PatDNN
	3.1 Pattern-based Pruning
	3.2 Overview of PatDNN Acceleration Framework

	4 PatDNN Training w/ Pattern-based Pruning
	4.1 Designing the Pattern Set
	4.2 Kernel Pattern and Connectivity Pruning Algorithm
	4.3 Accuracy Validation and Analysis

	5 PatDNN Inference Code Optimization
	5.1 Compiler-based PatDNN Inference Framework
	5.2 Filter Kernel Reorder (FKR)
	5.3 Compressed DNN Weight Storage (FKW Format)
	5.4 Load Redundancy Elimination (LRE)
	5.5 Parameter Auto-tuning

	6 Evaluation
	6.1 Methodology
	6.2 Overall Performance
	6.3 Optimization Evaluation
	6.4 PatDNN Performance Analysis in GFLOPS
	6.5 Portability Study
	6.6 Impact of Pattern Counts

	7 Discussion
	8 Conclusion
	References

