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Abstract—In this paper, the simulated annealing (SA) and
genetic algorithm (GA) are explored for automating the
design of an analog circuit. The transistor sizing methodology
performs optimization with simulation-based feedback. The
sizes of the transistors of an analog circuit are determined
by the optimization algorithm and are applied to a schematic
representation of the circuit for characterization through
SPICE simulation. The characterized response of the circuit
is then provided as input to the optimization algorithm for
further tuning. The proposed transistor sizing methodology
is applied to an active inductor based voltage controlled
oscillator (VCO) for multiple target frequencies and ampli-
tudes. The SA algorithm produced no more than a 6% error
in frequency from target values, while the GA produced
transistor sizes that resulted in no more than 6% error in
frequency and 13% error in amplitude. In addition, the GA
provided superior results in determining transistor sizes for
higher target frequencies, as determined through calculation
of the cost function. However, the improved results came
at a considerably greater computational cost. A hybrid opti-
mization technique is proposed, where GA performs coarse
search space exploration to determine the initial conditions
for the SA, and SA is then executed for fine optimization of
the transistor sizes. The hybrid optimization technique not
only resulted in 2.6x faster computational time as compared
to GA but also resulted in a significantly lower cost function
as compared to both the GA and SA optimization techniques.
The results indicate that the proposed methodology provides
a quick and accurate means of determining transistor sizes
for target analog circuit specifications, which significantly
reduces the cost and the design time of analog circuits.
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I. INTRODUCTION

The need for robust analog design methodologies is driven
by circuit complexity along with lengthy and costly design
cycles. According to a study by the IBS group [1], 20% of the
circuit area is occupied by analog components, while 40% of
the total effort is dedicated to analog design. Also, 50% of the
overall costly design re-cycles are due to the analog compo-
nents. The complexity in the synthesis of analog circuits is
due to not only topology and layout synthesis but also in
determining the transistor sizes of the circuit.

Although electronic design automation (EDA) tools are
widely used in the design and verification of digital circuits,
the use of EDA tools is not widespread in the analog domain.
The lack of EDA tools for analog circuits is primarily due to
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the high non-linearity and extreme sensitivity to noise and
temperature of analog blocks. In addition, analog circuits are
mostly custom designed for a target application and lack the
modularity of digital circuits. Therefore, most analog blocks
are manually designed and integrated to form a complex
system. Designing the entire analog system typically requires
many iterations of running lengthy simulations to explore
the complex multi-dimensional design space to generate a
solution that meets the system specifications.

Optimization methods have been proposed for the automa-
tion of transistor sizing of analog circuit blocks. Classical
optimization methods include both deterministic-based and
statistical-based techniques, such as Simplex [2], Dynamic
Programming [3], Branch and Bound [4], and Goal Pro-
gramming [5]. The deterministic and statistical optimization
techniques are efficient for small size problems with less
than 10 variables [6]. Due to the inherent solution mech-
anism and the dependence on the algorithm parameters, the
classical optimization techniques provide limited use when
pursuing multi-criteria constrained problems. The statistical
optimization techniques require accurate circuit modelling
and a strong initial starting point in the search space to pro-
duce accurate results. In addition, the statistical optimization
techniques are computationally costly and do not guarantee
convergence to a global optimal solution.

Heuristic-based optimization algorithms including simu-
lated annealing [7,8], Tabu search [9,10], evolutionary al-
gorithms [11], and genetic algorithms have gained impor-
tance due to the ability to explore large multi-dimensional
search spaces that include a significant number of criteria
and constraints while providing means to escape local min-
ima/maxima within bounded computational costs. Heuristic-
based optimization algorithms have been used for analog
transistor sizing as well, where the optimization methods are
applied to complex analog models and equations. In order to
achieve higher accuracy of results, models that account for
circuit non-linearity and non-idealities are required, which
results in increased computational complexity. In addition,
modeling analog systems consisting of non-identical analog
sub-blocks is highly complex and time consuming.

The primary contribution of this paper is the development
of an optimization methodology to determine transistor sizes
and biasing conditions for a wide range of analog circuits,
where the core optimization algorithm is fast and circuit and
technology independent. In the proposed design methodol-



ogy, simulation based performance evaluation of an analog
circuit is performed within an iterative optimization loop.
Through simulation based heuristic optimization, accurate
transistor sizes are determined for the target performance
constraints at a fraction of the computational time and re-
sources of a traditional and mostly manual design approach.
Analog circuit specifications are used to formulate a set of
constraints and performance metrics that provide the basis
for a developed cost function. The developed methodology
is applied to the design of an active inductor based VCO
where simulated annealing, a genetic algorithm, and a hybrid
genetic algorithm-simulated annealing (GA-SA) optimization
approach is used to determine transistor sizes and biasing
values for different operating conditions while minimizing
the overall circuit area.

II. SIMULATED ANNEALING OPTIMIZATION FOR ANALOG
TRANSISTOR SIZING

Simulated annealing (SA) is a stochastic based global
optimization algorithm that performs random sampling of
the search space to maximize or minimize the value of a cost
function without becoming trapped in local maxima or min-
ima [7]. The simulated annealing optimization methodology
is inspired by the process of annealing in metallurgy, where
a metal is heated and then cooled slowly to increase the size
of crystals and reduce defects in the metal. For simulated
annealing, heating the system refers to the relaxation of the
acceptance criteria of the sample solution within the search
space, while cooling the system refers to the narrowing
of the acceptance criteria of the sample solution to more
finely optimize the result around the target criteria. The
SA algorithm randomly samples the search space, where a
probabilistic function constrains the acceptance of a sub-
optimal solution as the temperature cools. The transition
from a current point p in the search space to a new point py,
is controlled by a random perturbation §(p) at point p. The
acceptance probability of the transition is defined as
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where f(pr) and f(p) are the calculated cost function at the
next and current point, respectively. The current temperature
T controls the probability of accepting the transition from p
to pn. When the exploration of the search space first begins,
the temperature 7' is set to a high value, which results in a
high probability of accepting a sub-optimal solution. During
the optimization process, 7' is reduced based on the specified
cooling schedule, which reduces the probability of accepting

a sub-optimal transition to a new point py,.

A. Problem Formulation

The proposed SA optimization algorithm works in conjunc-
tion with SPICE simulation of the circuit, where transistor
sizes S = {s1, 82, 53....5x} are determined through execu-
tion of the optimization algorithm and the cost function
® is evaluated through simulation. A simulation is exe-
cuted on an extracted netlist of the analog circuit that

includes transistor sizes determined by the optimization al-
gorithm. The simulation returns the performance parameters
P = {p1,p2,p3...m} (such as gain, bandwidth, operating
frequency, etc) and the circuit area, which are included in
the calculation of the cost function ® when executing the
optimization algorithm. The pseudo-code of the transistor
sizing methodology is provided as Algorithm 1.

For multi-objective transistor sizing of an analog circuit,
simultaneous optimization of all objective functions is com-
pleted to obtain an approximate Pareto-optimal front. In the
case of multi-objective constraint optimization, performances
are set as either objective functions or as constraints involv-
ing sensitivity analysis between different objective functions.
The multi-objective optimization problem is formulated such
that the performance of the VCO is maximized while mini-
mizing the area.

Algorithm 1: Evaluation of objective function
through simulation

Input: S = {s1, s, 83....5k}
Output: &={P = {p1, p2, p3...p1} N Area}
analog circuit (S)
Generate netlist based on transistor sizes S
Based on extracted netlist run simulations
Capture performance values P
Evaluate cost function ®;

return P, area

B. Optimization Algorithm

The pseudo-code of the algorithm to optimize the transistor
sizing of a VCO using SA is provided as Algorithm 2. Based
on random initial values of S and 7', an initial solution is
determined. From the initial solution, a certain number of
random points n in the search space are explored by slightly
modifying the initial S. If the explored solution results in a
lower cost function than the current solution (minimization
problem) or if, on calculation of (1), the acceptance probabil-
ity F' is greater than that of a randomly selected point, then a
decision to consider the selected solution is made. In addition,
the temperature is decreased by the specified cooling rate k
for each iteration of execution of Algorithm 2 for m number
of iterations. The total number of iterations is given by m
x n. The algorithm returns the best solution producing the
lowest cost function ®.

III. GENETIC ALGORITHM FOR ANALOG TRANSISTOR SIZING
The Genetic Algorithm (GA) is a search based meta-

heuristic based on the principles of genetics and natural
selection. The GA belongs to a larger class of evolutionary
algorithms (EA), where GA mimics the process of biological
evolution by choosing the genomes that are best suited to
survive in an environment over successive generations. The
GA uses a population of individuals (solutions) instead of
a single solution to search the problem space in parallel,
where for every generation, a new set of candidate solutions
are generated by the bio-inspired processes of selection,



Algorithm 2: Simulated annealing algorithm to min-
imize area and maximize performance parameters

Input: ®, number of iterations, T, k
Output: Spest, Areapest
Sbest = Scurrent
for i to m do
S;  CreateNeighborSolution(Seyrent)
Tewrrent +— CalculateT (i, Trax)
if (S;) < ®(Scurrent) then
Scurrent <~ Sz
if ®(S;) < P(Spest) then
L Sbest — Sz
else if Formula > Rand() then
L Scu’r"rent — Sz
. T=T-T-k
return Sp.q

cross-over, and mutation. The GA generates a viable solution
through the successive evolution of substandard solutions.

The GA optimization technique evaluates the fitness value
® (cost function) of a given solution for the sizing of an ana-
log circuit. The transistor sizes S = {s1, $2, S3....5; } are de-
termined through the optimization algorithm and the fitness
value ® is evaluated through SPICE simulation of the circuit.
For each execution of the simulation loop, an analog circuit
netlist is generated based on the transistor sizes determined
by the optimization algorithm. Each iteration of simulation
returns the performance parameters P = {p1, p2, ps...p; } and
the circuit area, which are used to calculate the ® by the
optimization algorithm.

Algorithm 3: Genetic algorithm to optimize analog
transistor sizes for target performance specification.

Input: M, N, p., pm, and k

Output: Spest, Areapest

Create N population randomly of string size [

for m in range 1:M do

for n in range 1:% do
Select 2 parents through tournament selection
Crossover parents’ genes to get children at p,
Mutate children at p,,

Get new generation of mutated children

Keep track of the best chromosome in each
generation

m=m-+1

Spest = The chromosome with the best fitness value
from all the generations
return Sy

The genetic algorithm implemented in this paper applies
binary encoding to the chromosomes and tournament selec-
tion for choosing parents. The flowchart and the pseudo-
code of the GA for analog transistor sizing is shown in the
Fig. 1 and Algorithm. 3, respectively. The GA begins with

an encoding of analog circuit design parameters (transistor
sizing for this work). The transistor sizes for the analog
circuit are binary encoded to represent a chromosome of a
particular length [. Based on the range of transistor sizes
and the computational complexity as given by the number
of allowed iterations, the optimal length of the chromosome [
is selected, with each chromosome string represented by a bit
B € {0, 1}. All chromosomes encoding the target parameters
of the transistors are combined to form an initial genome.
Based on the initial genome, the initial population of size
N is generated by randomly altering the chromosome bits.
Applying selection, crossover, and mutation to the initial
population results in the creation of the first generation
genomes. The genome with the best fitness value from
the first generation is saved, and the genetic processes of
selection, mutation, and crossover are then applied to the first
generation genomes, which results in the second generation
genomes. The process of producing new generations and
storing the genome with the best fitness value is completed
M times, and the genome with the best-fitness value from
all the M generations is selected as the desired solution. The
chromosome bits are decoded to obtain the values for each
design parameter.

A. Selection

Selection is the process of choosing two genomes from
the population for breeding. The stochastic-based tournament
selection technique is utilized. The selection technique is
implemented as follows.

1) Three random genomes (k = 3, where k is the number
of genomes considered for tournament selection) from
the population are randomly selected.

2) A fitness value for the randomly chosen genomes is
determined as follows.

o Decode the genome to obtain the values of the
target design parameters,

o Apply the values of the decoded design param-
eters (transistor sizes) to SPICE simulations to
characterize the circuit response, and

o Add the error between the simulated and the tar-
get values of different performance parameters to
obtain the fitness value.

3) The genome with the best fitness value is selected as
the first parent.

4) Steps (1-3) are repeated to select the second parent.

5) Steps (1-4) are repeated % times to obtain N parents.

The process of selecting parents is followed by crossover,
where two children are obtained from each pair of parents.

B. Crossover

Crossover is a stochastic process used in GA to combine
genetic information of the two parents to produce two
offspring. Two-point crossover is utilized, where two points
in the parents’ genome selected randomly are combined to
produce two offspring. The crossover process is depicted in
Fig. 2. The probability that a random point in the parent
chromosome is picked for crossover depends on the value
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Fig. 1: Flowchart of the genetic algorithm with tournament selection for analog transistor sizing.
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Fig. 2: Pictorial representation of the two-point crossover
operation applied by the genetic algorithm.

of the probability of crossover (p.). The bits of the parent
chromosomes between the two randomly selected points are
swapped, resulting in two children as shown in the Fig. 2.

C. Mutation

Mutation is a process used for maintaining genetic diver-
sity from one generation to another by altering the state
of one or more chromosomes from the initial state. In the
proposed GA, an initial probability of mutation p,, is set.
For each chromosomal bit, a random probability value is
selected between 0 and 1. If the random number selected is
less than p,;,, then the chromosome bit is flipped. If, however,
the random number is greater than p,,, then the initial bit
of the chromosome is preserved. The genetic operators of
selection, crossover, and mutation are performed % times,
which results in N number of children belonging to the next
generation.

IV. AppLICATION OF OPTIMIZATION ALGORITHMS ON A VCO

The proposed analog design methodology based on simu-
lated annealing and genetic algorithm optimization is applied
to an active inductor based voltage controlled oscillator.
A voltage controlled oscillator (VCO) is an essential com-
ponent of radio-frequency systems that generates a stable

and tunable oscillating frequency based on an applied input
voltage. The VCOs are used in frequency synthesizers in-
cluding local oscillators, phase locked loops (PLL), and clock
recovery circuits. Traditional VCOs utilize a passive inductor-
capacitor (LC) tank architecture. Primary disadvantages of
LC-tank based VCOs include 1) the tuning range of the
oscillator is relatively low (around 10% to 20% of the nominal
locking frequency), 2) on-chip passive inductors exhibit poor
high frequency performance without active compensation,
and 3) on-chip passive inductors significantly increase the
circuit area [12,13].

To improve the tuning range, increase the oscillating
frequency, and reduce the area, an active inductor based VCO
is implemented with a schematic topology as shown in Fig.
3. Transistors M7 to Mg form the active inductor, whose
equivalent inductance is given by

2. (Cyo + ) o
Gdss " (27 Gmy + Gms — Gass)
where L., is the equivalent inductance of the gyrator, Cy,
is the gate to source parasitic capacitance of the given tran-
sistor, g, is the small signal transconductance of the given
transistor, and gqs is the small signal output conductance
of the given transistor [14, 15]. The equivalent inductance of
the gyrator is controlled by the voltage L y;. Transistors
Myar1 and My,qr2 form the active capacitor, whose equivalent
capacitance is given by

Leq =

(©)

where C,,4, is the equivalent capacitance of the varactor, C,,
is the oxide capacitance of the M,,, transistor, Cy, is the
gate-to-source capacitance, and W, and L, are the width
and the length, respectively, of the M,,, transistors. The
capacitance of the varactor is tuned by the control voltage
Crentri- Transistors M7 and Mg form the negative resistor,
which compensates for the parasitic resistances of the gyrator
and varactor circuits and increases the voltage swing.

Cvar = Co;t : anr : Lvar + Cgs : anr + ng : anr



TABLE [: SPICE results from characterization of the active inductor based VCO with transistor dimensions determined by
the simulated annealing optimization algorithm for multiple target frequencies and amplitudes.

Target Target Number of Ti Simulated | Simulated | % Frequency | % Amplitude Cost Functi Area
Frequency | Amplitude Iterations e Frequency | Amplitude Error Error ost Function |- (ym*um)
1.5 GHz 1.2V 500 5693 s 1.49 GHz 092 V 0.67 % 23.58 % 0.29 254.15
2.0 GHz 1.0V 500 5678 s 1.99 GHz 091V 0.50 % 9.10 % 0.10 251.00
2.5 GHz 1.0V 500 5713 s 2.45 GHz 0.89 V 2.00 % 10.60 % 0.16 219.29
3.0 GHz 09V 500 5901 s 3.01 GHz 0.79 V 0.33 % 12.78 % 0.13 220.19
3.5 GHz 09V 500 5714 s 3.30 GHz 081V 571 % 10.00 % 0.29 215.83
4.0 GHz 09V 500 5473 s 4.10 GHz 1.17 V 2.50 % 30.00 % 0.37 66.787

TABLE II: SPICE results from characterization of the active inductor based VCO with transistor dimensions determined by
the genetic algorithm for multiple target frequencies and amplitudes.

Target Target Number of Ti Simulated | Simulated | % Frequency | % Amplitude Cost Functi Area
Frequency | Amplitude Iterations ume Frequency | Amplitude Error Error ost Function (um*pm)
1.5 GHz 12V 500 22982 s 1.58 GHz 1.05 V 5.33% 12.50% 0.23 270.89
2.0 GHz 1.0V 500 22587 s 1.93 GHz 095V 3.50% 5.00% 0.12 268.18
2.5 GHz 1.0V 500 24922 s 2.51 GHz 0.88 V 0.40% 12.00% 0.13 225.28
3.0 GHz 09V 500 22392 s 3.05 GHz 0.80 V 1.67% 11.11% 0.15 232.22
3.5 GHz 09V 500 20363 s 3.55 GHz 0.89 V 1.43% 1.11% 0.06 195.81
4.0 GHz 09V 500 20253 s 3.95 GHz 087V 1.25% 3.33% 0.08 217.42

Fig. 3: Schematic representation of the active inductor based
voltage controlled oscillator.

The simulated annealing and genetic algorithm is imple-
mented in Python 2.7. The simulation framework is im-
plemented using a combination of Cadence SKILL and the
OCEAN scripting language. The circuit simulations are per-
formed using SPECTRE.

The independent execution of both SA and GA results in
the selection of widths for transistors M7 to Mg, M,4,1, and
Mqro of the active inductor based VCO circuit shown in
Fig. 3, which is then characterized through SPICE simulation.
Parameters provided to the cost function include operating
frequency and oscillating amplitude. The cost function (fit-
ness value) for the active inductor based VCO is given by

-9
d = |Ftarget - Fsimulated| -10

+|Amfpta'r‘get - Ampsimulated |7

4)

where Figrgetr and Flyipuiated are the target and SPICE
simulated frequencies, respectively, and Ampiarger and
AMmpsimulated are the amplitude of the target and SPICE
determined output voltages, respectively. The operating fre-

quency and the amplitude of the simulated VCO with sizes
determined using the optimization algorithm are compared
against the desired specifications. The analysis is performed
for 1.5 GHz, 2 GHz, 2.5 GHz, 3 GHz, 3.5 GHz, and 4 GHz
target frequencies with accuracy and performance results
listed in Table I and Table II for, respectively, SA and GA.

V. RESULTS AND DISCUSSIONS

The SA and GA are implemented with an upper execution
limit of 500 iterations. The simulated annealing algorithm
searches five neighbors each iteration around a selected point
as the temperature is decreased 100 times from 1000°C to
0°C. For the genetic algorithm, the size of the population
N for each generation is set to 10, and the total number of
generations M is set to 50. Both SA and GA are executed
five times with randomly generated initial conditions for
each target frequency and the results with the best cost
function (fitness value) are listed in Table I and Table II,
respectively.

The results listed in Table I and Table II indicate that
simulated annealing is almost 4x faster than the genetic
algorithm for the same number of iterations. For lower target
frequencies, the SA optimized transistor sizes of the VCO
resulted in simulated frequencies with percentage errors,
measured as a deviation in frequency from the target value,
less than that observed for transistor sizes optimized by
applying GA. At higher frequencies, the percentage error in
the simulated frequencies from the SA optimized VCO were
larger as compared to results produced by the GA. The fitness
value calculated for the GA optimized VCO is much lower
than the cost function determined for the SA optimized VCO,
which indicates a superior quality of results from applying
GA optimization on multivariate problems.

A hybrid algorithm consisting of both the simulated an-
nealing and genetic algorithms combines the computational
efficiency offered by SA with the greater quality of results
provided by GA for multivariate search space exploration.
For the hybrid algorithm, the GA is used to initially explore



TABLE III: SPICE results from characterization of the active inductor based VCO with transistor dimensions determined by

the hybrid GA-SA optimization algorithm for multiple target frequencies and amplitudes.

Target Target Number of Ti Simulated | Simulated | % Frequency | % Amplitude Cost Functi Area
Frequency | Amplitude Iterations ume Frequency | Amplitude Error Error ost Function (um*pm)
1.5 GHz 1.2V 300 7659 s 1.52 GHz 111V 1.33% 7.50% 0.11 266.66
2.0 GHz 1.0V 300 7528 s 1.97 GHz 094V 1.50% 6.00% 0.09 247.13
2.5 GHz 1.0V 300 7579 s 2.48 GHz 091V 0.80% 9.00% 0.11 224.56
3.0 GHz 09V 300 7722 s 2.94 GHz 084V 2.00% 6.67% 0.12 212.24
3.5 GHz 09V 300 7638 s 3.54 GHz 0.86 V 1.14% 4.44% 0.08 178.28
4.0 GHz 09V 300 7466 s 3.92 GHz 094V 2.00% 4.44% 0.12 196.66

the search space and determine ideal starting transistor
dimensions that are then provided to the SA algorithm,
which returns an optimized solution for the given constraints
and circuit topology. The results from characterizing the
VCO optimized by the hybrid algorithm are listed in the
Table. III. As GA provides better search space exploration
while SA provides improved localized optimization to find
a minima, the number of iterations to optimize the VCO
was reduced to 300 while the computational time was at
least 2.6x shorter. The GA was performed for 150 iterations
with N set to 10 and M to 15. The SA was then performed
for an additional 150 iterations, where 5 nearest neighbors
were searched each iteration around a selected point. The
temperature was decreased 30 times from 1000°C to 0°C.
The hybrid-optimization technique generated transistor sizes
that when simulated in SPICE resulted in output frequencies
of the VCO that were no more than 2% from target values,
amplitudes that were no more than 9% from target values,
and calculated cost functions that were lower than either SA
or GA optimization alone. The results indicate that hybrid
optimization not only reduces the number of iterations and
computational time, but also improves the accuracy of the
solution by more efficiently pruning the search space.

VI. CONCLUSIONS

A low overhead and circuit and technology independent
simulation based optimization methodology for analog circuit
transistor sizing is described that applies both SA and the
GA, resulting in a reduction in design time and cost. The
proposed optimization algorithms take analog specifications
as inputs and utilize multivariate search space exploration
to output transistor sizes that minimize the error between
the simulated and the target circuit performance parameters.
The proposed methodology was applied to an active inductor
based VCO for multiple target frequencies and amplitudes.
The number of iterations of the optimization and simulation
loop was set to 500. The SA algorithm produced no more
than 6% error and 24% error between the simulated and
target frequencies and amplitudes, respectively, while also
generating transistor sizes that resulted in lower overall area.
The GA produced transistor sizes that resulted in no more
than 6% error in frequency and 13% error in amplitude, while
providing a superior quality of results when selecting transis-
tor sizes for higher target frequencies. Based on the results of
the SA and GA, a hybrid optimization technique is proposed,
where GA performs coarse search space exploration to de-
termine the initial conditions for the SA algorithm, and the

SA algorithm performs fine grain optimization to determine
the optimal solution for the given search space. The hybrid
optimization reduces the computational time by at least
2.6x and produces transistor sizes that result in significantly
lower cost functions as compared to executing GA or SA
optimization alone. The proposed methodology provides an
efficient approach to size analog circuits by reducing the
design time and complexity.
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