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Abstract

Model compression techniques on Deep Neural Network
(DNN) have been widely acknowledged as an effective way
to achieve acceleration on a variety of platforms, and DNN
weight pruning is a straightforward and effective method.
There are currently two mainstreams of pruning methods rep-
resenting two extremes of pruning regularity: non-structured,
fine-grained pruning can achieve high sparsity and accuracy,
but is not hardware friendly; structured, coarse-grained prun-
ing exploits hardware-efficient structures in pruning, but suf-
fers from accuracy drop when the pruning rate is high. In this
paper, we introduce PCONV , comprising a new sparsity di-
mension, – fine-grained pruning patterns inside the coarse-
grained structures. PCONV comprises two types of sparsi-
ties, Sparse Convolution Patterns (SCP) which is generated
from intra-convolution kernel pruning and connectivity spar-
sity generated from inter-convolution kernel pruning. Essen-
tially, SCP enhances accuracy due to its special vision prop-
erties, and connectivity sparsity increases pruning rate while
maintaining balanced workload on filter computation. To de-
ploy PCONV , we develop a novel compiler-assisted DNN in-
ference framework and execute PCONV models in real-time
without accuracy compromise, which cannot be achieved
in prior work. Our experimental results show that, PCONV
outperforms three state-of-art end-to-end DNN frameworks,
TensorFlow-Lite, TVM, and Alibaba Mobile Neural Network
with speedup up to 39.2×, 11.4×, and 6.3×, respectively,
with no accuracy loss. Mobile devices can achieve real-time
inference on large-scale DNNs.

Introduction
Deep neural network (DNN) has emerged as the fundamen-
tal element and core enabler in machine learning applica-
tions due to its high accuracy, excellent scalability, and self-
adaptiveness (Goodfellow et al. 2016). A well trained DNN
model can be deployed as inference system for multiple ob-
jectives, such as image classification (Krizhevsky, Sutskever,
and Hinton 2012), object detection (Ren et al. 2015), and
natural language processing (Hinton, Deng, and Yu 2012).
However, the state-of-art DNN models such as VGG-16 (Si-
monyan and Zisserman 2014), ResNet-50 (He et al. 2016)
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and MobileNet (Howard et al. 2017) involve intensive com-
putation and high memory storage, making it very challeng-
ing to execute inference system on current mobile platforms
in a real-time manner.

Recently, high-end mobile platforms are rapidly over-
taking desktop and laptop as primary computing devices
for broad DNN applications such as wearable devices,
video streaming, unmanned vehicles, smart health de-
vices, etc. (Philipp, Durr, and Rothermel 2011)(Lane et al.
2015)(Boticki and So 2010). Developing a real-time DNN
inference system is desirable but still yield to the limited
computation resources of embedded processors on a mo-
bile platform. Multiple end-to-end mobile DNN acceleration
frameworks, such as TVM (Chen et al. 2018), TensorFlow-
Lite (TFLite) (Ten ) and Alibaba Mobile Neural Network
(MNN) (Ali ), have been developed. However, the inference
time of large-scale DNNs (e.g., 242ms inference time using
TVM on Adreno 640 GPU with VGG-16) is still far from
real-time requirement.

In order to mitigate the challenge brings by the DNN’s
bulky computation and achieve the goal of real-time in-
ference, it is necessary to consider algorithm-level innova-
tions. Various DNN model compression techniques are stud-
ied, among which weight pruning (Han, Mao, and Dally
2015)(Mao et al. 2017)(Dai, Yin, and Jha 2017)(Wen et
al. 2016)(He, Zhang, and Sun 2017) can result in a no-
table reduction in the model size. Early work (Han, Mao,
and Dally 2015) on non-structured weight pruning (fine-
grained) prunes weights at arbitrary location, resulting in
a sparse model to be stored in the compressed sparse col-
umn (CSC) format. It leads to an undermined processing
throughput because the indices in the compressed weight
representation cause stall or complex workload on highly
parallel architectures (Han, Mao, and Dally 2015)(Wen et al.
2016). On the other hand, structured weight pruning (Wen
et al. 2016) (coarse-grained) is more hardware friendly. By
exploiting filter pruning and channel pruning, the pruned
model is more regular in its shape, which eliminates the
storage requirement in weight indices. However, it is ob-
served that structured pruning hurts accuracy more signifi-
cantly than non-structured sparsity.

It is imperative to find a new granularity level that



can satisfy high accuracy demand as well as regularity in
DNN model structure. We make the observation that non-
structured and structured pruning are two extremes of the
full design space. The two missing keys are: (i) Find a
new, intermediate sparsity dimension that can fully lever-
age both the high accuracy from fine-grained model and
high regularity level from coarse-grained model; (ii) Find
the corresponding (algorithm-compiler-hardware) optimiza-
tion framework which can seamlessly bridge the gap be-
tween hardware efficiency and the new sparsity dimen-
sion. To address the above problems, this paper proposes
PCONV , comprising (a) a new sparsity dimension that ex-
ploits both intra-convolution and inter-convolution kernel
sparsities, exhibiting both high accuracy and regularity, and
revealing a previously unknown point in design space; and
(b) a compiler-assisted DNN inference framework that fully
leverages the new sparsity dimension and achieves real-time
DNN acceleration on mobile devices.

In PCONV , we call our intra-convolution kernel pruning
pattern pruning and inter-convolution kernel pruning con-
nectivity pruning. For pattern pruning, a fixed number of
weights are pruned in each convolution kernel. Different
from non-structured weight pruning, pattern pruning pro-
duces the same sparsity ratio in each filter and a limited
number of pattern shapes. Essentially, our designed patterns
correspond to the computer vision concept of key convolu-
tion filters, such as Gaussian filter for smoothing, Laplacian
of Gaussian filter for smoothing and sharpening. For connec-
tivity pruning, the key insight is to cut the connections be-
tween certain input and output channels, which is equivalent
to removal of corresponding kernels, making filter “length”
shorter than original model. With connectivity pruning, we
further enlarge compression rate and provide greater DNN
acceleration potential, while maintaining balanced workload
in filter-wise computation of DNNs. Pattern and connectiv-
ity pruning can be combined at algorithm level and acceler-
ated under the unified compiler-assisted acceleration frame-
work. For our advanced compiler-assisted DNN inference
framework, we use execution code generation which con-
verts DNN models into computational graphs and applies
multiple optimizations including a high-level, fine-grained
DNN layerwise information extraction, filter kernel reorder
and load redundancy elimination. All design optimizations
are general, and applicable to both mobile CPUs and GPUs.

We demonstrate that pattern pruning consistently improve
model accuracy. When combined with connectivity pruning,
the results still outperform current DNN pruning methods,
both non-structured and structured weight pruning. In Sec-
tion “Accuracy Analysis”, we show PCONV is the most de-
sirable sparsity among current prune-for-acceleration works.
We also deploy PCONV model on our compiler-assisted mo-
bile acceleration framework and compare with three state-
of-art frameworks on mobile CPU and GPU, TensorFlow
Lite, TVM, and MNN, using three widely used DNNs,
VGG-16, ResNet-50, and MobileNet-v2 and two benchmark
datasets, ImageNet and CIFAR-10. Evaluation results show
that PCONV achieves up to 39.2× speedup without any ac-
curacy drop. Using Adreno 640 embedded GPU, PCONV
achieves an unprecedented 19.1 ms inference time of VGG-
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Figure 1: Overview of different weight pruning dimensions.

16 on ImageNet dataset. To the best of our knowledge, it is
the first time to achieve real-time execution of such repre-
sentative large-scale DNNs on mobile devices.

Background

DNN Model Compression

DNN model compression is a promising method to remove
redundancy in the original model. It targets on the pur-
pose that inference time can be reduced if fewer weights
are involved in the computation graph. The weight pruning
method acts as a surgeon to remove the inherently redun-
dant neurons or synapses. As Figure 1 shows, two main ap-
proaches of weight pruning are the general, non-structured
pruning and structured pruning, which produce irregular and
regular compressed DNN models, respectively.

Non-structured pruning: Early work is (Han, Mao, and
Dally 2015), in which an iterative, heuristic method is used
with limited, non-uniform model compression rates. Flour-
ished by (Zhang et al. 2018) and (Ren et al. 2019) with the
powerful ADMM (Boyd et al. 2011) optimization frame-
work, non-structured pruning achieves very high weight re-
duction rate and promising accuracy. However, for compiler
and code optimization, irregular weight distribution within
kernels requires heavy control-flow instructions, which de-
grades instruction-level parallelism. Also, kernels in differ-
ent filters have divergent workloads, which burdens thread-
level parallelism when filters are processed through multi-
threading. Moreover, irregular memory access causes low
memory performance and thereby execution overheads.

Structured pruning: This method has been proposed
to address the index overhead and imbalanced workload
caused by non-structured pruning. Pioneered by (Wen et al.
2016)(He, Zhang, and Sun 2017), structured weight pruning
generates regular and smaller weight matrices, eliminating
overhead of weight indices and achieving higher accelera-
tion performance in CPU/GPU executions. However, it suf-
fers from notable accuracy drop when the pruning rate in-
creases.

Patterns in Computer Vision

Convolution operations exist in different research areas for
an extended period of time, such as image processing, signal
processing, probability theory, and computer vision. In this





tems (Yamins and DiCarlo 2016). It is a good supplement
to pattern pruning. Both pruning schemes can be integrated
in the same algorithm-level solution and compiler-assisted
mobile acceleration framework.

The Convolution Operator

In conventional image processing, a convolution operator is
formally defined by the following formula, where the output
pixel value g(x, y) is the weighted sum of input pixel values
f(x, y), and h(k, l) is the weight kernel value

g(x, y) =
∑

k,l

f(x+ k, y + l)h(k, l) (1)

This formula could transform to

g(x, y) =
∑

k,l

f(k, l)h(x− k, y − l) (2)

Then we derive the notation of convolution operator as:

g = f ∗ h (3)

Convolution is a linear shift-invariant (LSI) operator, sat-
isfying the commutative property, the superposition property
and the shift-invariance property. Additionally, convolution
satisfies the associative property following the Fubini’s the-
orem.

Sparse Convolution Pattern (SCP) Design

Our designed SCPs could be transformed to a series of steer-
able filters (Freeman and Adelson 1991), i.e., the Gaussian
filter and Laplacian of Gaussian filter, which function as im-
age smoothing, edge detection or image sharpening in math-
ematical vision theory.

Gaussian filter: Consider a two-dimensional Gaussian
filter G:

G(x, y, σ) =
1

2πσ2
e
−

x
2+y

2

2σ2 (4)

x and y are input coordinates, and σ is standard deviation
of the Gaussian distribution. Typically, the Gaussian filter
performs image smoothing, and further sophisticated filters
can be created by first smoothing the image input with a unit
area Gaussian filter, then applying other steerable filters.

Laplacian of Gaussian filter: The Laplacian operator is
the second derivative operator. According to the associative
property, smoothing an image with Gaussian filter and then
applying Laplacian operator is equivalent to convolve the
image with the Laplacian of Gaussian (LoG) filter:

∇
2
G(x, y, σ) =

(

x2 + y2

σ4
−

2

σ2

)

G(x, y, σ) (5)

The LoG filter is a bandpass filter that eliminates both the
high-frequency and low-frequency noises. LoG has elegant
mathematical properties, and is valid for a variety of appli-
cations including image enhancement, edge detection, and
stereo matching.

Taylor series expansion is utilized to determine the ap-
proximate values of the LoG filter with 3×3 filter size. First,
we consider the 1-D situation. The Taylor series expansions
of 1-D Gaussian filter G(x) are given by:

G(x+h)=G(x)+hG′(x)+
1

2
h
2
G

′′(x)+
1

3!
h
3
G

′′′(x)+O
(

h
4
)

(6)

G(x−h)=G(x)−hG′(x)+
1

2
h
2
G

′′(x)−
1

3!
h
3
G

′′′(x)+O
(

h
4
)

(7)

By summing (6) and (7), we have

G(x+ h) +G(x− h) = 2G(x) + h
2
G

′′(x) +O
(

h
4
)

(8)

The second derivative of Gaussian G′′(x) is equivalent to
LoG ∇2G(x). Equation (8) is further transformed to

G(x− h)− 2G(x) +G(x+ h)

h2
=∇

2
G(x)+O

(

h
2
)

(9)

Applying central difference approximation of LoG ∇2G(x),
we derive the 1-D approximation of LoG filter as [ 1 −2 1 ].
Then we procure the 2-D approximation of LoG fil-

ter by convolving [ 1 −2 1 ] and
[

1
−2

1

]

, and get result as
[

−1 2 −1

2 −4 2

−1 2 −1

]

. According to the property of second derivative:

∇
2
G(x, y) = Gxx(x, y) +Gyy(x, y) (10)

and Equation (9), we have

Gxx(x, y) +Gyy(x, y)=
(

[ 1 −2 1 ]+
[

1

−2

1

])

∗G(x, y) (11)

Based on (11), we derive another approximation of LoG as
[

0 1 0
1 −4 1

0 1 0

]

.

According to the central limit theorem, the convolution of
two Gaussian functions is still a Gaussian function, and the
new variance is the sum of the variances of the two origi-
nal Gaussian functions. Hence, we convolve the above two
approximations of LoG and then apply normalization, and
get the Enhanced Laplacian of Gaussian (ELoG) filter as
[

0 1 0
1 8 1
0 1 0

]

.

(Siyuan, Raef, and Mikhail 2018) have proved the con-
vergence of the interpolation in the context of (multi-layer)
DNNs, so we utilize the interpolated probability density es-
timation to make the further approximation. In ELoG filter
where 1 appears, we mask it to 0 with the probability of
(1−p). Because we uniformly convolve SCPs into n convo-
lutional layers, this random masking operation can be treated
as distributed interpolation of SCPs. In continuous probabil-
ity space, interpolating SCPs into convolution function is a
specific Probability Density Function (PDF), so the effect
of interpolating SCPs is accumulating probability expecta-
tions of interpolation into n convolutional layers. Besides,
the convolution function is normalized to unity, so we sepa-
rate the coefficient p in the following equation.

0     1     0

1     1     1

0     0     0

0     1     0

1     1     0

0     1     0

0     0     0

1     1     1

0     1     0

0     1     0

0     1     1

0     1     0

0     p     0

p     1     p

0     p     0

0     1     0

1   1/p    1

0     1     0

p

n n

= =

n interpolations

(12)

The four SCPs are shown in colored positions in (12). In
order to get the best approximation to ELoG filter, we set
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Figure 7: Mobile CPU/GPU inference time (ms) on different network structures inferring Cifar-10 and ImageNet images.

Execution time. Figure 7 shows mobile CPU/GPU per-
formance of PCONV model executing on our compiler-
assisted DNN inference framework. On CPU, PCONV
achieves 9.4× to 39.2× speedup over TFLite, 2.2× to 5.1×
speedup over TVM and 1.7× to 6.3× speedup over MNN.
On GPU, PCONV achieves 2.2× to 18.0× speedup over
TFLite, 2.5× to 11.4× speedup over TVM and 1.5× to 5.8×
speedup over MNN. For the largest DNN (VGG-16) and
largest data set (ImageNet), our framework completes com-
putations on a single input image within 19.1ms (i.e., 52.4
frames/sec) on GPU, which meets the real-time requirement
(usually 30 frames/sec, i.e., 33 ms/frame).

On-device GFLOPS performance. From the previous
comparison results we see that MNN has the higher per-
formance than TVM and TFLite. To show that PCONV has
better throughput on mobile devices, we compare PCONV
with MNN by measuring their run-time GFLOPS on both
CPU and GPU. Figure 8 demonstrates layerwise GFLOPS
performance comparison between PCONV and MNN. The
9 layers we pick from VGG-16’s 13 convolutional layers are
representing 9 unique layers with 9 unique layer sizes. The
other 4 layers are omitted in Figure 8 because they have re-
peated layer sizes which product repeated GFLOPS results.
From the results we can see that for both CPU and GPU
throughputs, PCONV outperforms MNN.

Pattern counts vs. performance. In order to determine
how pattern counts affects execution performance, we de-
sign some random patterns with 4 non-zero elements in
one kernel alongside with our designed SCPs. Table 1 and
Table 2 show accuracy and execution time under different
pattern counts using VGG-16 on Cifar-10 and ImageNet
datasets. The results show that the accuracy losses are not
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Figure 8: On-device GFLOPS performance evaluation of
MNN and PCONV .

necessarily related to the increase of pattern counts, but the
execution performance drops quickly, especially on Ima-
geNet dataset. The pattern counts vs. performance results
prove that our designed SCPs result in ideal performance
with a negligible accuracy loss.

Table 1: Pattern counts vs. performance. Evaluation uses
model with pattern (2.25×) and connectivity (8.8×) sparsity
on VGG-16 Cifar-10 dataset. Top-1 accuracy displayed.

Dataset Pattern# Acc. (%) Acc. loss (%) Device Speed (ms)

Cifar-10

4 93.8 -0.3
CPU 2.7

GPU 2.9

8 93.7 -0.2
CPU 2.9

GPU 3.0

12 93.8 -0.3
CPU 3.1

GPU 3.3

Table 2: Pattern counts vs. performance. Evaluation uses
model with pattern (2.25×) and connectivity (3.1×) sparsity
on VGG-16 ImageNet dataset. Top-5 accuracy displayed.

Dataset Pattern# Acc. (%) Acc. loss (%) Device Speed (ms)

ImageNet

4 91.5 0.2
CPU 52.7

GPU 19.1

8 91.6 0.1
CPU 58.9

GPU 22.0

12 91.6 0.1
CPU 105.2

GPU 32.1

Conclusion
This paper presents PCONV , a desirable sparsity type in
DNN weight pruning that elicits mobile devices accelera-
tion, leading to real-time mobile inference. PCONV inherits
the high flexibility in non-structured pruning which helps
achieving high accuracy and compression rate, and main-
tains highly structured weight composition like structured
pruning which leads to hardware friendlinesses such as opti-
mized memory access, balanced workload and computation
parallelism etc. To show PCONV’s real-time performance
on mobile devices, we design a compiler-assisted DNN
inference framework, which can fully leverage PCONV’s
structural characteristics and achieve very high inference
speed on representative large-scale DNNs.
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