
Journal of Machine Learning Research 21 (2020) 1-47 Submitted 12/18; Revised 2/20; Published 3/20

Robust Asynchronous Stochastic Gradient-Push:
Asymptotically Optimal and Network-Independent

Performance for Strongly Convex Functions

Artin Spiridonoff artin@bu.edu

Alex Olshevsky alexols@bu.edu

Ioannis Ch. Paschalidis yannisp@bu.edu

Division of Systems Engineering

Boston University

Boston, MA 02215, USA

Editor: Suvrit Sra

Abstract

We consider the standard model of distributed optimization of a sum of functions F (z) =∑n
i=1 fi(z), where node i in a network holds the function fi(z). We allow for a harsh net-

work model characterized by asynchronous updates, message delays, unpredictable message
losses, and directed communication among nodes. In this setting, we analyze a modifica-
tion of the Gradient-Push method for distributed optimization, assuming that (i) node i
is capable of generating gradients of its function fi(z) corrupted by zero-mean bounded–
support additive noise at each step, (ii) F (z) is strongly convex, and (iii) each fi(z) has
Lipschitz gradients. We show that our proposed method asymptotically performs as well
as the best bounds on centralized gradient descent that takes steps in the direction of the
sum of the noisy gradients of all the functions f1(z), . . . , fn(z) at each step.

Keywords: distributed optimization, stochastic gradient descent.

1. Introduction

Distributed systems have attracted much attention in recent years due to their many appli-
cations such as large scale machine learning (e.g., in the healthcare domain, Brisimi et al.,
2018), control (e.g., maneuvering of autonomous vehicles, Peng et al., 2017), sensor net-
works (e.g., coverage control, He et al., 2015) and advantages over centralized systems, such
as scalability and robustness to faults. In a network comprised of multiple agents (e.g., data
centers, sensors, vehicles, smart phones, or various IoT devices) engaged in data collection,
it is sometimes impractical to collect all the information in one place. Consequently, dis-
tributed optimization techniques are currently being explored for potential use in a variety
of estimation and learning problems over networks.

This paper considers the separable optimization problem

min
z∈Rd

F (z) :=

n∑
i=1

fi(z), (1)

where the function fi : Rd → R is held only by agent i in the network. We assume the
agents communicate through a directed communication network, with each agent able to

c©2020 Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch. Paschalidis.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-813.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-813.html

Spiridonoff, Olshevsky, and Paschalidis

send messages to its out-neighbors. The agents seek to collaboratively agree on a minimizer
to the global function F (z).

This fairly simple problem formulation is capable of capturing a variety of scenarios in
estimation and learning. Informally, z is often taken to parameterize a model, and fi(z)
is a loss function measuring how well z matches the data held by agent i. Agreeing on a
minimizer of F (z) means agreeing on a model that best explains all the data throughout
the network – and the challenge is to do this in a distributed manner, avoiding techniques
such as flooding which requires every node to learn and store all the data throughout the
network. For more details, we refer the reader to the recent survey by Nedic et al. (2018).

In this work, we will consider a fairly harsh network environment, including message
losses, delays, asynchronous updates, and directed communication. The function F (z) will
be assumed to be strongly convex with the individual functions fi(z) having a Lipschitz
continuous gradient. We will also assume that, at every time step, node i can obtain a
noisy gradient of its function fi(z). Our goal will be to investigate to what extent dis-
tributed methods can remain competitive with their centralized counterparts in spite of
these obstacles.

1.1. Literature Review

Research on models of distributed optimization dates back to the 1980s, see Tsitsiklis et al.
(1986). The separable model of (1) was first formally analyzed in Nedic and Ozdaglar (2009),
where performance guarantees on a fixed-stepsize subgradient method were obtained. The
literature on the subject has exploded since, and we review here only the papers closely
related to our work. We begin by discussing works that have focused on the effect of harsh
network conditions.

A number of recent papers have studied asynchronicity in the context of distributed
optimization. It has been noted that asynchronous algorithms are often preferred to syn-
chronous ones, due to the difficulty of perfectly coordinating all the agents in the network,
e.g., due to clock drift. Papers by Recht et al. (2011); Li et al. (2014); Agarwal and Duchi
(2011); Lian et al. (2015) and Feyzmahdavian et al. (2016) study asynchronous parallel opti-
mization methods in which different processors have access to a shared memory or parameter
server. Recht et al. (2011) present a scheme called HOGWILD!, in which processors have
access to the same shared memory with the possibility of overwriting each other’s work. Li
et al. (2014) proposes a parameter server framework for distributed machine learning. Agar-
wal and Duchi (2011) analyze the convergence of gradient-based optimization algorithms
whose updates depend on delayed stochastic gradient information due to asynchrony. Lian
et al. (2015) improve on the earlier work by Agarwal and Duchi (2011), and study two
asynchronous parallel implementations of Stochastic Gradient (SG) for nonconvex opti-
mization; establishing an Ok(1/

√
k) convergence rate for both algorithms. Feyzmahdavian

et al. (2016) propose an asynchronous mini-batch algorithm that eliminates idle waiting
and allows workers to run at their maximal update rates.

The works mentioned above consider a centralized network topology, i.e., there is a
central node (parameter server or shared memory) connected to all the other nodes. On the
other hand, in a decentralized setting, nodes communicate with each other over a connected
network without depending on a central node (see Figure 1). This setting reduces the

2

Robust Asynchronous Stochastic Gradient-Push

(a) Decentralized network topology. (b) Centralized network topology.

Figure 1: Different network topologies.

communication load on the central node, is not vulnerable to failures of that node, and is
more easily scalable.

For analysis of how decentralized asynchronous methods perform we refer the reader
to Mansoori and Wei (2017); Tsitsiklis et al. (1986); Srivastava and Nedic (2011); Assran
and Rabbat (2018); Nedic (2011); Wu et al. (2018) and Tian et al. (2018). We note that
of these works only Tian et al. (2018) is able to obtain an algorithm which agrees on a
global minimizer of (1) with non-random asynchronicity, under the assumptions of strong
convexity, noiseless gradients and possible delays. On the other hand, the papers Nedic
(2011) and Wu et al. (2018) obtain convergence in this situation under assumptions of
natural randomness in the algorithm: the former assumes randomly failing links while the
latter assumes that nodes make updates in random order.

The study of distributed separable optimization over directed graphs was initiated in
Tsianos et al. (2012b), where a distributed approach based on dual averaging with convex
functions over a fixed graph was proposed and shown to converge at an Ok(1/

√
k) rate.

Some numerical results for such methods were reported in Tsianos et al. (2012a). In Nedic
and Olshevsky (2015), a method based on plain gradient descent converging at a rate
of Ok((ln k)/

√
k) was proposed over time-varying graphs. This was improved in Nedic

and Olshevsky (2016) to Ok((ln k)/k) for strongly convex functions with noisy gradient
samples. More recent works on optimization over directed graphs are Akbari et al. (2017),
which considered online convex optimization in this setting, and Assran and Rabbat (2018),
which considered combining directed graphs with delays and asynchronicity. The main
tool for distributed optimization is the so-called “push sum” method introduced in Kempe
et al. (2003), which is widely used to design communication and optimization schemes
over directed graphs. More recent references are Bénézit et al. (2010); Hadjicostis et al.
(2016), which provide a more modern and general analysis of this method, and the most
comprehensive reference on the subject is the recent monograph by Hadjicostis et al. (2018).
We also mention Xi and Khan (2017a); Xi et al. (2018); Nedic et al. (2017), where an
approach based on push-sum was explored. A parallel line of work in this setting based on
the the ADMM model, where updates are allowed to include a local minimization step, was
explored in Brisimi et al. (2018); Chang et al. (2016a,b) and Hong (2017).

3

Spiridonoff, Olshevsky, and Paschalidis

The reason directed graphs present a problem is because much of distributed opti-
mization relies on the primitive of “multiplication by a doubly stochastic matrix:” given
that each node of a network holds a number xi, the network needs to compute yi, where
x = (x1, . . . , xn)>, y = (y1, . . . , yn)> and y = Wx for some doubly stochastic matrix W
with positive spectral gap. This is pretty easy to accomplish over undirected graphs (see
Nedic et al., 2018) but not immediate over directed graphs. A parallel line of research fo-
cuses on distributed methods for constructing such doubly stochastic matrices over directed
graphs – we refer the reader to Dominguez-Garcia and Hadjicostis (2013); Gharesifard and
Cortés (2012); Domı́nguez-Garćıa and Hadjicostis (2014). Unfortunately, to the authors’
best knowledge, no explicit and favorable convergence time guarantees are known for this
procedure. Another line of work (Xi and Khan, 2017b) takes a similar approach, based on
construction of a doubly stochastic matrix with positive spectral gap after the introduction
of auxiliary states. Among works with undirected graphs, Scaman et al. (2017) derived the
optimal convergence rates for smooth and strongly convex functions and introduced the
multi-step dual accelerated (MSDA) algorithm with optimal linear convergence rate in the
deterministic case.

Dealing with message losses has always been a challenging problem for multi-agent op-
timization protocols. Recently, Hadjicostis et al. (2016) resolved this issue rather elegantly
for the problem of distributed average computation by having nodes exchange certain run-
ning sums. It was shown in Hadjicostis et al. (2016) that the introduction of these running
sums is equivalent to a lossless algorithm on a slightly modified graph. We also refer the
reader to the follow-up papers by Su and Vaidya (2016b,a, 2017). We will use the same
approach in this work to deal with message losses.

In many applications, calculating the exact gradients can be computationally very ex-
pensive or impossible Lan et al. (2018). In one possible scenario, nodes are sensors that
collect measurements at every step, which naturally corrupts all the data with noise. Al-
ternatively, communication between agents may insert noise into information transmitted
between them. Finally, when fi(z) measures the fit of a model parameterized by the vector
z to the data of agent i, it may be efficient for agent i to randomly select a subset of its
data and compute an estimate of the gradient based on only those data points (Alpcan and
Bauckhage, 2009). Motivated by these considerations, a literature has arisen studying the
effects of stochasticity in the gradients. For example, Srivastava and Nedic (2011) showed
convergence of an asynchronous algorithm for constrained distributed stochastic optimiza-
tion, under the presence of local noisy communication in a random communication network.
In Pu and Nedic (2018), two distributed stochastic gradient methods were introduced, and
their convergence to a neighborhood of the global minimum (under constant step-size) and
to the global minimum (under diminishing stepsize) was analyzed. In work by Sirb and
Ye (2016), convergence of asynchronous decentralized optimization using delayed stochastic
gradients has been shown.

The algorithms we will study here for stochastic gradient descent are based on the
standard “consensus+gradient descent” framework: nodes will take steps in the direction
of their gradients and then “reconcile” these steps by moving in the directions of an average
of their neighbors in the graph. We refer the reader to Nedic et al. (2018); Yuan et al.
(2016), for a more recent and simplified analysis of such methods. It is also possible to take
a more modern approach, pioneered in Shi et al. (2015), of using the past history to make

4

Robust Asynchronous Stochastic Gradient-Push

updates; such schemes have been shown to achieve superior performance in recent years
(see Shi et al., 2015; Sun et al., 2016; Oreshkin et al., 2010; Nedic et al., 2017; Xi and Khan,
2017a; Xi et al., 2018; Qu and Li, 2017; Xu et al., 2015; Qu and Li, 2019; Di Lorenzo and
Scutari, 2016); we refer the reader to Pu and Nedic (2018) which took this approach.

One of our main concerns in this paper is to develop decentralized optimization methods
which perform as well as their centralized counterparts. Specifically, we will compare the
performance of a distributed method for (1) on a network of n nodes with the performance
of a centralized method which, at every step, can query all n gradients of the functions
f1(z), . . . , fn(z). Since the distributed algorithm gets noise-corrupted gradients, so should
the centralized method. Thus, the natural approach is to compare the distributed method
to centralized gradient descent which moves in the direction of the sum of the gradients of
f1(z), . . . , fn(z). This method of comparison keeps the “computational power” of the two
nodes identical.

Traditionally, the bounds derived on distributed methods were considerably worse than
those derived for centralized methods. For example, the papers by Nedic and Olshevsky
(2015, 2016) had bounds for distributed optimization over directed graphs that were worse
than the comparable centralized method (in terms of rate of error decay) by a multiplicative
factor that, in the worst case, could be as large as nO(n). This is typical over directed graphs,
though better results are possible over undirected graphs. For example, in Olshevsky (2017),
in the model of noiseless, undelayed, synchronous communication over an undirected graph,
a distributed subgradient method was proposed whose performance, relative to a centralized
method with the same computational power, was worse by a multiplicative factor of n.

The breakthrough papers by Chen and Sayed (2015); Pu and Garcia (2017); Morral et al.
(2017), were the first to address this gap. These papers studied the model where gradients
are corrupted by noise, which we also consider in this paper. Chen and Sayed (2015)
examined the mean-squared stability and convergence of distributed strategies with fixed
step-size over graphs and showed the same performance level as that of a centralized strategy,
in the small step-size regime. In Pu and Garcia (2017) it was shown that, for a certain
stochastic differential equation paralleling network gradient descent, the performance of
centralized and distributed methods were comparable. In Morral et al. (2017), it was
proved, for the first time, that distributed gradient descent with an appropriately chosen
step-size, asymptotically performs similarly to a centralized method that takes steps in the
direction of the sum of the noisy gradients, assuming iterates will remain bounded almost
surely. This was the first analysis of a decentralized method for computing the optimal
solution with performance bounds matching its centralized counterpart.

Both Pu and Garcia (2017) and Morral et al. (2017) were over fixed, undirected graphs
with no message loss or delays or asynchronicity. As shown in the paper by Morral et al.
(2012), this turns out to be a natural consequence of the analysis of those methods. Indeed,
on a technical level, the advantage of working over undirected graphs is that they allow for
easy distributed multiplication by doubly-stochastic matrices; it was shown in Morral et al.
(2012) that if this property holds only in expectation – that is, if the network nodes can
multiply by random stochastic matrices that are only doubly stochastic in expectation –
distributed gradient descent will not perform comparably to its centralized counterpart.

In parallel to this work, and in order to reduce communication bottlenecks, Koloskova
et al. (2019) propose a decentralized SGD with communication compression that can achieve

5

Spiridonoff, Olshevsky, and Paschalidis

the centralized baseline convergence rate, up to a constant factor. When the objective
functions are smooth but not necessarily convex, Lian et al. (2017) show that Decentralized
Parallel Stochastic Gradient Descent (D-PSGD) can asymptotically perform comparably to
Centralized PSGD in total computational complexity. However, they argue that D-PSGD
requires much less communication cost on the busiest node and hence, can outperform C-
PSGD in certain communication regimes. Again, both Koloskova et al. (2019) and Lian
et al. (2017) are over fixed undirected graphs, without delays, link failures or asynchronicity.
The follow-up work by Lian et al. (2018), extends the D-PSGD to the asynchronous case.

1.2. Our Contribution

We propose an algorithm which we call Robust Asynchronous Stochastic Gradient Push
(RASGP) for distributed optimization from noisy gradient samples over directed graphs with
message losses, delays, and asynchronous updates. We will assume gradients are corrupted
with additive noise represented by independent random variables, with bounded support,
and with finite variance at node i denoted by σ2

i . Our main result is that the RASGP
performs as well as the best bounds on centralized gradient descent that moves in the
direction of the sum of noisy gradients of f1(z), . . . , fn(z). Our results also hold if the
underlying graphs are time-varying as long as there are no message losses. We give a brief
technical overview of this result next.

We will assume that each function fi(z) is µi-strongly convex with Li-Lipschitz gradient,
where

∑
i µi > 0 and Li > 0, i = 1, . . . , n. The RASGP will have every node maintain an

estimate of the optimal solution which will be updated from iteration to iteration; we will
use zi(k) to denote the value of this estimate held by node i at iteration k. We will show
that, for each node i = 1, . . . , n,

E
[
‖zi(k)− z∗‖22

]
=

Γu
∑n

i=1 σ
2
i

k(
∑n

i=1 µi)
2

+Ok
(

1

k1.5

)
, (2)

where z∗ := arg minF (z) and Γu is the degree of asynchronicity, defined as the maximum
number of iterations between two consecutive updates of any agent. The leading term
matches the best bounds for (centralized) gradient descent that takes steps in the direction
of the sum of the noisy gradients of f1(z), . . . , fn(z), every k/Γu iterations (see Nemirovski
et al., 2009; Rakhlin et al., 2012). Asymptotically, the performance of the RASGP is
network independent: indeed, the only effect of the network or the number of nodes is on
the constant factor within the Ok

(
1/k1.5

)
term above. The asymptotic scaling as Ok(1/k)

is optimal in this setting (Rakhlin et al., 2012).

Consider the case when all the functions are identical, i.e., f1(z) = · · · = fn(z), and
Γu = 1. In this case, letting µ = µi and σ = σi, we have that for each i = 1, . . . , n, (2)
reduces to

E
[
‖zi(k)− z∗‖22

]
=
σ2/n

kµ2
+Ok

(
1

k1.5

)
.

In other words, asymptotically we get the variance reduction of a centralized method that
simply averages the n noisy gradients at each step.

The implication of this result is that one can get the benefit of having n independent
processors computing noisy gradients in spite of all the usual problems associated with

6

Robust Asynchronous Stochastic Gradient-Push

communications over a network (i.e., message losses, latency, asynchronous updates, one-
way communication). Of course, the caveat is that one must wait sufficiently long for the
asymptotic decay to “kick in,” i.e., for the second term on the right-hand side of (2) to
become negligible compared to the first. We leave the analysis of the size of this transient
period to future work and note here that it will depend on the network and the number of
nodes.1

The RASGP is a variation on the usual distributed gradient descent where nodes mix
consensus steps with steps in the direction of their own gradient, combined with a new
step-size trick to deal with asynchrony. It is presented as Algorithm 3 in Section 3. For a
formal statement of the results presented above, we refer the reader to Theorem 15 in the
body of the paper.

We briefly mention two caveats. The first is that implementation of the RASGP requires
each node to use the quantity

∑n
i=1 µi/n in setting its local stepsize. This is not a problem

in the setting when all functions are the same, but, otherwise,
∑n

i=1 µi/n is a global quantity
not immediately available to each node. Assuming that node i knows µi, one possibility is to
use average consensus to compute this quantity in a distributed manner before running the
RASGP (for example using the algorithm described in Section 2 of this paper). The second
caveat is that, like all algorithms based on the push-sum method, the RASGP requires each
node to know its out-degree in the communication graph.

1.3. Organization of This Paper

We conclude this Introduction with Section 1.4, which describes the basic notation we will
use throughout the remainder of the paper. Section 2 does not deal directly with the
distributed optimization problem we have discussed, but rather introduces the problem of
computing the average in the fairly harsh network setting we will consider in this paper.
This is an intermediate problem we need to analyze on the way to our main result. Section
3 provides the RASGP algorithm for distributed optimization, and then states and proves
our main result, namely the asymptotically network-independent and optimal convergence
rate. Results from numerical simulations of our algorithm to illustrate its performance are
provided in Section 4, followed by conclusions in Section 5.

1.4. Notations and Definitions

We assume there are n agents V = {1, . . . , n}, communicating through a fixed directed
graph G = (V, E), where E is the set of directed arcs. We assume G does not have self-loops
and is strongly connected.

For a matrix A, we will use Aij to denote its (i, j)th entry. Similarly, vi and [v]i will
denote the ith entry of a vector v. A matrix is called stochastic if it is non-negative and the
sum of the elements of each row equals to one. A matrix is column stochastic if its transpose
is stochastic. To a non-negative matrix A ∈ Rn×n we associate a directed graph GA with
vertex set VA = {1, 2, . . . , n} and edge set EA = {(i, j)|Aji > 0}. In general, such a graph

1. It goes without saying that no analysis of distributed optimization can be wholly independent of the
network or the number of nodes. Indeed, in a network of n nodes, the diameter can be as large as n− 1,
which means that, in the worst case, no bounds on global performance can be obtained during the first
n− 1 steps of any algorithm.

7

Spiridonoff, Olshevsky, and Paschalidis

might contain self-loops. Intuitively, this graph corresponds to the information flow in the
update x(k + 1) = Ax(k); indeed, (i, j) ∈ EA if the jth coordinate of x(k + 1) depends on
the ith coordinate of x(k) in this update.

Given a sequence of matrices A(0),A(1),A(2), . . ., we denote by Ak2:k1 , k2 ≥ k1, the
product of elements k1 to k2 of the sequence, inclusive, in the following order:

Ak2:k1 = A(k2)A(k2 − 1) · · ·A(k1).

Moreover, Ak:k = A(k).

Node i is an in-neighbor of node j, if there is a directed link from i to j. Hence, j
would be an out-neighbor of node i. We denote the set of in-neighbors and out-neighbors of
node i by N−i and N+

i , respectively. Moreover, we denote the number of in-neighbors and
out-neighbors of node i with d−i and d+

i , as its in-degree and out-degree, respectively.

By xmin and xmax we denote mini xi and maxi xi respectively, over all possible indices
unless mentioned otherwise. We denote a n × 1 column vector of all ones or zeros by 1n
and 0n, respectively. We will remove the subscript when the size is clear from the context.

Let v ∈ Rd be a vector. We denote by v− ∈ Rd a vector of the same length such that

v−i =

{
1/vi, if vi 6= 0,

0, if vi = 0.

For all the algorithms we describe, we sometimes use the notion of mass to denote the
value an agent holds, sends or receives. With that in mind, we can think of a value being
sent from one node, as a mass being transferred.

We use ‖.‖p to denote the lp-norm of a vector. We sometimes drop the subscript when
referring to the Euclidean l2 norm.

2. Push-Sum with Delays and Link Failures

In this section we introduce the Robust Asynchronous Push-Sum algorithm (RAPS) for
distributed average computation and prove its exponential convergence. Convergence results
proved for this algorithm will be used later when we turn to distributed optimization.
The algorithm relies heavily on ideas from Hadjicostis et al. (2016) to deal with message
losses, delays, and asynchrony. The conference version of this paper Olshevsky et al. (2018)
developed RAPS for the delay-free case, and this section may be viewed as an extension of
that work.

Pseudocode for the algorithm is given in the box for Algorithm 1. We begin by outlining
the operation of the algorithm. Our goal in this section is to compute the average of vectors,
one held by each node in the network, in a distributed manner. However, since the RAPS
algorithm acts separately in each component, we may, without loss of generality, assume
that we want to average scalars rather than vectors. The scalar held by node i will be
denoted by xi(0).

Without loss of generality, we define an iteration by descretizing time into time slots
indexed by k = 0, 1, 2, We assume that during each time slot every agent makes at most
one update and processes messages sent in previous time slots.

8

Robust Asynchronous Stochastic Gradient-Push

In the setting of no message losses, no delays, no asynchrony, and a fixed, regular,
undirected communication graph, the RAPS can be shown to be equivalent to the much
simpler iteration

x(t+ 1) = Wx(t),

where W is an irreducible, doubly stochastic matrix with positive diagonal; standard
Markov chain theory implies that xi(t) → (1/n)

∑n
i=1 xi(t) in this setting. RAPS does

essentially the same linear update, but with a considerable amount of modifications. In
particular, we use the central idea of the classic push-sum method (Kempe et al., 2003)
to deal with directed communication, which suggests to have a separate update equation
for the y-variables, which informs us how we should rescale the x-variables; as well as the
central idea of Hadjicostis et al. (2018), which is to repeatedly broadcast sums of previous
messages to provide robustness against message loss. While the algorithm in Hadjicostis
et al. (2018) handles message losses in a synchronous setting, RAPS can handle delays as
well as asynchronicity.

Before getting into details, let us provide a simple intuition behind the RAPS algorithm.
Each agent i holds a value (mass) xi and yi. At the beginning of every iteration, i wants
to split its mass between itself and its out-neighbors j ∈ N+

i . However, to handle message
losses, it sends the accumulated x and y mass (running sums which we denote by φxi and
φyi), that i wants to transfer to each of its neighbors, from the start of the algorithm.
Therefore, when a neighbor j receives a new accumulated mass from i, it stores it at ρ∗ji
and by subtracting the previous accumulated mass ρji it had received from i, j obtains
all the mass that i has been trying to send since its last successful communication. Then,
j updates its x and y mass by adding the new received masses, and finally, updates its
estimate of the average to x/y. To handle delays and asynchronicity, timestamps κi are
attached to messages outgoing from i.

The pseudocode for the algorithm may appear complicated at first glance; this is because
of the considerable complexity required to deal with directed communications, message
losses, delays, and asynchrony.

We next describe the algorithm in more detail. First, in the course of executing the
algorithm, every agent i maintains scalar variables xi, yi, zi, φ

x
i , φyi , κi, ρ

x
ij , ρ

y
ij and κij for

(j, i) ∈ E . The variables xi and yi have the same evolution, however yi is initialized as 1.
Therefore, to save space in describing and analyzing the algorithm, we will use the symbol θ,
when a statement holds for both x and y. Similarly, when a statement is the same for both
variables x and y, we will remove the superscripts x or y. For example, the initialization
ρji(0) = 0 in the beginning of the algorithm means both ρxji(0) = 0 and ρyji(0) = 0.

We briefly mention the intuitive meaning of the various variables. The number zi rep-
resents node i’s estimate of the initial average. The counter φθi (k) is the total θ-value sent
by i to each of its neighbors from time 0 to k− 1. Similarly, ρθij(k) is the total θ value that
i has received from j up to time k − 1. The integer κi is a timestamp that i attaches to its
messages, and the number κij tracks the latest timestamp i has received from j.

To obtain an intuition for how the algorithm uses the counters φθi (k) and ρθij(k), note
that, in line 15 of the algorithm, node i effectively figures out the last θ value sent to it
by each of its in-neighbors j, by looking at the increment to the ρθij . This might seem
needlessly involved, but, the underlying reason is that this approach introduces robustness
to message losses.

9

Spiridonoff, Olshevsky, and Paschalidis

Algorithm 1 Robust Asynchronous Push-Sum (RAPS)

1: Initialize the algorithm with y(0) = 1, φi(0) = 0, ∀i ∈ {1, . . . , n} and ρij(0) = 0,
κij(0) = 0, ∀(j, i) ∈ E .

2: At every iteration k = 0, 1, 2, . . ., for every node i:
3: if node i wakes up then
4: κi ← k;
5: φxi ← φxi + xi

d+
i +1

, φyi ← φyi + yi
d+
i +1

;

6: xi ← xi
d+
i +1

, yi ← yi
d+
i +1

;

7: Node i broadcasts (φxi , φ
y
i , κi) to its out-neighbors in N+

i .
8: Processing the received messages
9: for (φxj , φ

y
j , κ
′
j) in the inbox do

10: if κ′j > κij then

11: ρ∗xij ← φxj , ρ∗yij ← φyj ;
12: κij ← κ′j ;
13: end if
14: end for
15: xi ← xi +

∑
j∈N−i

(
ρ∗xij − ρxij

)
, yi ← yi +

∑
j∈N−i

(
ρ∗yij − ρ

y
ij

)
;

16: ρxij ← ρ∗xij , ρyij ← ρ∗yij ,
17: zi ← xi

yi
;

18: end if
19: Other variables remain unchanged.

We next describe in words what the pseudocode above does. At every iteration k, if
agent i wakes up, it performs the following actions. First, it divides its values xi, yi into
d+
i + 1 parts and broadcasts these to its out-neighbors; actually, what it broadcasts are the

accumulated running sums φxi and φyi . Following Kempe et al. (2003), this is sometimes
called the “push step.”

Then, node i moves on to process the messages in its inbox in the following way. If agent
i has received a message from node j that is newer than the last one it has received before,
it will store that message in ρ∗ij and discard the older messages. Next, i updates its x and y
variables by adding the difference of ρ∗ij with the older value ρij , for all in-neighbors j. As
mentioned above, this difference is equal to the new mass received. Next, ρ∗ij overwrites ρij
in the penultimate step. The last step of the algorithm sets zi to be the rescaled version of
xi: zi = xi/yi.

In the remainder of this section, we provide an analysis of the RAPS algorithm, ulti-
mately showing that it converges geometrically to the average in the presence of message
losses, asynchronous updates, delays, and directed communication. Our first step is to
formulate the RAPS algorithm in terms of a linear update (i.e., a matrix multiplication),
which we do in the next subsection.

10

Robust Asynchronous Stochastic Gradient-Push

2.1. Linear Formulation

Next we show that, after introducing some new auxiliary variables, Algorithm 1 can be
written in terms of a classical push-sum algorithm (Kempe et al., 2003) on an augmented
graph. Since the y-variables have the same evolution as the x-variables, here we only analyze
the x-variables.

In our analysis, we will associate with each message an effective delay. If a message is
sent at time k1 and is ready to be processed at time k2, then k2 − k1 ≥ 1 is the effective
delay experienced by that message. Those messages that are discarded will not have an
effective delay associated with them and are considered as lost.

Next, we will state our assumptions on connectivity, asynchronicity, and message loss.

Assumption 1 Suppose:

(a) Graph G is strongly connected and does not have self-loops.

(b) The delays on each link are bounded above by some Γdel ≥ 1.

(c) Every agent wakes up and performs updates at least once every Γu ≥ 1 iterations.

(d) Each link fails at most Γf ≥ 0 consecutive times.

(e) Messages arrive in the order of time they were sent. In other words, if messages are
sent from node i to j at times k1 and k2 with (effective) delays d1 and d2, respectively,
and k1 < k2, then we have k1 + d1 < k2 + d2.

One consequence of Assumption 1 is that the effective delays associated with each mes-
sage that gets through are bounded above by Γd := Γdel + Γu − 1. Another consequence
is that for each (i, j) ∈ E , j receives a message from i successfully, at least once every Γs
iterations where

Γs := Γu(Γf + 1) + Γd ≥ 2. (3)

Part (e) of Assumption 1 can be assumed without loss of generality. Indeed, observe that
outdated messages automatically get discarded in Line 10 of our algorithm. For simplicity,
it is convenient to think of those messages as lost. Thus, if this assumption fails in practice,
the algorithm will perform exactly as if it had actually held in practice due to Line 10.
Making this an assumption, rather than a proposition, lets us slightly simplify some of the
arguments and avoid some redundancy throughout this paper.

Let us introduce the following indicator variables: τi(k) for i ∈ {1, . . . , n} which equals
to 1 if node i wakes up at time k, and equals 0 otherwise. Similarly, τ lij(k) for (i, j) ∈ E ,
1 ≤ l ≤ Γd, which is 1 if τi(k) = 1 and the message sent from node i to j at time k will
arrive after experiencing an effective delay of l. 2 Note that if node i wakes up at time k
but the message it sends to j is lost, then τ lij(k) will be zero for all l.

We can rewrite the RAPS algorithm with the help of these indicator variables. Let us
adopt the notation that xi(k) refers to xi at the beginning of round k of the algorithm
(i.e., before node i has a chance to go through the list of steps outlined in the algorithm

2. Note the difference between indexing in τ lij and ρxji, which are both defined for link (i, j) ∈ E .

11

Spiridonoff, Olshevsky, and Paschalidis

box). We will use the same convention with all of the other variables, e.g., yi(k), zi(k), etc.
If node i does not wake up at round k, then of course xi(k + 1) = xi(k).

Now observe that we can write

φxi (k + 1)− φxi (k) = τi(k)
xi(k)

d+
i + 1

. (4)

Likewise, we have

xi(k + 1) = xi(k)

(
1− τi(k) +

τi(k)

d+
i + 1

)
+
∑
j∈N−i

(
ρxij(k + 1)− ρxij(k)

)
, (5)

which can be shown by considering each case (τi(k) = 1 or 0); note that we have used the
fact that, in the event that node i wakes up at time k, the variable ρxij(k + 1) equals the
variable ρ∗xij during execution of Line 16 of the algorithm at time k.

Finally, we have that ∀(i, j) ∈ E , the flows ρxji are updated as follows:

ρxji(k + 1) = ρxji(k) +

Γd∑
l=1

τ lij(k − l)
(
φxi (k + 1− l)− ρxji(k)

)
, (6)

where we make use of the fact that the sum contains only a single nonzero term, since
the messages arrive monotonically. To parse the indices in this equation, note that node
i actually broadcasts φxi (k + 1 − l) in our notation at iteration k − l; by our definitions,
φxi (k− l) is the value of φxi at the beginning of that iteration. To simplify these relations,
we introduce the auxiliary variables uxij for all (i, j) ∈ E , defined through the following
recurrence relation:

uxij(k + 1) :=

(
1−

Γd∑
l=1

τ lij(k)

)(
uxij(k) + φxi (k + 1)− φxi (k)

)
, (7)

and initialized as uxij(0) := 0. Intuitively, the variables uxij represent the “excess mass” of
xi that is yet to reach node j. Indeed, this quantity resets to zero whenever a message is
sent that arrives at some point in the future, and otherwise is incremented by adding the
broadcasted mass that is lost. Note that node i never knows uxij(k), since it has no idea
which messages are lost, and which are not; nevertheless, for purposes of analysis, nothing
prevents us from considering these variables.

Let us also define the related quantity,

υxij(k) := uxij(k) + φxi (k + 1)− φxi (k), for k ≥ 0,

and υxij(k) := 0 for k < 0. Intuitively, this quantity may be thought of as a forward-looking
estimate of the mass that will arrive at node j, if the message sent from node i at time k
gets through; correspondingly, it includes not only the previous unsent mass, but the extra
mass that will be added at the current iteration.

The key variables for the analysis of our method are the variables we will denote by
xlij(k). Intuitively, every time a message is sent, but gets lost, we imagine that it has instead

12

Robust Asynchronous Stochastic Gradient-Push

arrived into a “virtual node” which holds that mass; once the next message gets through,
we imagine that the virtual node has forwarded that mass to its intended destination. This
idea originates from Hadjicostis et al. (2016). Because of the delays, however, we need to
introduce Γd virtual nodes for each such event. If a message is sent from i and arrives at
j with effective delay l, we will instead imagine it is received by the virtual node blij , then

sent to bl−1
ij at the next time step, and so forth until it reaches b1ij , and is then forwarded

to its destination. These virtual nodes are defined formally later.
Putting that intuition aside, we formally define the variables xlij(k) via the following set

of recurrence relations:

xlij(k + 1) := τ lij(k)υxij(k), l = Γd, (8)

xlij(k + 1) := τ lij(k)υxij(k) + xl+1
ij (k), 1 ≤ l < Γd, (9)

and xlij(k) := 0 when both k ≤ 0 and l = 1, . . . ,Γd. To parse these equations, imagine
what happens when a message is sent from i to j with effective delay of Γd at time k. The
content of this message becomes the value of xΓd

ij according to (8); and, in each subsequent

step, influences xΓd−1
ij , xΓd−2

ij , and so forth according to (9). Putting (8) and (9) together,
we obtain

xlij(k) =

Γd−l+1∑
t=1

τ t+l−1
ij (k − t)υxij(k − t), (10)

and particularly,

x1
ij(k) =

Γd∑
t=1

τ tij(k − t)υxij(k − t). (11)

Note that, as is common in many of the equations we will write, only a single term in the
sums can be nonzero (this is not obvious at this point and is a result of Lemma 1).

Before proceeding to the main result of this section, we state the following lemma, whose
proof is immediate.

Lemma 1 If τ lij(k) = 1, the following statements are satisfied:

(a) τ l
′
ij(k) = 0 for l′ 6= l.

(b) If l > 0, then τ sij(k + t) = 0 for t = 1, . . . , l and s = 0, . . . , l − t.

(c) If l < Γd, then τ sij(k − t) = 0 for t = 1, . . . ,Γd − l and s = l + t, . . . ,Γd.

Lemma 2 If τ lij(k) = 1 then xl
′
ij(k) = 0 for l′ > l.

Proof By Lemma 1(c), τ t+l
′−1

ij (k − t) = 0 for t ∈ {1, . . . ,Γd − l′ + 1}. Hence, by (10) we
have,

xl
′
ij(k) =

Γd−l′+1∑
t=1

τ t+l
′−1

ij (k − t)υxij(k − t) = 0.

13

Spiridonoff, Olshevsky, and Paschalidis

The next lemma is essentially a restatement of the observation that the content of every
xl
′
ij eventually “passes through” x1

ij .

Lemma 3 If τ lij(k − l) = 1, l ≥ 1, we have,

l∑
l′=1

xl
′
ij(k − l) =

l∑
t=1

x1
ij(k − t).

Proof We will show x1
ij(k − t) = xl−t+1

ij (k − l) for t = 1, . . . , l. For t = l the equality is

trivial. Now suppose t < l. By Lemma 1(a) we have τ l−tij (k− l) = 0. Moreover, by part (b)

of the same lemma we have, τ s
′
ij (k−l+t′) = 0 for t′ = 1, . . . , l−t−1 and s′ = l−t−t′. Hence,

xl−t−t
′+1

ij (k−l+t′) = xl−t−t
′

ij (k−l+t′+1). Combining these equations for t′ = 0, . . . , l−t−1,

we get x1
ij(k − t) = xl−t+1

ij (k − l).

The following lemma is the key step of a linear formulation of RAPS.

Lemma 4 For k = 0, 1, . . . and (i, j) ∈ E we have:

ρxji(k + 1)− ρxji(k) = x1
ij(k), (12)

uxij(k + 1) + ρxji(k + 1) +

Γd∑
l=1

xlij(k + 1) = φxi (k + 1). (13)

Parsing these equations, (12) simply states that the value of x1
ij(k) can be thought of as

impacting ρxji at time k; recall that the content of x1
ij(k) is a message that was sent from

node i to j at time k − l with an effective delay of l, for some 1 ≤ l ≤ Γd (cf. Equation
11). On the other hand, (13) may be thought of a “conservation of mass” equation. All the
mass that has been sent out by node i has either: (i) been lost (in which case it is in uxij),
(ii) affected node j (in which case it is in ρxji), or (iii) is in the process of reaching node j

but delayed (in which case it is in some xlij).
Although this lemma is arguably obvious, a formal proof is surprisingly lengthy. For

this reason, we relegate it to the Appendix.
We next write down a matrix form of our updates. As a first step, define the (n+m′)×1

column vector χ(k) := [x(k)>,x1(k)>, . . . ,xΓd(k)>,ux(k)>]>, where m′ := (Γd + 1)m,
m := |E|, x(k) collects all xi(k), xl(k) collects all xlij(k) and, ux(k) collects all uxij(k).
Define ψ(k) by collecting y-values similarly.

Now, we have all the tools to show the linear evolution of χ(k). By Equations (4), (5)
and (12) we have,

xj(k + 1) = xj(k)

(
1− τj(k) +

τj(k)

d+
j + 1

)
+
∑
i∈N−j

x1
ij(k). (14)

14

Robust Asynchronous Stochastic Gradient-Push

Moreover, by the definitions of xij , υij and (4) it follows,

xΓd
ij (k + 1) = τΓd

ij (k)

[
uxij(k) +

xi(k)

d+
i + 1

]
,

xlij(k + 1) = τ lij(k)

[
uxij(k) +

xi(k)

d+
i + 1

]
+ xl+1

ij (k).

(15)

Finally, by (4) and (7) we obtain,

uxij(k + 1) =
(
1−

Γd∑
l=1

τ lij(k)
)(
uxij(k) + τi(k)

xi(k)

d+
i + 1

)
. (16)

Using (14) to (16) we can write the evolution of χ(k) and ψ(k) in the following linear form:

χ(k + 1) = M(k)χ(k),

ψ(k + 1) = M(k)ψ(k),
(17)

where M(k) ∈ R(n+m′)×(n+m′) is an appropriately defined matrix.

We have thus completed half of our goal: we have shown how to write RAPS as a linear
update. Next, we show that the corresponding matrices are column-stochastic.

Lemma 5 M(k) is column stochastic and its positive elements are at least 1/(maxi{d+
i }+

1). Moreover, for i = 1, . . . , n, Mii(k) are positive.

This lemma can be proved “by inspection.” Indeed, M(k) is column stochastic if and
only if, for every χ(k), we have 1Tχ(k+ 1) = 1Tχ(k). Thus one just needs to demonstrate
that no mass is ever “lost,” i.e., that a decrease/increase in the value of one node is always
accompanied by an increase/decrease of the value of another node, which can be done just
by inspecting the equations. A formal proof is nonetheless given next.

Proof To show that M(k) is column stochastic, we study how each element of χ(k)
influences χ(k + 1).

For i = 1, . . . , n, the ith column of M(k) represents how xi(k) influences χ(k + 1).
We will use (14) to (16) to find these coefficients.

First, xi(k) influences xi(k + 1) with the coefficient 1 − τi(k) + τi(k)/(d+
i + 1) > 0.

For j ∈ N+
i , xi(k) influences xlij(k + 1) by τ lij(k)/(d+

i + 1) and uxij(k + 1) with coefficient

(τi(k)−
∑Γd

l=1 τi(k)τ lij(k))/(d+
i + 1). Summing these coefficients up results in 1.

For l = 2, . . . ,Γd, (i, j) ∈ E , xlij(k) influences xl−1
ij (k + 1) with coefficient 1 and x1

ij(k)
influences xj(k + 1) with coefficient 1.

Finally, uxij(k) influences xlij(k + 1) with coefficient τ lij(k) and uxij(k + 1) with (1 −∑d
l=1 τ

l
ij(k)), which sum up to 1.

Note that all the coefficients above are at least 1/(maxi{d+
i }+ 1).

15

Spiridonoff, Olshevsky, and Paschalidis

(a) τi(k) = 0. (b) τ lij(k) = 1. (c) τi(k) = 1, τ lij(k) = 0, ∀l.

Figure 2: Augmented graph H(k) for different scenarios.

An important result of this lemma is the sum preservation property, i.e.,

n+m′∑
i=1

χi(k) =
n∑
i=1

xi(0),

n+m′∑
i=1

ψi(k) = n.

(18)

For further analysis, we augment the graph G to H(k) := GM(k) = (VA, EA(k)) by adding

the following virtual nodes: blij for l = 1, . . . ,Γd and (i, j) ∈ E , which hold the values xlij
and ylij ; We also add the nodes cij for (i, j) ∈ E which hold the values uxij and uyij .

In H(k), there is a link from blij to bl−1
ij for 1 < l ≤ d and from b1ij to j as they forward

their values to the next node. Moreover, if τ lij(k) = 1 for some 1 ≤ l ≤ Γd, then there is a

link from both cij and i to blij .

If τ lij(k) = 0 for 1 ≤ l ≤ Γd then cij has a self loop, and if also τi(k) = 1, there’s a link
from i to cij . All non-virtual agents i ∈ V , have self-loops all the time (see Fig. 2).

Recursions (17) and Lemma 5 may thus be interpreted as showing that the RAPS
algorithm can be thought of as a push-sum algorithm over the augmented graph sequence
{H(k)}, where each agent (virtual and non-virtual) holds an x-value and a y-value which
evolve similarly and in parallel.

2.2. Exponential Convergence

The main result of this section is exponential convergence of RAPS to initial average, stated
next.

Theorem 6 Suppose Assumption 1 holds. Then RAPS converges exponentially to the ini-
tial mean of agent values. i.e.,∣∣∣∣∣zi(k)− 1

n

n∑
i=1

xi(0)

∣∣∣∣∣ ≤ δλk‖x(0)‖1,

where δ := 1
1−nα6 , λ := (1− nα6)1/(2nΓs) and α := (1/n)nΓs.

16

Robust Asynchronous Stochastic Gradient-Push

It is worth mentioning that even though 1/(1− λ) = O(np(n)) where p(n) = O(n), this is a
bound for a worst case scenario and on average, as it can be seen in numerical simulations,
RAPS performs better. Moreover, when the graph G satisfies certain properties, such as
regularity, and also there is no link delays and failures, we have 1/(1 − λ) = O(n3) (see
Theorem 1 in Nedic and Olshevsky, 2016). More broadly, that paper establishes that
1/(1− λ) will scale with the mixing rate of the underlying Markov process.

Unfortunately, this theorem does not follow immediately from standard results on ex-
ponential convergence of push-sum. The reason is that the connectivity conditions assumed
for such theorems are not satisfied here: there will not always be paths leading to virtual
nodes from non-virtual nodes. Nevertheless, with some suitable modifications, the existence
of paths from virtual nodes to other virtual nodes is sufficient, as we will show next.

Before proving the theorem, we need the following lemmas and definitions. Given a
sequence of graphs G0,G1,G2, . . ., we will say node b is reachable from node a in time period
k1 to k2 (k1 < k2), if there exists a sequence of directed edges ek1 , ek1+1, . . . , ek2 such that
ek is in Gk, the destination of ek is the origin of ek+1 for k1 ≤ k < k2, and the origin of ek1

is a and the destination of ek2 is b.
Our first lemma provides a standard lower bound on the entries of the column-stochastic

matrices from (17).

Lemma 7 Mk+nΓs−1:k has positive first n rows, for any k ≥ 0. The positive elements of
this matrix are at least

α = (1/n)nΓs .

Proof By Lemma 5, each node j ∈ V has self-loops at every iteration in the augmented
graph H. Since G is strongly connected, the set of reachable non-virtual nodes from any
node ah ∈ VA strictly increases every Γs iterations. Hence, Mk+nΓs−1:k has positive first n
rows. Moreover, since all positive elements of M are at least 1/n, the positive elements of
Mk+nΓs−1:k are at least (1/n)nΓs .

Next, we give a reformulation of the push-sum update that will be key to showing the
exponential convergence of the algorithm. The proof is a minor variation of Lemma 4 in
Nedic and Olshevsky (2016).

Lemma 8 Consider the vectors u(k) ∈ Rd, v(k) ∈ Rd+ and square matrix A(k) ∈ Rd×d+ ,
for k ≥ 0 such that,

u(k + 1) = A(k)u(k),

v(k + 1) = A(k)v(k).
(19)

Also suppose ui(k) = 0 if vi(k) = 0, ∀k, i. Define u−(k) ∈ Rd as:

u−i (k) :=

{
1/ui(k), if ui(k) 6= 0,

0, if ui(k) = 0.

Define r(k) := u(k)◦v−(k), where ◦ denotes the element-wise product of two vectors. Then
we have,

r(k + 1) = B(k)r(k),

17

Spiridonoff, Olshevsky, and Paschalidis

where B(k) ∈ Rd×d+ is defined as,

B(k) := diag(v−(k + 1))A(k)diag(v(k)).

Proof Since ui(k) = 0 if vi(k) = 0, ui(k) = ri(k)vi(k) holds for all i, k. Substituting in
(19) we obtain,

ri(k + 1)vi(k + 1) =
d∑
j=1

Aij(k)rj(k)vj(k).

Since, by definition ri(k) = 0 if vi(k) = 0, ∀k, i, we get

ri(k + 1) = v−i (k + 1)
d∑
j=1

Aij(k)rj(k)vj(k).

Therefore,

r(k + 1) = diag(v−(k + 1))A(k)diag(v(k))r(k).

Our next corollary, which follows immediately from the previous lemma, characterizes
the dichotomy inherent in push-sum with virtual nodes: every row either adds up to one or
zero.

Corollary 9 Consider the matrix B(k) defined in Lemma 8. Let us define the index set
Jk := {i| vi(k) 6= 0}. If i /∈ Jk, the ith column of B(k) and ith row of B(k− 1) only contain
zero entries. Moreover,

B(k)1d = diag(v−(k + 1))A(k)v(k)

= diag(v−(k + 1))v(k + 1) =

1 or 0
...

1 or 0

 .
Hence, the ith row of B(k) sums to 1 if and only if vi(k + 1) 6= 0 or i ∈ Jk+1.

Our next lemma characterizes the relationship between zero entries in the vectors χ(k)
and ψ(k).

Lemma 10 χh(k) = 0 whenever ψh(k) = 0 for h = 1, . . . , n+m′, k ≥ 0.

Proof First we note that ψ(0) = [1>n ,0
>
m′]
> and each node i ∈ V has a self-loop in graph

H(k) for all k ≥ 0; hence, ψh(k) ≥ 0 for all h and particularly, ψi(k) > 0 for i = 1, . . . , n.
Now suppose h > n and corresponds to a virtual agent ah ∈ VA. If ψh(k) = 0, it means
ah has already sent all its y-value to another node or has not received any y-value yet. In
either case, that node also has no remaining x-value as well and χh(k) = 0.

18

Robust Asynchronous Stochastic Gradient-Push

Let us define ψ−(k) ∈ Rn+m′ , k ≥ 0 by

ψ−i (k) :=

{
1/ψi(k), if ψi(k) 6= 0,

0, if ψi(k) = 0.
(20)

Moreover, we define the vector z(k) by setting z(k) := χ(k) ◦ ψ−(k). By (17) and Lemma
10, we can use Lemma 8 to obtain,

z(k + 1) = P(k)z(k),

where P(k) := diag(ψ−(k + 1))M(k)diag(ψ(k)). Let us define

Ik := {i|ψi(k) > 0}.

Then, by Corollary 9 we have each zi(k + 1), i ∈ Ik+1, is a convex combination of zj(k)’s
for j ∈ Ik. Therefore,

max
i∈Ik+1

zi(k + 1) ≤ max
i∈Ik

zi(k),

min
i∈Ik+1

zi(k + 1) ≥ min
i∈Ik

zi(k).
(21)

These equations will be key to the analysis of the algorithm. We stress that we have
not shown that the quantity mini zi(k) is non-decreasing; rather, we have shown that the
related quantity, where the minimum is taken over Ik, the set of nonzero entries of ψ(k), is
non-increasing.

Our next lemma provides lower and upper bounds on the entries of the vector ψ(k).

Lemma 11 For k ≥ 0 and 1 ≤ i ≤ n we have:

nα ≤ ψi(k) ≤ n.

Moreover, for n+ 1 ≤ h ≤ n+m′ and k ≥ 1 we have either ψh(k) = 0 or,

nα2 ≤ ψh(k) ≤ n.

Proof We have,

ψ(k) = Mk−1:0

[
1n
0m′

]
,

If k < nΓs, positive entries of Mk−1:0 are at least (1/n)k. Hence, positive entries of ψ(k)
are at least, (

1

n

)k
≥
(

1

n

)nΓs−1

= nα.

Now suppose k ≥ nΓs. Mk−1:0 is the product of Mk−1:k−nΓs and another column stochastic
matrix. By Lemma 7, Mk−1:k−nΓs has positive first n rows, and positive entries of at least

19

Spiridonoff, Olshevsky, and Paschalidis

α. Thus, Mk−1:0 has positive first n rows, and positive entries of at least α as well. We
obtain for 1 ≤ i ≤ n,

ψi(k) ≥ nα, for k ≥ 1.

For n + 1 ≤ h ≤ n + m′, suppose ψh corresponds to a virtual node ah corresponding to
some link (i, j) ∈ E . If ψh(k) is positive, it is carrying a value sent from i at k − nΓs or
later, which has experienced link failure or delays. This is because each value gets to its
destination after at most Γs iterations. Since i has self-loops all the time, ah is reachable
from i in period k − nΓs to k − 1; Hence, Mk−1:k−nΓs

hi ≥ α, and it follows,

ψh(k) ≥ αψi(k − nΓs) ≥ nα2.

Also, due to sum preservation property, we have ψh(k) ≤ n, for all h and k ≥ 0.

Using Lemma 8 again, it follows,

z(k + nΓs) = P̂(k)z(k),

where,

P̂(k) := diag(ψ−(k + nΓs))M
k+nLs−1:kdiag(ψ(k)). (22)

Next, we are able to find a lower bound on the positive elements of P̂(k). The proof of the
following corollary is immediate.

Corollary 12 By (22) and Lemma 11 we have:

(a) P̂ij(k) > 0 for 1 ≤ i, j ≤ n.

(b) Positive entries of first n columns of P̂ (k) are at least (1/n)α(nα) = α2. Similarly,
the last m′ columns have positive entries of at least α3.

(c) For h > n, if h ∈ Ik+nΓs then P̂hi(k) > 0 for some 1 ≤ i ≤ n.

Our next lemma, which is the final result we need before proving the exponential con-
vergence rate of RAPS, provides a quantitative bound for how multiplication by the matrix
P shrinks the range of a vector.

Lemma 13 Let t ≥ 0 and {u(k)}k≥0 ∈ Rn+m′ be a sequence of vectors such that,

u(k + 1) = P̂(knΓs + t)u(k).

Define

st(k) := max
i∈IknΓs+t

ui(k)− min
i∈IknΓs+t

ui(k).

Then,

st(k + 2) ≤ (1− nα6)st(k).

20

Robust Asynchronous Stochastic Gradient-Push

Proof Let us define
rt(k) := max

1≤i≤n
ui(k)− min

1≤i≤n
ui(k).

By Corollary 12 for j ∈ I(k+1)nΓs+t, the jth row of P̂(knΓs + t) has at least one positive
entry in the first n columns. Thus, because uj(k + 1) is maximized/minimized when all of
the weight is put on the largest/smallest possible entry of uj(k), we have:

uj(k + 1) ≤ α3 max
1≤i≤n

ui(k) + (1− α3) max
i∈IknΓs+t

ui(k),

uj(k + 1) ≥ α3 min
1≤i≤n

ui(k) + (1− α3) min
i∈IknΓs+t

ui(k),

Therefore,

st(k + 1) ≤ α3rt(k) + (1− α3)st(k). (23)

Moreover, by a similar argument for j ≤ n,

uj(k + 1) ≤ α3
n∑
i=1

ui(k) + (1− nα3) max
i∈IknΓs+t

ui(k),

uj(k + 1) ≥ α3
n∑
i=1

ui(k) + (1− nα3) min
i∈IknΓs+t

ui(k).

Thus,
rt(k + 1) ≤ (1− nα3)st(k).

Combining with (23) and noting that rt(k) ≤ st(k) and st(k + 1) ≤ st(k) we obtain,

st(k + 2) ≤ α3(1− nα3)st(k) + (1− α3)st(k + 1)

≤ α3(1− nα3)st(k) + (1− α3)st(k)

= (1− nα6)st(k).

Proof of Theorem 6 Using Lemma 13 with t = 0 and u(k) = z(knΓs) we get s0(k) ≤
(1 − nα6)bk/2cs0(0) and limk→∞ s0(k) = 0. Moreover by (21), zmax(k) is a non-increasing
sequence and by zmin(k), is non-decreasing. Thus,

lim
k→∞, h∈Ik

zh(k) = L∞. (24)

We have:

L∞ = L∞ lim
k→∞

∑n+m′

i=1 ψi(k)∑n+m′

i=1 ψi(k)

= lim
k→∞

(∑n+m′

i=1 zi(k)ψi(k)

n
+

∑n+m′

i=1 (L∞ − zi(k))ψi(k)

n

)

= lim
k→∞

(∑n+m′

i=1 χi(k)

n
+

∑n+m′

i=1 (L∞ − zi(k))ψi(k)

n

)

=

∑n
i=1 xi(0)

n
.

21

Spiridonoff, Olshevsky, and Paschalidis

In the above, we used (18) and (24), the boundedness of ψi(k), and the fact that ψi(k) =
0 for i /∈ Ik.

Finally, to show the exponential convergence rate, we go back to s0(k). We have for
k ≥ 1,

s0(k) ≤ (1− nα6)bk/2cs0(0) ≤ (1− nα6)(k−1)/2s0(0),

s0(0) ≤
n+m′∑
i=1

|zi(0)| =
n∑
i=1

|xi(0)| = ‖x(0)‖1,

where the first equality holds because I0 = {1, . . . , n} and yi(0) = 1. Therefore, we have
for i ∈ Ik, ∣∣∣∣zi(k)− 1>x(0)

n

∣∣∣∣ ≤ zmax(k)− zmin(k)

≤ s0(bk/nΓsc)

≤ (1− nα6)(b k
nΓs
c−1)/2‖x(0)‖1

≤ (1− nα6)(k
nΓs
−1−1)/2‖x(0)‖1

=
1

1− nα6

(
(1− nα6)1/(2nΓs)

)k
‖x(0)‖1

= δλk‖x(0)‖1.

where δ = 1
1−nα6 and λ = (1− nα6)1/(2nΓs). Note that {1, . . . , n} ⊆ Ik, ∀k.

Remark: Observe that our proof did not really use the initialization ψ(0) = 1, except to
observe that the elements ψ(0) are positive, add up to n, and the implication that ψ(k)
satisfies the bounds of Lemma 11. In particular, the same result would hold if we viewed
time 1 as the initial point of the algorithm (so that ψ(1) is the initialization), or similarly
any time k. We will use this observation in the next subsection.

2.3. Perturbed Push-Sum

In this subsection, we begin by introducing the Perturbed Robust Asynchronous Push-Sum
algorithm, obtained by adding a perturbation to the x-values of (non-virtual) agents at the
beginning of every iteration they wake up.

We show that, if the perturbations are bounded, the resulting z(k) nevertheless tracks
the average of χ(k) pretty well. Such a result is a key step towards analyzing distributed
optimization protocols. In this general approach to the analyses of distributed optimiza-
tion methods, we follow Ram et al. (2010) where it was first adopted; see also Nedic and
Olshevsky (2016) and Nedic and Olshevsky (2015) where it was used.

Adopting the notations introduced earlier and by the linear formulation (17) we have,

χ(k + 1) = M(k)(χ(k) + ∆(k)), for k ≥ 0,

22

Robust Asynchronous Stochastic Gradient-Push

Algorithm 2 Perturbed Robust Asynchronous Push-Sum

1: Initialize the algorithm with y(0) = 1, φi(0) = 0, ∀i ∈ {1, . . . , n} and ρij(0) = 0,
κij(0) = 0, ∀(j, i) ∈ E and ∆(0) = 0.

2: At every iteration k = 0, 1, 2, . . ., for every node i:
3: if node i wakes up then
4: xi ← xi + ∆i(k);
5: Lines 4 to 17 of Algorithm 1
6: end if
7: Other variables remain unchanged.

where ∆(k) ∈ Rn+m′ collects all perturbations ∆i(k) in a column vector with ∆h(k) := 0
for n < h ≤ n+m′. We may write this in a convenient form as follows.

χ(k + 1) = M(k)(χ(k) + ∆(k))

=
k∑
t=1

Mk:t∆(t) + Mk:0χ(0).

Define for k ≥ 1,

χt(k) := Mk−1:t∆(t), 1 ≤ t ≤ k,
χ0(k) := Mk−1:0χ(0), t = 0.

(25)

We obtain,

χ(k) =

k−1∑
t=0

χt(k), k ≥ 1. (26)

Define zt(k) := χt(k) ◦ψ−(k) for 0 ≤ t ≤ k (cf. Equation 20). We have

z(k) =

k−1∑
t=0

zt(k). (27)

We may view each zt(k) as the outcome of a push-sum algorithm, initialized at time
t, and apply Theorem 6. This immediately yields the following result, with part (b) an
immediate consequence of part (a).

Theorem 14 Suppose Assumption 1 holds. Consider the sequence {zi(k)}, 1 ≤ i ≤ n,
generated by Algorithm 2. Then,

(a) For k = 1, 2, . . . ∣∣∣∣zi(k)− 1>χ(k)

n

∣∣∣∣ ≤ δλk‖x(0)‖1 +
k−1∑
t=1

δλk−t‖∆(t)‖1.

(b) If limt→∞ ‖∆(t)‖1 = 0 then,

lim
k→∞

∣∣∣∣zi(k)− 1>χ(k)

n

∣∣∣∣ = 0.

23

Spiridonoff, Olshevsky, and Paschalidis

3. Robust Asynchronous Stochastic Gradient-Push (RASGP)

In this section we present the main contribution of this paper, a distributed stochastic
gradient method with asymptotically network-independent and optimal performance over
directed graphs which is robust to asynchrony, delays, and link failures.

Recall that we are considering a network G of n agents whose goal is to cooperatively
solve the following minimization problem

minimize F (z) :=
n∑
i=1

fi(z), over z ∈ Rd,

where each fi : Rd → R is a strongly convex function only known to agent i. We assume
agent i has the ability to obtain noisy gradients of the function fi.

The RASGP algorithm is given as Algorithm 3. Note that we use the notation ĝi(k) for
a noisy gradient of the function fi(z) at zi(k) i.e.,

ĝi(k) = gi(k) + εi,

where gi(k) := ∇fi(zi(k)) and εi is a random vector.
The RASGP is based on a standard idea of mixing consensus and gradient steps, first

analyzed in Nedic and Ozdaglar (2009). The push-sum scheme of Section 2, inspired by
Hadjicostis et al. (2016), is used instead of the consensus scheme, which allows us to handle
delays, asynchronicity, and message losses; this is similar to the approach taken in Nedic and
Olshevsky (2015). We note that a new step-size strategy is used to handle asynchronicity:
when a node wakes up, it takes steps with a step-size proportional to the sum of all the
step-sizes during the period it slept. As far as we are aware, this idea is new.

We will be making the following assumption on the noise vectors.

Assumption 2 εi is an independent random vector with bounded support, i.e., ‖εi‖ ≤ bi,
i = 1, . . . , n. Moreover, E[εi] = 0 and E[‖εi‖2] ≤ σ2

i .

Next, we state and prove the main result of this paper, which states the linear conver-
gence rate of Algorithm 3.

Theorem 15 Suppose that:

1. Assumptions 1 and 2 hold.

2. Each objective function fi(z) is µi-strongly convex over Rd.

3. The gradients of each fi(z) are Li-Lipschitz continuous, i.e., for all z1, z2 ∈ Rd,

‖gi(z1)− gi(z2)‖ ≤ Li‖z1 − z2‖.

Then, the RASGP algorithm with the step-size α(k) = n/(µk) for k ≥ 1 and α(0) = 0, will
converge to the unique optimum z∗ with the following asymptotic rate: for all i = 1, . . . , n,
we have

E
[
‖zi(k)− z∗‖2

]
≤ Γuσ

2

kµ2
+Ok

(
1

k1.5

)
,

where σ2 :=
∑

i σ
2
i , µ =

∑
i µi.

24

Robust Asynchronous Stochastic Gradient-Push

Algorithm 3 Robust Asynchronous Stochastic Gradient-Push (RASGP)

1: Initialize the algorithm with y(0) = 1, φxi (0) = 0, φyi (0) = 0, κi(0) = −1, ∀i ∈
{1, . . . , n} and ρxij(0) = 0, ρyij(0) = 0, κij(0) = −1, ∀(j, i) ∈ E .

2: At every iteration k = 0, 1, 2, . . ., for every node i:
3: if node i wakes up then
4: βi(k) =

∑k
t=κi+1 α(t);

5: xi ← xi − βi(k)ĝi(k);
6: κi ← k;
7: φxi ← φxi + xi

d+
i +1

, φyi ← φyi + yi
d+
i +1

;

8: xi ← xi

d+
i +1

, yi ← yi
d+
i +1

;

9: Node i broadcasts (φxi , φ
y
i , κi) to its out-neighbors: N+

i

10: Processing the received messages
11: for (φxj , φ

y
j , κ
′
j) in the inbox do

12: if κ′j > κij then

13: ρ∗xij ← φxj , ρ∗yij ← φyj ;
14: κij ← κ′j ;
15: end if
16: end for
17: xi ← xi +

∑
j∈N−i

(
ρ∗xij − ρxij

)
, yi ← yi +

∑
j∈N−i

(
ρ∗yij − ρ

y
ij

)
;

18: ρxij ← ρ∗xij , ρyij ← ρ∗yij ;
19: zi ← xi

yi
;

20: end if
21: Other variables remain unchanged.

Remark 16 We note that each agent stores variables xi, yi, κi, zi,φ
x
i , φ

y
i and ρxij , ρ

y
ij , κij

for all in-neighbors j ∈ N−i . Hence, the memory requirement of the RASGP algorithm for
each agent is O(d−i) for each agent i.

We next turn to the proof of Theorem 15. First, we observe that Algorithm 3 is a specific
case of multi-dimensional Perturbed Robust Asynchronous Push-Sum. In other words, each
coordinate of vectors xi, zi, φ

x
i and ρxij will experience an instance of Algorithm 2. Hence,

there exists an augmented graph sequence {H(k)} where the Algorithm 3 is equivalent to
perturbed push-sum consensus on H(k) where each agent ah ∈ VA holds vectors xh and yh.
In other words, we will be able to apply Theorem 14 to analyze Algorithm 3.

Our first step is to show how to decouple the action of Algorithm 3 coordinate by
coordinate. For each coordinate 1 ≤ ` ≤ d, let χ` ∈ Rn+m′ stack up the `th entries of
x-values of all agents (virtual and non-virtual) in VA. Additionally, define ∆`(k) ∈ Rn+m′

to be the vector stacking up the `th entries of perturbations. i.e.,

[∆`(k)]i :=

{
−βi(k)[ĝi(k)]`, if i ∈ V , τi(k) = 1,

0, otherwise.

25

Spiridonoff, Olshevsky, and Paschalidis

Then, by the definition of the algorithm, we have for all ` = 1, . . . , d,

χ`(k + 1) = M(k)
(
χ`(k) + ∆`(k)

)
,

ψ(k + 1) = M(k)ψ(k).
(28)

These equations write out the action of Algorithm 3 on a coordinate-by-coordinate basis.
In order to prove Theorem 15, we need a few tools and lemmas. As already mentioned,

our first step will be to argue that Algorithm 3 converges by application of Theorem 14.
This requires showing the boundedness of the perturbations ∆`(k), which, as we will show,
reduces to showing the vectors zi(k) are bounded. The following lemma will be useful to
establish this boundedness.

Lemma 17 (Nedic and Olshevsky, 2016, Lemma 3) Let q : Rd → R be a ν-strongly convex
function with ν > 0 which has Lipschitz gradients with constant L. let v ∈ Rd and u ∈ Rd
defined by,

u = v − α(∇q(v) + p(v)),

where α ∈
(
0, ν/8L2

]
and p : Rd → Rd is a mapping such that,

‖p(v)‖ ≤ c, for all v ∈ Rd.

Then, there exists a compact set S ⊂ Rd and a scalar R such that,

‖u‖ ≤

{
‖v‖, for all v /∈ S,
R, for all v ∈ S,

where,

S := {z| q(z) ≤ q(0) + 2
ν

8L2

(
‖q(0)‖2 + c2

)
} ∪B

(
0,

4c

ν

)
,

R := max
z∈S
{‖z‖+

ν

8L2
‖∇q(z)‖}+

νc

8L2
.

We now argue that the iterates generated by Algorithm 3 are bounded.

Lemma 18 The iterates zi(k) generated by Algorithm 3 will remain bounded.

Proof Let us adopt the notation ψ− from previous sections and define z`(k) := χ`(k) ◦
ψ−(k) ∈ Rn+m′ . Moreover, adopt the notation zh for virtual agent ah, h = n+1, . . . , n+m′,
as zh(k) := xh(k)/ψh(k). Also define u` ∈ Rn+m′ by

u`(k) := χ`(k) + ∆`(k).

Since the perturbations are only added to the non-virtual agents, which have strictly positive
y-values, we conclude [u`(k)]h = 0 if ψh(k) = 0. Hence, the assumptions of Lemma 8 and
Corollary 9 are satisfied. Adopting the definition of Ik and P(k) from previous sections, we
get for i ∈ Ik+1,

[z`(k + 1)]i =
∑
j∈Ik

Pij(k)
[u`(k)]j
ψj(k)

.

26

Robust Asynchronous Stochastic Gradient-Push

Combining the equation above for ` = 1, . . . , d we obtain:

zi(k + 1) =
∑
j∈Ik

Pij(k)
uj(k)

ψj(k)
, (29)

where uj(k) ∈ Rd is created by collecting the jth entries of all u`(k), i.e.,

ui(k) =

{
xi(k)− βi(k)ĝi(k), if i ∈ V and τi(k) = 1,

xi(k), otherwise.

Now consider each term on the right hand side of (29) for j ∈ Ik. Suppose j ≤ n and
τj(k) = 1, then we have:

uj(k)

yj(k)
= zj(k)− βj(k)

yj(k)
(∇fj(zj(k)) + εj(k)).

Since limk→∞ α(k) = 0 and k − κi(k) ≤ Γu, limk→∞ βj(k) = 0. Moreover, by Lemma 11,
yj(k) is bounded below; thus, limk→∞ βj(k)/yj(k) = 0 and there exists kj such that for

k ≥ kj , βj(k)/yj(k) ∈
(

0, µj/8L
2
j

]
. Applying Lemma 17, it follows that for each j there

exists a compact set Sj and a scalar Rj such that for k ≥ kj , if τj(k) = 1,∥∥∥∥uj(k)

yj(k)

∥∥∥∥ ≤
{
‖zj(k)‖, if zj(k) /∈ Sj ,
Rj , if zj(k) ∈ Sj .

(30)

Moreover, if τj(k) = 0 or j > n we have,

uj(k)

yj(k)
= zj(k). (31)

Let kz := maxi ki. Using mathematical induction, we will show that for all k ≥ kz:

max
i∈Ik
‖zi(k)‖ ≤ R̄, (32)

where R̄ := max{maxiRi,maxj∈Ikz ‖zj(kz)‖}. Equation (32) holds for k = kz. Suppose it
is true for some k ≥ kz. Then by (30) and (31) we have,∥∥∥∥ui(k)

yi(k)

∥∥∥∥ ≤ max{Ri, ‖zi(k)‖} ≤ R̄. (33)

Also by (29), for i ∈ Ik+1, zi(k+ 1) is a convex combination of uj(k)/yj(k)’s, where j ∈ Ik.
Hence,

‖zi(k + 1)‖ ≤
∑
j∈Ik

Pij

∥∥∥∥uj(k)

ψj(k)

∥∥∥∥ ≤ R̄.
Define Bz := max{R̄,maxi∈Ik,k<kz ‖zi(k)‖} and we have ‖zi(k)‖ ≤ Bz, ∀k ≥ 0.

27

Spiridonoff, Olshevsky, and Paschalidis

We next explore a convenient way to rewrite Algorithm 3. Let us introduce the quantity
wi(k), which can be interpreted as the x-value of agent i, if it performed a gradient step at
every iteration, even when asleep:

wi(k) :=

{
xi(k)−

(∑k−1
t=κi(k)+1 α(t)

)
gi(k), if i ∈ V ,

xi(k), otherwise.
(34)

Also, define w` ∈ Rn+m′ by collecting the `th dimension of all wi’s and
w̄(k) := (

∑n+m′

i=1 wi(k))/n. Moreover, define g` ∈ Rn+m′ by collecting the `th value of
gradients of all agents (0 for virtual agents), i.e.,

[g`(k)]i =

{
[gi(k)]`, if i ∈ V ,
0, otherwise.

Additionally, define ε̂i(k) ∈ Rd as the noise injected to the system at time k by agent i, i.e.,

ε̂i(k) =

{
βi(k)εi(k), if i ∈ V and τi(k) = 1,

0, otherwise,

and ε̂`(k) ∈ Rn+m′ as the vector collecting the `th values of all ε̂i(k)’s.

We then have the following lemma.

Lemma 19

w`(k + 1) = M(k)
(
w`(k)− α(k)g`(k)− ε̂`

)
. (35)

Proof We consider two cases:

• If τi(k) = 0, then (35) reduces to wi(k+ 1) = wi(k)−α(k)gi(k); noting that, because
node i did not update at time k we have that gi(k) = gi(k+ 1) and this is the correct
update.

• For all other nodes (i.e., for both virtual nodes and nodes with τi(k) = 1), we have
[w`(k)−α(k)ĝ`(k)−ε̂`(k)]i = [χ`(k)+∆`(k)]i in (28). Since χ`(k+1) = M(k)(χ`(k)+
∆`(k)) and, using the definition of wi(k), we have that for these nodes,

wi(k + 1) = xi(k + 1);

(28) implies the conclusion.

This lemma allows us to straightforwardly analyze how the average of w(k) evolves.
Indeed, summing all the elements of (35) and dividing by n for each ` = 1, . . . , d we obtain,

28

Robust Asynchronous Stochastic Gradient-Push

w̄(k + 1) = w̄(k)− α(k)

n

n∑
i=1

gi(k)− 1

n

n∑
i=1

ε̂i(k)

= w̄(k)− α(k)

n

n∑
i=1

∇fi(w̄(k))− 1

n

n∑
i=1

ε̂i(k)− α(k)

n

n∑
i=1

(gi(k)−∇fi(w̄(k))) .

(36)

We next give a sequence of lemmas to the effect that all the quantities generated by the
algorithm are close to each other over time. Define,

x̄(k) =
1

n

∑
ah∈VA

xh(k).

where, recall, VA is our notation for all the nodes in the augmented graph (i.e., including
virtual nodes). Moreover, we will extend the definition of βi(k) from Line 4 of Algorithm
3 to all k via the same formula βi(k) :=

∑k
t=κi(k)+1 α(t). Our first lemma will show that

each zi(k) closely tracks x̄(k).

Lemma 20 Using Algorithm 3 with α(k) = n/(kµ), under the assumptions of Theorem 15,
we have for each i, ‖zi(k + 1)− x̄(k + 1)‖ = Ok(1/k).

Proof By Theorem 14(a) we have for each `,∣∣∣∣[z`(k + 1)]i −
1>χ`(k + 1)

n

∣∣∣∣ ≤ δλk‖χ`(0)‖1 +

k∑
t=1

δλk−t‖∆`(t)‖1.

Summing the above inequality for ` = 1, . . . , d we obtain,

‖zi(k + 1)− x̄(k + 1)‖1 ≤
n∑
j=1

(
δλk‖xj(0)‖1 +

k∑
t=1

δλk−tβi(t)τi(t)‖ĝj(t)‖1
)
.

Moreover,

βi(k) =
k∑

t=κi(k)+1

n

µt
≤ n

µ

(
k − κi(k)

κi(k) + 1

)
. (37)

But

κi(k) < k ≤ κi(k) + Γu.

Since Γu ≥ 1, we obtain
k ≤ (κi(k) + 1)Γu,

or,
1

κi(k) + 1
≤ Γu

k
.

29

Spiridonoff, Olshevsky, and Paschalidis

Thus, from (37) we have,

βi(k) ≤ nΓ2
u

µk
. (38)

Define
Mj := max

‖z‖≤Bz

‖gj(z)‖1, (39)

and observe that Mj is finite by Lemma 18. Also τj(k) ≤ 1. We obtain,

‖zi(k + 1)− x̄(k + 1)‖1 ≤
n∑
j=1

(
δλk‖xj(0)‖1 +

k∑
t=1

δλk−t
nΓ2

u

µt
(Mj + bj)

)
.

Let RHS denote the right hand side of the relation above. We have,

RHS =
n∑
j=1

(
δλk‖xj(0)‖1 +

δnΓ2
u

µ
(Mj + bj)

(b k2 c∑
t=1

λk−t

t
+

k∑
t=b k

2
c+1

λk−t

t

))

≤
n∑
j=1

(
δλk‖xj(0)‖1 +

δnΓ2
u

µ
(Mj + bj)

(
k

2
λ

k
2 +

2

(1− λ)k

))
= Ok

(
1

k

)
,

where we used the following relations,

b k
2
c∑

t=1

λk−t

t
≤ bk

2
cλk−b

k
2
c ≤ k

2
λ

k
2 ,

k∑
t=b k

2
c+1

λk−t

t
≤
d k

2
e−1∑
t=0

λt

bk2c+ 1
≤ 2

(1− λ)k
.

Finally, ‖v‖2 ≤ ‖v‖1 for all vectors v, completes the proof.

An immediate consequence of this lemma is that the quantities x̄(k) and w̄(k) are close
to each other.

Lemma 21 Using Algorithm 3 with α(k) = n/(kµ), under the assumptions of Theorem 15,
we have, ‖x̄(k)− w̄(k)‖ = Ok(1/k).

Proof By definition of w̄ we have,

x̄(k)− w̄(k) =
1

n

n∑
i=1

 k−1∑
t=κi(k)+1

α(t)

gi(k).

Using (38) we have,

‖x̄(k)− w̄(k)‖ ≤ 1

n

n∑
i=1

βi(k)Mi ≤
n∑
i=1

Γ2
uMi

nµk
= Ok

(
1

k

)
,

30

Robust Asynchronous Stochastic Gradient-Push

where Mi was defined through (39).

We next remark on a couple of implications of the past series of lemmas.

Corollary 22 We have ‖zi(k)− w̄(k)‖ = Ok(1/k).

Lemma 23 ‖gi(k)−∇fi(w̄(k))‖ = Ok(1/k).

Proof Since ∇fi is Li-Lipschitz, we have,

‖gi(k)−∇fi(w̄(k))‖ ≤ Li‖zi(k)− w̄(k)‖.

Using Corollary 22, the lemma is proved.

We are now in a position to rewrite Algorithm 3 as a sort of perturbed gradient descent.
Let us define,

η(k) :=
1

µk

n∑
i=1

(gi(k)−∇fi(w̄(k))) .

By Lemma 23, η(k) = Ok(1/k2). Therefore, there exists Bη such that η(k) ≤ Bη/k2 for all
k ≥ 1.

By (36) we have,

w̄(k + 1) = w̄(k)− 1

µk
∇F (w̄(k))− ε̄(k)− η(k), (40)

where

• The function F :=
∑n

i=1 fi ∈ Rd → R is µ-strongly-convex with L-Lipschitz gradient,
where L :=

∑n
i=1 Li.

• The noise ε̄(k) := (
∑n

i=1 ε̂i(k))/n is bounded (i.e., ε̄(k) ∈ B(0, re), with probability
one, where re := (Γu/µ)

∑
j bj), and E[ε̄(k)] = 0.

In other words, with the exception of the η(k) term, what we have is exactly a stochastic
gradient descent method on the function F (·).

The following lemmas bound ε̄(k). Let us define νi(k) = k − κi(k) as the number of
iterations agent i has skipped since it’s last update. By Assumption 1, νi(k) ≤ Γu.

Lemma 24 We have βi(k) = Ok(1/k), ∀i. Moreover,

βi(k) ≤ nνi(k)

µk
+Ok(k−2).

Proof Since νi(k) ≤ Γu, ∀i, we have for κi(k) ≥ 1,

βi(k) =

k∑
t=κi(k)+1

n

µt
≤ n

µ
ln

(
k

κi(k)

)
≤ n

µ
ln

(
k

k − νi(k)

)

=
n

µ
ln

(
1 +

νi(k)

k − νi(k)

)
≤ nνi(k)

µ(k − νi(k))
=
nνi(k)

µk
+Ok(k−2).

31

Spiridonoff, Olshevsky, and Paschalidis

Corollary 25 µk‖ε̄(k)‖ is bounded.

Lemma 26 There exists Bε > 0 such that We have,

E[‖ε̄(k)‖2] ≤ Γ2
u

µ2k2
σ2 +

Bε
k4
.

Proof Using Lemma 24, we have for k > Γu,

E[‖ε̄(k)‖2] = E[‖ 1

n

n∑
i=1

βi(k)εi(k)τi(k)‖2] =
1

n2

n∑
i=1

β2
i (k)E[‖εi(k)‖2]

≤ 1

n2

n∑
i=1

β2
i (k)σ2

i ≤
Γ2
u

µ2k2
σ2 +Ok(k−4),

where the second equality is the result of the noise terms being independent and zero-mean.

Our next observation is a technical lemma which is essentially a rephrasing of Lemma
17 above.

Lemma 27 There exists a constant Bw and time kw such that ‖w̄(k)‖ ≤ Bw with proba-
bility one, for k ≥ kw.

Proof We have

w̄(k + 1) = w̄(k)− 1

µk
[∇F (w̄(k)) + µk (ε̄(k) + η(k))] ,

where µk‖ε̄(k) + η(k)‖ is bounded. Moreover, there exists kw such that for k ≥ kw,
1
µk ∈

(
0, µ/8L2

]
. Therefore, by Lemma 17 there exists a compact set Sw and a scalar

Rw > 0 such that for k ≥ kw,

‖w̄(k + 1)‖ ≤

{
‖w̄(k)‖, for w̄ /∈ Sw,
Rw, for w̄ ∈ Sw.

Therefore, setting Bw := max{Rw, ‖w̄(kw)‖} will complete the proof.

As a consequence of this lemma, because ‖η(k)‖2 ≤ Bη, this lemma implies there is a
constant B1 such that for k ≥ kw,∥∥∥∥w̄(k)− z∗ − 1

µk
∇F (w̄(k))− ε̄(k)

∥∥∥∥ ≤ B1, (41)

with probability one. This now puts us in a position to show that w̄(k) converges in mean
square to the optimal solution.

32

Robust Asynchronous Stochastic Gradient-Push

Lemma 28 E[‖w̄(k)− z∗‖2]→ 0.

Proof Using the definition of kw from Lemma 27, we have that for k ≥ kw,

E[‖w̄(k + 1)− z∗‖2] ≤ E
[
‖w̄(k)− z∗ − 1

µk
∇F (w̄(k))− ε̄(k)‖2

+ 2‖η(k)‖‖w̄(k)− z∗ − 1

µk
∇F (w̄(k))− ε̄(k)‖+ ‖η(k)‖2

]
.

We will bound each of the terms on the right. We begin with the easiest one, which is the
last one:

‖η(k)‖2 ≤
B2
η

k4
. (42)

The middle term is bounded as

2‖η(k)‖‖w̄(k)− z∗ − 1

µk
∇F (w̄(k))− ε̄(k)‖ ≤ 2BηB1

k2
, (43)

where we used (41).
Finally, we turn to the first term which we denote by T1:

T1 ≤ E‖w̄(k)− z∗‖2 − 2

µk
E[∇F (w̄(k))>(w̄(k)− z∗)]

+
L2

µ2k2
E[‖w̄(k)− z∗‖2] + E[‖ε̄(k)‖2],

where we used the usual inequality ‖∇F (w̄(k))‖2 ≤ L2‖w̄(k) − z∗‖2 which follows from
∇F (·) being L-Lipschitz. Now, using the standard inequality

∇F (w̄(k))T (w̄(k)− z∗) ≥ F (w̄(k))− F (z∗) +
µ

2
‖w̄(k)− z∗‖2

≥ µ‖w̄(k)− z∗‖2,

and Lemma 26 we obtain,

T1 ≤
(

1− 2

k
+

L2

µ2k2

)
E[‖w̄(k)− z∗‖2] +

Γ2
u

µ2k2
σ2 +

Bε
k4
. (44)

Now putting together (42), (43), and (44), we get,

E[‖w̄(k + 1)− z∗‖2] ≤
(

1− 2

k
+

L2

µ2k2

)
E[‖w̄(k)− x∗‖2] +

Γ2
uσ

2

µ2k2
+

2BηB1

k2
+
B2
η +Bε

k4
.

For large enough k, we can bound the inequality above as,

E[‖w̄(k + 1)− z∗‖2] ≤
(

1− 1.5

k

)
E[‖w̄(k)− z∗‖2] +

B2

k2
, (45)

where B2 = Γ2
uσ

2/µ2 + 2BηB1 + B2
η + Bε. Using Lemma 29, stated next, we conclude

E[‖w̄(k)− z∗‖2]→ 0.

33

Spiridonoff, Olshevsky, and Paschalidis

Lemma 29 Let a > 1, b ≥ 0 and {xt} be a non-negative sequence which satisfies,

xt+1 ≤
(

1− a

t

)
xt +

b

t2
, for t ≥ t′ > 0.

Then for all t ≥ t′ we have,

xt ≤
m

t
,

where m := max{t′xt′ , b/(a− 1)}.

This lemma is stated and proved for t′ = 1 in (Rakhlin et al., 2012, Lemma 3), and the
case of general t′ follows immediately.

We are almost ready to complete the proof of Theorem 15; all that is needed is to refine
the convergence rate of w̄(k) to x∗. Now as a consequence of (45) and Lemma 29, we may
use the inequality E[|X|] ≤

√
E[X2] to obtain that

E[‖w̄(k)− z∗‖] = Ok
(

1√
k

)
. (46)

Furthermore, by the finite support of µkε̄(k), by Corollary 25, we also have that

E[‖w̄(k)− z∗ − 1

µk
∇F (w̄(k))− ε̄(k)‖] = Ok

(
1√
k

)
. (47)

We now use these observations to provide a proof of our main result.
Proof of Theorem 15 Essentially, we rewrite the proof of Lemma 28, but now using the
fact that E[‖w̄(k)− z∗‖] = Ok(1/

√
k) from (46). This allows us to make two modification

to the arguments of that lemma. First, we can now replace (43) by

E[2‖η(k)‖‖w̄(k)− z∗ − 1

µk
∇F (w̄(k))− ε̄(k)‖] ≤ 2Bη

k2
Ok
(

1√
k

)
, (48)

where we used (47). Second, putting together (42), (48), and (44), we obtain:

E[‖w̄(k + 1)− z∗‖2] ≤
(

1− 2

k
+

L2

µ2k2

)
E[‖w̄(k)− z∗‖2]

+ E[‖ε̄(k)‖2] +
B2
η

k4
+

2Bη
k2
Ok
(

1√
k

)
.

which, again using the fact that E[‖w̄(k)− z∗‖2] = Ok(1/
√
k), we simply rewrite as,

E[‖w̄(k + 1)− z∗‖2] ≤
(

1− 2

k

)
E[‖w̄(k)− z∗‖2] + E[‖ε̄(k)‖2] +Ok

(
1

k2.5

)
.

To save space, let us define ak := E[‖w̄(k) − z∗‖2]. Multiplying both sides of relation
above by k2 we obtain,

ak+1k
2 ≤ ak

(
1− 2

k

)
k2 + E[‖ε̄(k)‖2]k2 +Ok(k−0.5).

34

Robust Asynchronous Stochastic Gradient-Push

Note that, (
1− 2

k

)
k2 = k2 − 2k < (k − 1)2.

Thus,

ak+1k
2 ≤ ak(k − 1)2 + E[‖ε̄(k)‖2]k2 +Ok(k−0.5).

Summing the relation above for k = 0, . . . , T implies,

aT+1T
2 ≤

T∑
k=0

E[‖ε̄(k)‖2]k2 +OT (T 0.5).

Now, let us estimate the first term on the right hand side of relation above,

T∑
k=0

E[‖ε̄(k)‖2]k2 ≤
T∑
k=0

n∑
i=1

β2
i (k)

n2
σ2
i τi(k)k2 =

n∑
i=1

σ2
i

µ2

T∑
k=0

νi(k)2τi(k) +OT (T−1),

where we used Lemma 24 in the last equality. Define ti(j) as the j’th time agent i has
woken up, and set ti(0) = −1. Then we can rewrite the relation above as,

T∑
k=0

νi(k)2τi(k) =

ti(j)≤T∑
j=1

(ti(j)− ti(j − 1))2 ≤
ti(j)≤T∑
j=1

Γu(ti(j)− ti(j − 1)) ≤ Γu(T + 1).

Combining relations above and then dividing both sides by T 2 we obtain,

aT+1 ≤
Γuσ

2

µ2T
+OT (T−1.5). (49)

We next argue that the same guarantee holds for every zi(k). Indeed, for each i =
1, . . . ,m,

‖zi(k)− z∗‖2 = ‖zi(k)− w̄(k) + w̄(k)− z∗‖2

= ‖zi(k)− w̄(k)‖2 + 2‖zi(k)− w̄(k)‖‖w̄(k)− z∗‖+ ‖w̄(k)− z∗‖2.

Now from Corollary 22, we know that with probability one, ‖zi(k) − w̄(k)‖2 = Ok(1/k).
Taking expectation of both sides and using (49) along with the usual bound E[|X|] ≤√

E[X2], we have

E[‖zi(k)− z∗‖2] = Ok
(

1

k2

)
+Ok

(
1

k1.5

)
+ E[‖w̄(k)− z∗‖2].

Putting this together with (49) completes the proof.

35

Spiridonoff, Olshevsky, and Paschalidis

3.1. Time-Varying Graphs

We remark that Theorems 6, 14 and 15 all extend verbatim to the case of time-varying
graphs with no message losses. Indeed, only one problem appears in extending the proofs
in this paper to time-varying graphs: a node i may send a message to node j; that message
will be lost; and afterwards node i never sends anything to node j again. In this case,
Lemmas 7 and 11 do not hold. Indeed, examining Lemma 11, we observe what can very
well happen is that all of χi(k) and ψi(k) are “lost” over time into messages that never arrive.
However, as long as no messages are lost, the proofs in this paper extend to the time-varying
case verbatim. On a technical level, the results still hold if uxij(k) = 0, uyij(k) = 0 (virtual
node cij ∈ VA holds no lost message), when link (i, j) is removed from the network at time
k, and the graph G stays strongly connected (or B-connected, i.e., there exists a positive
integer B such that the union of every B consecutive graphs is strongly connected).

3.2. On the Bounds for Delays, Asynchrony, and Message Losses

It is natural to what extent the assumption of finite upper bounds on delays, asynchrony, and
message losses are really necessary. A natural example which falls outside our framework
is a fixed graph G, where, at each time step, every link in G appears with probability 1/2.
A more general model might involve a different probability pe of failure for each edge e.

We observe that our result can already handle this case in the following manner. For
simplicity, let us stick with the scenario where every link appears with probability 1/2.
Then the probability that, after time t, some link has not appeared is at most m(1/2)t,
where m is the number of edges in G. This implies that if we choose B = O(log(mnT)),
then with high probability, the sequence of graphs G1, . . . , GT is B-connected.

Thus our theorem applies to this case, albeit at the expense of some logarithmic factors
due to the choice of B. We remark that it is possible to get rid of these factors by directly
analyzing the decrease in E[||z(t)−z∗||22] coming from the random choice of graph G. Since
our arguments are already quite lengthy, we do not pursue this generalization here, and
refer the reader to Lobel and Ozdaglar (2010); Srivastava and Nedic (2011) where similar
arguments have been made.

4. Numerical Simulations

4.1. Setup

In this section, we simulate the RASGP algorithm on two classes of graphs, namely, ran-
dom directed graphs and bidirectional cycle graphs. The main objective function is cho-
sen to be a strongly convex and smooth Support Vector Machine (SVM), i.e. F (ω, γ) =
1
2

(
‖ω‖2 + γ2

)
+CN

∑N
j=1 h(bj(A

>
j ω+ γ)) where ω ∈ Rd−1 and γ ∈ R are the optimization

variables, and Aj ∈ Rd−1, bj ∈ {−1,+1}, j = 1, . . . , N , are the data points and their labels,
respectively. The coefficient CN ∈ R penalizes the points outside of the soft margin. We set
CN = c/N, c = 500 in our simulations, which depends on the total number of data points.
Here, h : R → R is the smoothed hinge loss, initially introduced in Rennie and Srebro

36

Robust Asynchronous Stochastic Gradient-Push

(2005), defined as follows:

h(ξ) =


−0.5− ξ, if ξ < 0,

0.5(1− ξ)2, if 0 ≤ ξ < 1,

0, if 1 ≤ ξ.

To solve this problem in a distributed way, we suppose all data points are spread
among agents. Hence, the local objective functions are fi(ωi, γi) = 1

2n

(
‖ω‖2 + γ2

)
+

CN
∑

j∈Di
h(bj(A

>
j ω + γ)), where Di ⊂ {1, 2, . . . , N} is an index set for data points of

agent i and N is the total number of data points. We choose the size of the data set for
each local function to be a constant (|Di| = 50), thus N = 50n. It is easy to check that
each fi has Lipschitz gradients and is strongly convex with µi = 1/n.

We will compare our results with a centralized gradient descent algorithm, which updates
every Γu iterations using the step-size sequence αc(k) = Γu/(µk), in the direction of the
sum of the gradients of all agents.

To make gradient estimates stochastic, we add a uniformly distributed noise εi ∼
U[−b/2, b/2]d to the gradient estimates of each agent and εc ∼ U[−

√
nb/2,

√
nb/2]d to

the gradient of the centralized gradient descent, where U[b1, b2]d denotes the uniform distri-
bution of size d over the interval [b1, b2), b1 < b2. Note that εi and εc are bounded and have
zero mean and E[‖εi‖2] = db2/12 and E[‖εc‖2] = ndb2/12. We set b = 4 for all simulations.

Agents wake up with probability Pw and links fail with probability Pf , unless they reach
their maximum allowed value where the algorithm forces the agent to wake up or the link
to work successfully. The link delays are chosen uniformly between 1 to Γdel.

Each data set Di is synthetically generated by picking 25 data points around each of
the centers (1, 1) and (3, 3) with multivariate normal distributions, labeled −1 and +1,
respectively. In generating strongly connected random graphs, we pick each edge with a
probability of 0.5 and then check if the resulting graph is strongly connected; if it isn’t,
we repeat the process. Since the initial step-sizes for the distributed algorithm can be very
large (e.g., α(1) = 50 for n = 50), to stabilize the algorithms, both algorithms are started
with k0 = 100. This wouldn’t affect the asymptotic convergence performance. Moreover,
the initial point of the centralized algorithm and all agents in RASGP are chosen as 1d.

Let us denote by ẑ(k) := (1/n)
∑n

i=1 zi(k) the average of z-values of non-virtual agents.
Then, we define optimization errors Edist := ‖ẑ(k) − z∗‖2 and Ec(k) := ‖xc(k) − z∗‖2 for
RASGP and Centralized stochastic gradient descent, respectively.

Since our performance guarantees are for the expectation of (squared) errors, for each
network setting, we perform up to 1000 Monte-Carlo simulations and use their corresponding
performance to estimate the average behavior of the algorithms. Since accurately estimating
the true expected value requires an extremely large number of simulations, in order to
alleviate the effect of spikes and high variance, we take the following steps. First a batch of
simulations are performed and their average is calculated. Next, to obtain a smoother plot,
an average over every 100 iterations is taken. And finally, the median of these outputs over
all the batches is our estimate of the expected value.

We report two figures for each setting: one including the errors Edist and Ec, and another
one including k × Edist and k × Ec to demonstrate the convergence rates.

Finally, to study the non-asymptotic behavior of RASGP and its dependence on network
size n, we have compared the performance of the centralized stochastic gradient descent

37

Spiridonoff, Olshevsky, and Paschalidis

(a) k times squared errors. (b) Errors and 1-standard-deviation band.

Figure 3: Results on a directed cycle graph of size n = 50, synchronous with no delays and
link failures (Pw = 1, Pf = 0, Γdel = Γf = 0,Γu = 1, Γs = 2).

(a) k times squared errors. (b) Errors and 1-standard-deviation band.

Figure 4: Results on a directed cycle graph of size n = 50, synchronous with delays and
link failures (Pw = 1, Pf = 0.3, Γdel = Γf = 3,Γu = 1, Γs = 7).

and RASGP over a bidirectional cycle graph, with error variances of n2σ̂2 and σ2
i = σ̂2,

respectively. Then, we plot the ratio Ec(k)/Edist(k) over n, for different iterations k.

4.2. Results

Our simulation results are consistent with our theoretical claims (due to the performance of
centralized and decentralized methods growing closer over time) and show the achievement
of an asymptotic network-independent convergence rate.

Fig. 3 shows that when there is no link failure or delay and all agents wake up at every
iteration (Γs = 2), RASGP and centralized gradient descent have very similar performance.
When we allow links to have delays and failures (see Fig. 4), as well as asynchronous
updates (see Fig. 5), it takes longer for RASGP to reach its asymptotic convergence rate.

38

Robust Asynchronous Stochastic Gradient-Push

(a) k times squared errors. (b) Errors and 1-standard-deviation band.

Figure 5: Results on a directed cycle graph of size n = 50, asynchronous with delays and
link failures (Pw = 0.5, Pf = 0.3, Γdel = Γf = 3,Γu = 3, Γs = 17).

(a) k times squared errors. (b) Errors and 1-standard-deviation band.

Figure 6: Results on a directed random graph of size n = 50, asynchronous with delays and
link failures (Pw = 0.5, Pf = 0.3, Γdel = Γf = 3,Γu = 3, Γs = 17).

We observe that, with all the other parameters fixed, the RASGP performs better on a
random graph than on a cycle graph (see Figs. 5 and 6). A possible reason is that the cycle
graph has a higher diameter or mixing time compared to the random graph, resulting in a
slower decay of the consensus error.

We notice that by fixing the network size, increasing the number of iterations brings
us closer to linear speed-up (see Fig. 7). On the other hand, when fixing the number of
iterations, increasing the number of nodes, after a certain point, does not help speeding up
the optimization. Moreover, by allowing link delays and failures (see Fig. 7b) we require
more iterations to achieve network independence.

39

Spiridonoff, Olshevsky, and Paschalidis

(a) Synchronous with no delays and link fail-
ures.

(b) Synchronous with delays and link failure
(Pw = 1, Pf = 0.3, Γdel = Γf = 3,Γu = 1,
Γs = 7).

Figure 7: Error ratio over network size. Shaded areas correspond to 1-standard-deviation
of the performance.

5. Conclusions

The main result of this paper is to stablish asymptotically, network independent perfor-
mance for a distributed stochastic optimization method over directed graphs with message
losses, delays, and asynchronous updates. Our work raises several open questions.

The most natural question raised by this paper concerns the size of the transients. How
long must the nodes wait until the network-independent performance bound is achieved?
The answer, of course, will depend on the network, but also on the number of nodes, the
degree of asynchrony, and the delays. Understanding how this quantity scales is required
before the algorithms presented in this work can be recommended to practitioners.

More generally, it is interesting to ask which problems in distributed optimization can
achieve network-independent performance, even asymptotically. For example, the usual
bounds for distributed subgradient descent (see, e.g., Nedic et al., 2018) depend on the
spectral gap of the underlying network; various worst-case scalings with the number of
nodes can be derived, and the final asymptotics are not network-independent. It is not
immediately clear whether this is due to the analysis, or a fundamental limitation that will
not be overcome.

Acknowledgments

The authors acknowledge support for this project by the AFOSR under grant FA9550-15-
1-0394, by the ONR under grant N000014-16-1-224 and MURI N00014-19-1-2571, by the
NSF under grants IIS-1914792, DMS-1664644, and CNS-1645681, and by the NIH under
grant 1R01GM135930. A preliminary version of the results in Section 2 has been published
in the proceedings of the American Control Conference 2018 (Olshevsky et al., 2018).

40

Robust Asynchronous Stochastic Gradient-Push

x

Appendix A. Proof of Lemma 4

Proof We use mathematical induction. For k = 0 we have xlij(0) = 0, ∀l and uxij(0) =

φxi (0) = ρxji(0) = 0. By (6) and the definition of uxij and xlij we obtain,

ρxji(1) = 0,

uxij(1) = (1−
Γd∑
l=1

τ lij(0))φxi (1),

Γd∑
l=1

xlij(1) = (

Γd∑
l=1

τ lij(0))φxi (1).

Equation (12) is concluded from first equation above and (13) results by summing up all
three equations above.

Now assume this lemma is true for k = 0, . . . ,K − 1. We want to show it will be
true for k = K as well. In the following, LHS and RHS denote the left-hand-side and
right-hand-side of (12) for k = K. By (6) we have,

LHS =

Γd∑
l=1

τ lij(K − l)[φxi (K + 1− l)− ρxji(K)].

Using (11) we obtain,

RHS =

Γd∑
l=1

τ lij(K − l)υxij(K − l).

Hence, it suffices to show that:

Γd∑
l=1

τ lij(K − l)[φxi (K + 1− l)− ρxji(K)− υxij(K − l)] = 0. (50)

By part (e) of Assumption 1, at most one of the τ lij(K − l), l = 1, . . . ,Γd is non-zero. If

all are zeros, the result follows. Now suppose τ lij(K − l) = 1 for some l. Equation (50)
becomes,

φxi (K + 1− l)− ρxji(K)− υxij(K − l) = 0.

Plugging in the definition of υxij , after rearrangement we obtain,

φxi (K − l)− uxij(K − l) = ρxji(K). (51)

By the induction hypothesis, (12) holds for k = K − t, t = 1, . . . , l. Therefore,

ρxji(K + 1− t)− ρxji(K − t) = x1
ij(K − t).

41

Spiridonoff, Olshevsky, and Paschalidis

Hence,

ρxji(K) = ρxji(K − l) +
l∑

t=1

(ρxji(K + 1− t)− ρxji(K − t))

= ρxji(K − l) +
l∑

t=1

x1
ij(K − t)

= ρxji(K − l) +

l∑
l′=1

xl
′
ij(K − l) (Lemma 3)

= ρxji(K − l) +
d∑

l′=1

xl
′
ij(K − l). (Lemma 2)

Moreover, by the induction hypothesis, (13) holds for k = K − l, thus,

φxi (K − l)− uxij(K − l) = ρxji(K − l) +

Γd∑
l′=1

xl
′
ij(K − l).

Combining the two relations above we conclude (51).

To show (13), consider the following equations which are direct results of the definitions
and (12) that we just showed for k = K:

uxij(K + 1) = (1−
Γd∑
l=1

τ lij(K))υxij(K),

ρxji(K + 1) = ρxji(K) + x1
ij(K),

Γd∑
l=1

xlij(K + 1) =

Γd∑
l=2

xlij(K) +

Γd∑
l=1

τ lij(K)υxij(K).

Summing up both sides of the equations above we have,

LHS = uxij(K + 1) + ρxji(K + 1) +

Γd∑
l=1

xlij(K + 1),

RHS =

Γd∑
l=1

xlij(K) + ρxji(K) + υxij(K)

=

Γd∑
l=1

xlij(K) + ρxji(K) + uxij(K)− φxi (K) + φxi (K + 1) = φxi (K + 1).

The last equality holds because of the induction hypothesis (13) for k = K − 1, hence
completing the proof.

42

Robust Asynchronous Stochastic Gradient-Push

References

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances
in Neural Information Processing Systems, pages 873–881, 2011.

Mohammad Akbari, Bahman Gharesifard, and Tamás Linder. Distributed online convex
optimization on time-varying directed graphs. IEEE Transactions on Control of Network
Systems, 4(3):417–428, 2017.

Tansu Alpcan and Christian Bauckhage. A distributed machine learning framework. In 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pages 2546–2551. IEEE, 2009.

Mahmoud Assran and Michael Rabbat. Asynchronous subgradient-push. arXiv preprint
arXiv:1803.08950, 2018.

Florence Bénézit, Vincent Blondel, Patrick Thiran, John Tsitsiklis, and Martin Vetterli.
Weighted gossip: Distributed averaging using non-doubly stochastic matrices. In 2010
IEEE International Symposium on Information Theory (ISIT), pages 1753–1757. IEEE,
2010.

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis,
and Wei Shi. Federated learning of predictive models from federated electronic health
records. International journal of medical informatics, 112:59–67, 2018.

Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, and Xiangfeng Wang. Asynchronous
distributed ADMM for large-scale optimizationpart I: algorithm and convergence analysis.
IEEE Transactions on Signal Processing, 64(12):3118–3130, 2016a.

Tsung-Hui Chang, Wei-Cheng Liao, Mingyi Hong, and Xiangfeng Wang. Asynchronous dis-
tributed ADMM for large-scale optimizationpart II: Linear convergence analysis and nu-
merical performance. IEEE Transactions on Signal Processing, 64(12):3131–3144, 2016b.

Jianshu Chen and Ali H Sayed. On the learning behavior of adaptive networkspart II:
Performance analysis. IEEE Transactions on Information Theory, 61(6):3518–3548, 2015.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

Alejandro D Dominguez-Garcia and Christoforos N Hadjicostis. Distributed matrix scaling
and application to average consensus in directed graphs. IEEE Transactions on Automatic
Control, 58(3):667–681, 2013.

Alejandro D Domı́nguez-Garćıa and Christoforos N Hadjicostis. Convergence rate of a dis-
tributed algorithm for matrix scaling to doubly stochastic form. In 53rd IEEE Conference
on Decision and Control, pages 3240–3245. IEEE, 2014.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-
batch algorithm for regularized stochastic optimization. IEEE Transactions on Automatic
Control, 61(12):3740–3754, 2016.

43

Spiridonoff, Olshevsky, and Paschalidis

Bahman Gharesifard and Jorge Cortés. Distributed strategies for generating weight-
balanced and doubly stochastic digraphs. European Journal of Control, 18(6):539–557,
2012.

Christoforos N Hadjicostis, Nitin H Vaidya, and Alejandro D Domı́nguez-Garćıa. Robust
distributed average consensus via exchange of running sums. IEEE Transactions on
Automatic Control, 61(6):1492–1507, 2016.

Christoforos N Hadjicostis, Alejandro D Domı́nguez-Garćıa, Themistokis Charalambous,
et al. Distributed averaging and balancing in network systems: with applications to
coordination and control. Foundations and Trends R© in Systems and Control, 5(2-3):
99–292, 2018.

Shibo He, Dong-Hoon Shin, Junshan Zhang, Jiming Chen, and Youxian Sun. Full-view area
coverage in camera sensor networks: Dimension reduction and near-optimal solutions.
IEEE Transactions on Vehicular Technology, 65(9):7448–7461, 2015.

Mingyi Hong. A distributed, asynchronous and incremental algorithm for nonconvex op-
timization: An ADMM approach. IEEE Transactions on Control of Network Systems,
2017.

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In Foundations of Computer Science, 2003. 44th Annual IEEE Symposium
on, pages 482–491. IEEE, 2003.

Anastasiia Koloskova, Sebastian Urban Stich, and Martin Jaggi. Decentralized stochastic
optimization and gossip algorithms with compressed communication. Machine Learning
Research, 97(CONF), 2019.

Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decen-
tralized and stochastic optimization. Mathematical Programming, pages 1–48, 2018.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 583–598, 2014.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gra-
dient for nonconvex optimization. In Advances in Neural Information Processing Systems,
pages 2737–2745, 2015.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can de-
centralized algorithms outperform centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. In Advances in Neural Information Processing Sys-
tems, pages 5330–5340, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel
stochastic gradient descent. In International Conference on Machine Learning (ICML),
pages 3043–3052, 2018.

44

Robust Asynchronous Stochastic Gradient-Push

Ilan Lobel and Asuman Ozdaglar. Distributed subgradient methods for convex optimization
over random networks. IEEE Transactions on Automatic Control, 56(6):1291–1306, 2010.

Fatemeh Mansoori and Ermin Wei. Superlinearly convergent asynchronous distributed
network newton method. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 2874–2879. IEEE, 2017.

Gemma Morral, Pascal Bianchi, Gersende Fort, and Jérémie Jakubowicz. Distributed
stochastic approximation: The price of non-double stochasticity. In Signals, Systems and
Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Confer-
ence on, pages 1473–1477. IEEE, 2012.

Gemma Morral, Pascal Bianchi, and Gersende Fort. Success and failure of adaptation-
diffusion algorithms with decaying step size in multiagent networks. IEEE Transactions
on Signal Processing, 65(11):2798–2813, 2017.

Angelia Nedic. Asynchronous broadcast-based convex optimization over a network. IEEE
Transactions on Automatic Control, 56(6):1337–1351, 2011.

Angelia Nedic and Alex Olshevsky. Distributed optimization over time-varying directed
graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2015.

Angelia Nedic and Alex Olshevsky. Stochastic gradient-push for strongly convex functions
on time-varying directed graphs. IEEE Transactions on Automatic Control, 61(12):3936–
3947, 2016.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for dis-
tributed optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):
2597–2633, 2017.

Angelia Nedic, Alex Olshevsky, and Michael G Rabbat. Network topology and
communication-computation tradeoffs in decentralized optimization. IEEE, 106(5):953–
976, 2018.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on op-
timization, 19(4):1574–1609, 2009.

Alex Olshevsky. Linear time average consensus and distributed optimization on fixed graphs.
SIAM Journal on Control and Optimization, 55(6):3990–4014, 2017.

Alex Olshevsky, Ioannis Ch Paschalidis, and Artin Spiridonoff. Fully asynchronous push-
sum with growing intercommunication intervals. American Control Conference, pages
591–596, 2018.

Boris N Oreshkin, Mark J Coates, and Michael G Rabbat. Optimization and analysis of
distributed averaging with short node memory. IEEE Transactions on Signal Processing,
58(5):2850–2865, 2010.

45

Spiridonoff, Olshevsky, and Paschalidis

Zhouhua Peng, Jun Wang, and Dan Wang. Distributed maneuvering of autonomous surface
vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Transac-
tions on Control Systems Technology, 26(3):1083–1090, 2017.

Shi Pu and Alfredo Garcia. A flocking-based approach for distributed stochastic optimiza-
tion. Operations Research, 66(1):267–281, 2017.

Shi Pu and Angelia Nedic. A distributed stochastic gradient tracking method. In 2018
IEEE Conference on Decision and Control (CDC), pages 963–968. IEEE, 2018.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems, 2017.

Guannan Qu and Na Li. Accelerated distributed Nesterov gradient descent. IEEE Trans-
actions on Automatic Control, 2019.

Alexander Rakhlin, Ohad Shamir, Karthik Sridharan, et al. Making gradient descent op-
timal for strongly convex stochastic optimization. In 29th International Conference on
Machine Learning (ICML), volume 12, pages 1571–1578. Citeseer, 2012.

S Sundhar Ram, Angelia Nedic, and Venugopal V Veeravalli. Distributed stochastic sub-
gradient projection algorithms for convex optimization. Journal of optimization theory
and applications, 147(3):516–545, 2010.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

Jason DM Rennie and Nathan Srebro. Loss functions for preference levels: Regression with
discrete ordered labels. In IJCAI multidisciplinary workshop on advances in preference
handling, pages 180–186. Kluwer Norwell, MA, 2005.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié.
Optimal algorithms for smooth and strongly convex distributed optimization in networks.
In 34th International Conference on Machine Learning (ICML)-Volume 70, pages 3027–
3036. JMLR. org, 2017.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm
for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966,
2015.

Benjamin Sirb and Xiaojing Ye. Consensus optimization with delayed and stochastic gra-
dients on decentralized networks. In 2016 IEEE International Conference on Big Data
(Big Data), pages 76–85. IEEE, 2016.

Kunal Srivastava and Angelia Nedic. Distributed asynchronous constrained stochastic op-
timization. IEEE Journal of Selected Topics in Signal Processing, 5(4):772–790, 2011.

Lili Su and Nitin H Vaidya. Fault-tolerant multi-agent optimization: optimal iterative
distributed algorithms. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, pages 425–434. ACM, 2016a.

46

Robust Asynchronous Stochastic Gradient-Push

Lili Su and Nitin H Vaidya. Non-bayesian learning in the presence of byzantine agents. In
International Symposium on Distributed Computing, pages 414–427. Springer, 2016b.

Lili Su and Nitin H. Vaidya. Reaching approximate byzantine consensus with multi-hop
communication. Information and Computation, 255:352 – 368, 2017. ISSN 0890-5401.
doi: https://doi.org/10.1016/j.ic.2016.12.003. URL http://www.sciencedirect.com/

science/article/pii/S0890540116301262. SSS 2015.

Ying Sun, Gesualdo Scutari, and Daniel Palomar. Distributed nonconvex multiagent op-
timization over time-varying networks. In Signals, Systems and Computers, 2016 50th
Asilomar Conference on, pages 788–794. IEEE, 2016.

Ye Tian, Ying Sun, and Gesualdo Scutari. Asy-sonata: Achieving linear convergence in
distributed asynchronous multiagent optimization. In 2018 56th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), pages 543–551. IEEE,
2018.

Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Consensus-based distributed
optimization: Practical issues and applications in large-scale machine learning. In Com-
munication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference
on, pages 1543–1550. IEEE, 2012a.

Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Push-sum distributed dual
averaging for convex optimization. In 2012 51st IEEE Conference on Decision and Control
(CDC), pages 5453–5458. IEEE, 2012b.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous determin-
istic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic
Control, 31(9):803–812, 1986.

Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. Decentralized consensus
optimization with asynchrony and delays. IEEE Transactions on Signal and Information
Processing over Networks, 4(2):293–307, 2018.

Chenguang Xi and Usman A Khan. Dextra: A fast algorithm for optimization over directed
graphs. IEEE Transactions on Automatic Control, 62(10):4980–4993, 2017a.

Chenguang Xi and Usman A Khan. Distributed subgradient projection algorithm over
directed graphs. IEEE Transactions on Automatic Control, 62(8):3986–3992, 2017b.

Chenguang Xi, Ran Xin, and Usman A Khan. Add-opt: Accelerated distributed directed
optimization. IEEE Transactions on Automatic Control, 63(5):1329–1339, 2018.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant stepsizes. In 2015
54th IEEE Conference on Decision and Control (CDC), pages 2055–2060. IEEE, 2015.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent.
SIAM Journal on Optimization, 26(3):1835–1854, 2016.

47

http://www.sciencedirect.com/science/article/pii/S0890540116301262
http://www.sciencedirect.com/science/article/pii/S0890540116301262

	Introduction
	Literature Review
	Our Contribution
	Organization of This Paper
	Notations and Definitions

	Push-Sum with Delays and Link Failures
	Linear Formulation
	Exponential Convergence
	Perturbed Push-Sum

	Robust Asynchronous Stochastic Gradient-Push (RASGP)
	Time-Varying Graphs
	On the Bounds for Delays, Asynchrony, and Message Losses

	Numerical Simulations
	Setup
	Results

	Conclusions
	Proof of Lemma 4

