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ABSTRACT

Parameter estimation from noisy and one-bit quantized data has
become an important topic in signal processing, as it offers low
cost and low complexity in the implementation. On the other hand,
Direction-of-Arrival (DoA) estimation using Sparse Linear Arrays
(SLAs) has recently gained considerable interest in array processing
due to their attractive capability of providing enhanced degrees of
freedom. In this paper, the problem of DoA estimation from one-bit
measurements received by an SLA is considered and a novel frame-
work for solving this problem is proposed. The proposed approach
first provides an estimate of the received signal covariance matrix
through minimization of a constrained weighted least-squares crite-
rion. Then, MUSIC is applied to the spatially smoothed version of
the estimated covariance matrix to find the DoAs of interest. Several
numerical results are provided to demonstrate the superiority of the
proposed approach over its counterpart already propounded in the
literature.

Index Terms— One-bit quantization, Sparse linear arrays, di-
rection of arrival (DoA) estimation, weighted least-squares.

1. INTRODUCTION

The problem of Direction of Arrival (DoA) estimation is of central
importance in the field of array processing with many applications in
radar, sonar, and wireless communications [1–3]. Estimating DoAs
using Uniform Linear Arrays (ULAs) is well investigated in the lit-
erature; a number of algorithms such as Maximum Likelihood (ML)
estimation, MUSIC, ESPRIT and subspace fitting have been pre-
sented and their performance thoroughly analyzed [4–6]. However,
it is widely known that ULAs are not capable of identifying more
sources than the number of physical elements in the array [2, 6].

To transcend this limitation, exploitation of Sparse Linear Ar-
rays (SLAs) with particular geometries, such as Minimum Redun-
dancy Arrays (MRAs) [7], co-prime arrays [8] and nested arrays
[9] has been proposed. These architectures can dramatically boost
the degrees of freedom of the array for uncorrelated source signals
such that a significantly larger number of sources than the number
of physical elements in the array can be identified. In addition,
the enhanced degrees of freedom provided by these SLAs can im-
prove the resolution performance appreciably compared to ULAs
[9]. These features have spurred further research on DoA estimation
using SLAs in recent years. A detailed study on DoA estimation via
SLAs through an analysis of the Cramér-Rao Bound (CRB) has been
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conducted in [10]. Further, several approaches for DoA estimation
via SLAs have been proposed in the literature. In general, exist-
ing estimators can be classified under two main groups: 1. Sparsi-
ty-Based Methods (SBMs); 2. Augmented Covariance-Based Meth-
ods (ACBMs). SBMs first discretize the angular domain into a grid
and then estimate DoAs by imposing sparsity constraints on source
profiles and exploiting the compressive sensing recovery techniques
[11–13]. In the second approach, DoAs are estimated by apply-
ing conventional subspace methods such as MUSIC, ESPRIT on an
Augmented Sample Covariance Matrix (ASCM) obtained from the
original sample covariance matrix by exploiting the difference co-
array structure [9, 14, 15].

Quantization of signals of interest is an essential step in digi-
tal signal processing. While high-resolution amplitude quantization
at the Nyquist rate is typically desired, it may either be impractical
or be impossible in many applications due to limitations on power
consumption and production cost of Analog-to-Digital Converters
(ADCs) [16]. One-bit quantizers allow for an extremely high sam-
pling rate at a low cost and low power consumption while main-
taining good performance. Recently, the use of one-bit quantized
data has gained considerable interest in different applications such
as massive MIMO systems [17–19], radar [20, 21] and array pro-
cessing [22–26]. Using one-bit quantized data for DoA estimation
has been considered in [22–25] for ULAs and it has been shown that
one-bit quantization leads to a moderate performance loss compared
to the case where unquantized data is used. Further, the problem
of DoA estimation via SLAs and one-bit data has been addressed
in [26]; it has been demonstrated that the performance degradation
due to one-bit quantization can, to some extent, be compensated us-
ing SLAs.

In this paper, we propose a new framework for DoA estimation
via SLAs using one-bit quantized measurements. Contrary to [26]
which uses the Bussgang theorem, here the covaraince matrix of un-
quantized data is recovered from one-bit measurements through the
solution of a constrained optimization problem. Then, by provid-
ing representative numerical results, it is shown that the estimated
covariance matrix from the proposed approach leads to a better per-
formance compared to the Bussgang-aided method given in [26].

Organization: Section 2 describes the system model. The prob-
lem formulation is given in Section 3. Section 4 provides the pro-
posed algorithm for DoA estimation from one-bit measurements.
The simulation results and related discussions are included in Sec-
tion 5. Finally, Section 6 concludes the paper.

Notation: Vectors and matrices are referred to by lower- and
upper-case bold-face, respectively. The superscripts ∗, T , H de-
note the conjugate, transpose and Hermitian (conjugate transpose)
operations, respectively. ‖A‖F stands for the Frobenius norm of A.
[a]i indicates the ith entry of a. Â and â denote the estimate of A



and a, respectively. (a1, a2, · · · , an) is an n-tuple with elements of
a1, a2, · · · , an. |A| represents the cardinality of the setA. diag(a)
is a diagonal matrix whose diagonal entries are equal to the elements
of a. The M ×M identity matrix is denoted by IM . (x) denotes
the sign function with (x) = 1 for x ≥ 0 and (x) = −1 otherwise.
The real and image part of a are denoted by Re{a} and Im{a},
respectively. E{.} stands for the statistical expectation. ⊗ and �
represent Kronecker and Khatri-Rao products, respectively. tr(y),
rank(A) and vec (A) =

[
aT1 aT2 · · · aTn

]T denote the trace,
rank and vectorization operations, respectively. A† and indicates the
pseudoinverse and of the full column rank matrix A.

2. SYSTEM MODEL

We consider an SLA with M elements located at positions
(
m1

λ
2
,

m2
λ
2
, · · · ,mM

λ
2

)
with mi ∈ M. Here M is a set of integers with

cardinality |M| =M , and λ denotes the wavelength of the incom-
ing signals. It is assumed K narrowband signals with distinct DoAs
θ = [θ1, θ2, · · · , θK ]T impinge on the SLA from far field. While
estimation of the number of sources is an important problem, we
assume perfect knowledge of the number of sources here. The un-
quantized array measurements at time instance t can be modeled as

y(t) = A(θ)s(t) + n(t) ∈ CM×1, t = 1, · · · , N, (1)

where s(t) ∈ CK×1 denotes the vector of source signals, n(t) ∈
CM×1 is additive noise, and A(θ) = [a (θ1) ,a (θ2) , · · ·a (θK)] ∈
CM×K represents the SLA steering matrix with

a(θi) =
[
ejπ sin θim1 ejπ sin θim2 · · · ejπ sin θimM

]T
, (2)

being the SLA manifold vector for the ith signal. Further, the fol-
lowing assumptions are made on source signals and noise:

A1 n(t) follows a zero-mean circular complex Gaussian distribu-
tion with the covariance matrix E{n(t)nH(t)}=σ2IM .

A2 The source signal vector is modeled as a zero-mean circular
complex Gaussian random vector with covariance matrix
E{s(t)sH(t)} = diag(p) where p = [p1, p2, · · · pK ]T ∈
RK×1
>0 (i. e., pl > 0 ∀l).

A3 Source and noise vectors are mutually independent.
A4 There is no temporal correlation between the snapshots, i.e.,

E{n(t1)nH(t2)} = E{s(t1)sH(t2)} = 0 when t1 6= t2
and 0 is an all zero matrix of appropriate dimensions.

Based on the above assumptions, the covariance matrix of y(t) is
expressed as

R=E{y(t)yH(t)}=A(θ)diag(p)AH(θ) + σ2IM ∈CM×M. (3)

Following [9, 10, 14], the difference co-array model of the SLA is
obtained by vectorizing the covariance matrix, which results in

vec(R) = (A∗(θ)�A(θ))p + σ2vec(IM ),

= JAd(θ)p + σ2vec(IM ) ∈ CM
2×1, (4)

where Ad(θ)∈C(2D−1)×K is the steering matrix of the difference
co-array whose elements are located at (−`D−1

λ
2
, · · · , 0, · · · , `D−1

λ
2
)

with `i∈D={|mp −mq|
∣∣mp,mq∈M} and D= |D|. Further, the

selection matrix J is defined as follows
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Fig. 1. Array geometry of a co-prime array with M = 6 elements:
(a) physical array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-
array withD = {0, 1, 2, 3, 4, 5, 6, 7, 9}.

Definition 1. The binary matrix J ∈ {0, 1}M
2×(2D−1) is defined

as [10]

J =
[
vec(LTD−1) · · · vec(L0) · · · vec(LD−1),

]
, (5)

where [Ln]p,q =

{
1, if mp −mq = `n,
0, otherwise, with 1 ≤ p, q ≤ M and

0 ≤ n ≤ D − 1.

The difference co-array model in (4) can be perceived to be the
response of a virtual array whose steering matrix is given by Ad(θ)
to the parameter vector with signal powers p in presence of the noise
vector σ2vec(IM ). It has been shown in [8–10] that by properly de-
signing SLAs and exploiting the resulting structure of the source
signal covariance matrix efficiently, these arrays are capable of iden-
tifying more sources than the number of physical elements in the
array. An illustrative example of an SLA, the corresponding differ-
ence co-array and its contiguous ULA segment is provided in Fig. 1.

In practice, the array measurements are quantized by ADCs. In
the most extreme form of quantization, the measurements are di-
rectly converted into binary data by a comparator measuring the sign
of the real and imaginary parts of the received signal. One-bit quan-
tization allows for an extremely high sampling rate at a low cost and
low power consumption. Assuming one-bit ADCs are used at the
SLA, the quantized one-bit measurements are denoted as [17, 27]

z(t) = Q(y(t)), (6)

where the ith element of Q(y(t)) is given by [Q(y(t))]i =
1√
2
sgn(Re{[y(t)]i}) + j√

2
sgn(Im{[y(t)]i}). In this paper, we

provide an algorithm to estimate DoAs from z(t).

3. PROBLEM FORMULATION

In this section, we formulate an optimization problem from which
the covariance matrix of y(t), i.e., R, can be recovered from one-bit
observations. Once R is obtained, Co-Array-Based MUSIC (CAB-
MUSIC), described in [9, 14], can be used to estimate DoAs. It can
be readily checked that R is a structured matrix with only 2D − 1
free parameters, i.e.,

R = u0L0 +

D−1∑
i=1

uiLi +

D−1∑
i=1

u∗iL
T
i , (7)

where u0 =
∑K
k=1 pk + σ2 and ui =

∑K
k=1 pke

jπ sin θk`i . Hence,
to estimate R, we need only to estimate the complex vector u =
[u0, u1, · · · , uD−1]

T . In case the unquantized data are available,
minimization of the following weighted least squares criterion yields



a large-snapshot maximum likelihood (ML) estimate of the struc-
tured covariance matrix in (7) [28, 29]:

(vec(YYH)− vec(R))H(R−T ⊗R−1)(vec(YYH)− vec(R))

=‖R−
1
2 (YYH −R)R−

1
2 ‖2F , (8)

where Y = 1√
N

[
y(1) · · · y(N)

]
. Unfortunately, the above

criterion is non-convex in R. Hence, inspired by (8), the following
alternative convex criterion was proposed in [30]

‖R−
1
2 (YYH −R)(YYH)−

1
2 ‖2F

= tr(R
1
2 (YYH)−1R

1
2 ) + tr(R−

1
2 (YYH)R−

1
2 ), (9)

which is convex in R. The above objective function is shown to
converge to the ML criterion for a growing number of snapshots.
Using the objective function (9), an optimization problem for the
covariance matrix recovery from the one-bit measurements can be
cast as follows:

minimize
u,Y

tr(R
1
2 (YYH)−1R

1
2 ) + tr(R−

1
2 (YYH)R−

1
2 )

subject to R � 0,
vec(Re{Z})� vec(Re{Y}) � 0,
vec(Im{Z})� vec(Im{Y}) � 0,

(10)

where Z =
[
z(1) · · · z(N)

]
. The above optimization problem

is non-convex due to its dependence on Y, but it can be recast as a
Semi-Definite Programming (SDP) by introducing some slack vari-
ables.

4. ONE-BIT DOA ESTIMATION

We consider the slack variables X, W, T and Φ such that X =

R
1
2 (YYH)−1R

1
2 , W � X−1, T = YYH and Φ = R

1
2 . Then

it can be shown that optimization problem (10) is equivalent to the
following one

minimize
u,Y,X,W,T,Φ

tr(X) + tr(W)

subject to R � 0,[
X IM
IM W

]
� 0,

vec(Re{Z})� vec(Re{Y}) � 0,
vec(Im{Z})� vec(Im{Y}) � 0,
X = ΦT−1Φ,
R = ΦΦ,
T = YYH .

(11)

Optimization problem (11) is an SDP with three equality constraints,
which are non-convex. It is however possible to replace the equal-
ity constraints in (11) with three rank constraints on semi-definite
matrices using the following Lemma.

Lemma 1. Let C1 ∈ Rm×m, C2 ∈ Rn×n and C12 ∈ Rm×n. If
C1 � 0, then the equality C2 = CH

12C
−1
1 C12 is equivalent to the

following rank and semi-definite inequalities

rank(

[
C1 C12

CH
12 C2

]
) ≤ m and

[
C1 C12

CH
12 C2

]
� 0. (12)

Proof. It is readily confirmed that C2 = CH
12C

−1
1 C12 if and

only if rank(C2 − CH
12C

−1
1 C12) = 0. Since C1 is positive

definite, rank(C2 − CH
12C

−1
1 C12) = 0 can be equivalently ex-

pressed as rank(C1) + rank(C2 − CH
12C

−1
1 C12) ≤ m. Fur-

ther, it follows from the Guttman rank additivity formula [31] that

rank(C1) + rank(C2 − CH
12C

−1
1 C12) = rank(

[
C1 C12

CH
12 C2

]
).

This gives the rank condition in (12). Moreover, it follows from

C2 − CH
12C

−1
1 C12 = 0 and C1 � 0 that

[
C1 C12

CH
12 C2

]
has to be

positive semi-definite

By making use of Lemma 1, it is possible to recast optimization
problem (11) as follows:

minimize
u,Y,X,W,T,Φ

tr(X) + tr(W)

subject to R � 0,[
X IM
IM W

]
� 0,

vec(Re{Z})� vec(Re{Y}) � 0,
vec(Im{Z})� vec(Im{Y}) � 0,[
T Φ
Φ X

]
� 0,[

IM Φ
Φ R

]
� 0,[

IN YH

Y T

]
� 0,

rank(

[
T Φ
Φ X

]
) ≤M,

rank(

[
IM Φ
ΦH R

]
) ≤M,

rank(

[
IN YH

Y T

]
) ≤ N.

(13)

The above optimization problem is an SDP with three rank con-
straints on semi-definite matrices, which can be solved iteratively
using Algorithm 1 where the sequential problem at iteration k is for-
mulated as

minimize
uk,Yk,Xk,Wk,Tk,Φk,ek

tr(Xk) + tr(Wk) + wkek

subject to Rk � 0,[
Xk IM
IM Wk

]
� 0,

vec(Re{Z})� vec(Re{Yk}) � 0,
vec(Im{Z})� vec(Im{Yk}) � 0,[
Tk Φk

Φk Xk

]
� 0,[

IM Φk

ΦH
k Rk

]
� 0,[

IN YH
k

Yk Tk

]
� 0,

ekIM −VH
k−1

[
Tk Φk

Φk Xk

]
Vk−1 � 0,

ekIM − FHk−1

[
IM Φk

ΦH
k Rk

]
Fk−1 � 0,

ekIM −GH
k−1

[
IN YH

k

Yk Tk

]
Gk−1 � 0,

ek ≤ ek−1,

(14)

where Vk−1, Fk−1 and Gk−1 are the eigenvectors corresponding to

the M smallest eigenvalues of
[
Tk−1 Φk−1

Φk−1 Xk−1

]
,
[

IM Φk−1

ΦH
k−1 Rk−1

]



and
[

IN YH
k−1

Yk−1 Tk−1

]
obtained at the previous iteration. Indeed, the

optimization problem which should be solved at each step of Algo-
rithm 1 is an SPD that can be solved efficiently. Further, to obtain
V0, F0 and G0, it is possible to use the relaxed solution of (13) by
dropping the rank constraints. It is proved in [32] that Algorithm
1 converges to at least a local minimum of (13). Once R is ob-
tained from Algorithm 1, Co-Array-Based MUSIC (CAB-MUSIC),
described in [9, 14], can be employed to estimate DoAs.

Algorithm 1 Iterative rank minimization for solving (13)
Input: The problem information w0, t, ε1 and ε2.
Output: A local minimum of (13).

Begin
1. initialization: Set k = 0. Solve the relaxed problem in

(13) by dropping the rank constraints to obtain V0, F0 and
G0.

2. while: ek ≥ ε1 and |tr(Xk) + tr(Wk) − tr(Xk−1) +
tr(Wk−1)| ≥ ε2.

3. Solve the sequential problem (14).

4. Update Vk−1, Fk−1 and Gk−1 and set k = k + 1.

5. Update wk as wk = wk−1 ∗ t.
6. end while

End

5. SIMULATION RESULTS

In this section, we provide some numerical results to compare the
performance of the proposed approach to that of the Bussgang-aided
method given in [26]. In all experiments, each simulated point has
been computed by 1000 Monte Carlo repetitions. In addition, it is
assumed that the K independent sources are located at {−60◦ +
120◦(k − 1)/(K − 1)|k = 0, 1, · · · ,K − 1}. All sources have
an equal power, i.e., pk = p for all k, and the SNR is defined as
10 log p

σ2 . Throughout this section, we use a nested array withM =
12 physical elements and the following geometry:

Mnested : {1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 35, 42} . (15)

Fig. 2 depicts the Root-Mean-Squares-Error (RMSE) for θ2
in degree versus SNR. The number of snapshots is considered
to be N = 500. Given M = 12, two different scenarios are
considered: (a) K = 3 < M , and (b) K = 14 > M . It
is observed that the proposed approach presents a better perfor-
mance compared to the Bussgang-aided method in both cases and
shows an RMSE very close to that of DoA estimates obtained
from the unquantized data. As an illustrative example, the pro-
posed algorithm is able to improve the quantization loss, defined as
10 log(MSEquantized/MSEunquantized), about 2 to 2.5 dB com-
pared to the Bussgang-aided method at SNR = 5 dB. Fig. 3
plots the RMSE for θ2 in degree versus the number of snapshots
for SNR = 3 dB and K = 5. Fig. 3 indicates that the proposed
algorithm preforms very closely to the unquantized case when an
adequate large number of snapshots is available. However, the
performance of DoA estimation via one-bit measurements start de-
viating from the performance acquired using the unquantized data
when the number of snapshots reduces.

6. CONCLUSION

A novel framework for estimating DoAs from one-bit measurements
obtained by an SLA was proposed in this paper. The proposed algo-
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Fig. 2. RMSE in degree for θ2 versus SNR for a nested array with
M = 12 elements and configuration given in (15), N = 500, and:
(a) K = 3 < M ; (b) K = 14 > M .

rithm provides an alternative approach to estimating the covaraince
matrix of unquantized data beside Bussgang-aided approach already
propounded in the literate. The provided simulation results showed
that the proposed algorithm leads to better performance compared to
the Bussgang-aided approach.

In the future, it is of considerable interest to investigate the one-
bit DoA estimation problem given in this paper when the thresholds
at ADCs vary in time as well as across the array elements. Using the
varying thresholds is expected to significantly enhance the perfor-
mance of the proposed algorithm. In addition, it will be interesting
to investigate the performance bounds of DoA estimation via SLAs
and one-bit measurements. The computational complexity of the
proposed techniques also need to be further evaluated.
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Fig. 3. RMSE in degree for θ2 versus the number of snapshots for a
nested array with M = 12 elements and configuration given in (15),
SNR = 0 dB, and K = 5.
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