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Abstract—Intent-based networking (IBN) promises to simplify
the network management and automated orchestration of high-
level policies in future networking architectures such as software-
defined networking (SDN). However, such abstraction and au-
tomation creates new network visibility challenges. Existing SDN
network forensics and diagnostics tools operate at a lower
level of network abstraction, which makes intent-level reasoning
difficult. We present PROVINTENT, a framework extension for
SDN control plane tools that accounts for intent semantics.
PROVINTENT records the provenance and evolution of intents
as the network’s state and apps’ requests change over time and
enables reasoning at multiple abstractions. We define an intent
provenance model, we implement a proof-of-concept tool, and we
evaluate the efficacy of PROVINTENT’s explanatory capabilities
by using a representative intent-driven network application.

Index Terms—intent-based networking, IBN, software-defined
networking, SDN, data provenance, network visibility, network
diagnostics, network troubleshooting, root cause analysis, PROV

I. INTRODUCTION

Intent-based networking (IBN) has been proposed as a
promising approach for automated and policy-aware network
management. IBN can extend the programmable functionality
found in software-defined networking (SDN) by allowing
practitioners to specify what policies they want their network
to implement rather than how their network’s underlying
mechanisms will implement such policies. This declarative
approach—specified through network intents—allows for the
simplification and abstraction of complex network manage-
ment [1]. For instance, a practitioner can specify declaratively
a network intent with a policy of “allow hosts A and B to
communicate with bandwidth capacity X” without having to
understand any mechanism details about the underlying device
(i.e., switch), topology, or forwarding configurations [2].

Although IBN abstracts away mechanism and configuration
details to reduce the management complexity, such abstraction
creates new visibility and insight challenges for practitioners
who are tasked with the analysis of and explanations about
past network activity [3], [4]. First, network intents are de-
signed to allow for practical realization of multiple alternative
implementation approaches [1]. A practitioner will want to
understand which approach was implemented (e.g., to validate
policy optimizations) and why any alternative approaches
were not implemented. Second, it may not be possible to
install network intents immediately because the necessary
resources may not be available [1]. A practitioner will want

to understand what the network state looked like at a given
time. Finally, network intents may interfere with the current
network state or previous network intents [1], and that may
induce broader network failures [3]. A practitioner will want
to understand the extent to which the network reacted, and
verify or validate the enforcement of policies [3].

The aforementioned challenges point to a greater need for
explainable network activities that permit practical visibility
and insight into past network state. Recent network control
plane forensics and diagnostics tools, particularly for SDN [5],
[6], are promising because they can track the complex data and
process dependencies (or the provenance) of network control
plane activities. However, from an IBN perspective, such tools
that focus on low-level network state and configurations can
easily become too complex to understand and, as such, do not
provide the appropriate level of abstraction.

In this paper, we present PROVINTENT, a framework ex-
tension of SDN-based control plane provenance tools that
accounts for IBN semantics and concerns. PROVINTENT an-
notates SDN control plane dependency and provenance graphs
through an overlay of intent state provenance and metadata.
Those annotations bridge the semantic gap between high-level
intent abstractions and low-level network mechanisms and
configurations. As a result, PROVINTENT’s intent provenance
model and PROVINTENT’s implementation alongside SDN
tools can be used by practitioners to reason effectively at
different levels of abstraction about IBN activities. PROVIN-
TENT simplifies what practitioners need to understand about
intents by concisely identifying what low-level network state
such intents affected. Our contributions include 1) an intent
provenance model that articulates intent states and semantics
(Section III); 2) a design and implementation of the intent
provenance model that use the ONOS SDN controller’s Intent
Framework (Section IV); and 3) an evaluation of a represen-
tative intent-driven network application that shows how such
provenance information can be practically useful (Section V).

II. BACKGROUND & RELATED WORK

A. IBN and SDN

Major SDN controllers, such as the Open Network Operat-
ing System (ONOS) [7] and OpenDaylight (ODL) [8], imple-
ment IBN capabilities that abstract the details of specific net-
work protocols, mechanisms, and topology [3]. Intents allow
network applications or practitioners to specify declaratively
what the network ought to do at a policy level, rather than
how the network ought to achieve the desired configuration.
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Fig. 1. Intent state machine of ONOS’s Intent Framework [3]. Highlighted
nodes represent long-lasting states, and bolded edges represent asynchronous
state changes instigated from network state changes or app requests.

Given that intents’ low-level implementations may react and
change depending on network changes or practitioner requests,
intents maintain a lifecycle notion and can be modeled suc-
cinctly as intent state machines. As a representative example,
Figure 1 shows the ONOS Intent Framework’s intent state
machine. Nodes represent intent states of the intent lifecycle,
and edges represent triggered events or actions that cause
intent states to change (e.g., the submission or withdrawal
of an intent by a practitioner through an app, or a network
topology change). As a result, intent frameworks can respond
to any low-level changes that affect high-level intents.

Intent managers coordinate intents by listening to any
relevant state changes induced by apps or the network. For
instance, a topology change event (e.g., TopologyEvent in
ONOS) will be received by the intent manager so that it can
check whether any installed intents are affected; if they are,
the intents are recompiled and reinstalled. Intent managers also
check whether state changes allow for previously failed intents
to be successfully installed. Finally, intent managers can install
and withdraw intents as needed by practitioners or apps.

B. Existing Network Insight Tools for IBN and SDN

Prior work [9]–[12] proposes unstructured logging for SDN
controllers as a way to record past network activities to gain
insight and for auditing. However, unstructured logging suffers
from two general challenges: 1) the granularity and extent of
logging information varies depending on the SDN controller
implementation1; and 2) subsequent entries (of reported ac-

1For instance, ONOS v1.14.0 [13] requires that the practitioner set the
logging verbosity level to DEBUG or TRACE in order to expose details that
relate to intent state changes or intent metadata.

tions) in the log appear causally dependent on all preceding
entries in the log, and that can create spurious dependencies.

Graph-based logging approaches mitigate such challenges
by structuring past data usage, data generation, and activity
dependencies into a provenance graph (or a dependency
graph). PROVSDN [5] and FORENGUARD [6] use such graph
structures to track the evolution of SDN control plane activities
(e.g., events and API calls) and data structures (e.g., repre-
sentations of control plane objects). Control plane state and
functionality written in Network Datalog can be expressed
graphically, as well [14], [15]. Similarly, GitFlow [16] tracks
SDN flow rule changes through a version control system with
an underlying graph structure. However, all of the aforemen-
tioned tools and approaches focus on low-level SDN network
configurations and objects. That makes it difficult to use
those tools for IBN reasoning because they expose too much
complexity and do not explicitly track intents’ evolutions.

III. INTENT PROVENANCE MODEL

We propose an intent provenance model. The model cap-
tures the essential semantics of intents’ states, actions that in-
fluence any intent state transitions (i.e., asynchronous network
state changes or app requests), and the intent requirements
(e.g., flow matching criteria and bandwidth). PROVINTENT
uses the intent provenance model to generate an intent prove-
nance graph, which allows practitioners to reason about past
activities at the intent abstraction and to understand low-level
network actions as necessary. We have designed the intent
provenance model to be interoperable with existing graph-
based network provenance frameworks, such as those used in
PROVSDN [5] and FORENGUARD [6].

PROVINTENT’s intent provenance model is based on the
W3C PROV data model [17]. PROV includes a graphical
representation in terms of a provenance graph. Such a graph’s
nodes represent the agents (i.e., system principals), activities
(i.e., events or processes), and entities (i.e., data structures) of
a given system. Such a graph’s edges represent the relations
among agents, activities, and entities. For instance, entities are
“generated by” activities, activities “use” entities, and activities
are “associated with” agents. PROV provenance graphs are
directed and acyclic, which enables backward and forward
tracing over such graphs to analyze root causes of events or
understand information flow [5].

We now define the nodes, edges, and semantic meanings of
PROVINTENT’s intent provenance model.

1) Nodes: PROV includes the prov:Activity class (or Ac-
tivity) to specify activities. In the intent provenance model,
we extend that class to include the notion of an intent state,
denoted by provIntent:IntentState (or IS). Each IS object
also includes relevant metadata within application-specific
key–value pairs. For instance, such metadata include the state
name, the intent key (i.e., persistent identifier), the time stamp
of the last state transition, the relevant app that submitted
the intent, and any requirements (e.g., bandwidth capacity or
routing specifications) that the intent should fulfill.
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Fig. 2. PROVINTENT intent provenance graph showing a simple intent state evolution. Each blue rectangle represents a provIntent:IntentState object. At
time t = 0, an app a1 requests that an intent be installed. The intent is installed at t = 3 and remains installed until its withdrawal at t = 100. PROVINTENT
links any relevant SDN control plane activities (i.e., prov:Activity objects) during each intent state; such activities are represented as bolded text.

2) Edges: PROV includes prov:wasInformedBy relations
among Activity objects, which are represented as backward-
directed2 edges. We extend that relation class as follows:

1) provIntent:intentStateChange (or iSC) represents the
transitions between intent states (domain: IS, range: IS)

2) provIntent:networkStateUsed (or nSU) represents a
network activity that induced a change to the intent’s
state, such as a topology change (domain: IS, range:
Activity)

3) provIntent:networkStateGeneratedBy (or nSGB)
represents the effects of an intent’s state change on the
network state, such as a flow rule installation (domain:
Activity, range: IS)

4) provIntent:appStateChange (or aSC) represents an
app that induced an intent’s state change, such as an
intent installation (domain: IS, range Activity)

We note that the intent state machine captures the possible
states and transitions of intents. Although such states (i.e., IS)
and transitions (i.e., iSC) are central to the intent provenance
model, we also model how they interact with the underlying
SDN control plane API calls (i.e., nSU and nSGB) and app
requests (i.e., aSC), too. The resulting graph shows how the
intent actually transitioned among states over time.

3) Semantics: Figure 2 shows a representative intent prove-
nance graph that we use to explain the model’s semantics.

a) Intent evolution: We can represent an intent’s evo-
lution in an intent provenance graph as a path of IS nodes,
linked together with iSC edges. That succinctly captures the
state transitions that the intent took in the intent state machine.
If an app submits an intent that can be realized in the network,
the expected evolution would include the intent’s installation
request (i.e., INSTALL REQ), its compilation (i.e., COM-
PILING), its installation (i.e., INSTALLED), and eventually
its removal (i.e., WITHDRAW REQ, WITHDRAWING, and
WITHDRAWN). Figure 2 shows that evolution, starting from
the most recent state (i.e., WITHDRAWN) and tracing back-
ward in the intent’s history.

b) Intent mapping: The nSU, nSGB, and aSC edges
serve as the mappings between the high-level intent abstraction
and the low-level network state abstraction. These edges link
to and from the activities generated by the SDN control

2In PROV, an edge represents a past causal relation. Thus, edges should be
interpreted as backward-directed in time and logical ordering.
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Fig. 3. Overview of PROVINTENT’s design with major components and
dependencies within the SDN and IBN frameworks.

plane provenance tool (e.g., PROVSDN). Although the intent
provenance model does not specify the exact SDN control
plane provenance model to be used, we note that PROVSDN
and FORENGUARD are capable of providing the appropriate
control plane semantics. For instance, PROVSDN specifies
agents (e.g., apps), activities (e.g., API calls), and entities
(e.g., control plane data structures). Similarly, FORENGUARD3

specifies activities (e.g., events and function calls) and entities
(e.g., OpenFlow messages and variable fields). Figure 2 shows
how an intent provenance graph links to the API calls, rep-
resented as bolded text, that PROVSDN collects when such
calls get the current network state (e.g., a topology change) or
change the network state (e.g., flow rule insertion).

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Design and Major Components

PROVINTENT complements and extends existing SDN con-
trol plane provenance frameworks. Figure 3 shows the overall
design and major system components.

1) SDN controller: The SDN controller manages the intent-
based network. The controller exposes a northbound API (or
NB API) by which apps can query core services (e.g., topol-
ogy, flow rule, and intent services). The controller dispatches
core services’ events to apps interested in such events.

3FORENGUARD graphs are specified with forward-directed edges, as op-
posed to backward-directed edges as in PROV. To implement PROVINTENT
with FORENGUARD, one would need to reverse the edge directions.
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2) SDN control plane provenance tool: The SDN control
plane provenance tool collects provenance metadata for all
control plane activities in the SDN controller.

3) Intent tracker and data store: The intent tracker manages
intents’ states and uses the intent data store to keep track of
PROVINTENT’s internal system state.

4) Control plane provenance interface: The control plane
provenance interface interacts with the control plane prove-
nance tool to coordinate any provenance relations and state
information. For instance, if the controller’s intent service calls
the flow rule service’s NB API to add a flow rule, the control
plane provenance interface will be able to link the control
plane provenance with PROVINTENT’s intent provenance.

5) Provenance graph: The provenance graph is the com-
bined control plane and intent provenance output. If no SDN
control plane provenance tool is enabled or available, PROV-
INTENT tracks intent evolution only.

6) Query interface: The query interface allows a practi-
tioner to query and return the relevant provenance graph. For
instance, a practitioner can use the graph as input to a separate
(automated) reasoning tool for root cause analysis.

B. Implementation

We implemented PROVINTENT within ONOS v1.14.0 [13]
and used a modified version of PROVSDN [5] as the SDN
control plane provenance tool. We note that PROVSDN is
incorporated into ONOS but that any control plane prove-
nance tool is applicable because PROVINTENT is modular-
ized. PROVINTENT can still function without a control plane
provenance collector, in which case it would simply track the
evolution of the intent as it goes through different states.

The ONOS Intent Framework includes an intent manager,
intent compilers, intent installers, and the aforementioned
intent state machine shown in Figure 1. ONOS is event-
driven, which allows core controller components to dispatch
relevant events (e.g., IntentEvent events) for any apps or
components listening for them. ONOS includes an Intent
class that describes the intent, as well as an IntentData class
that includes additional metadata, such as the intent state. As
Intents can be compiled down to other (installable) Intents,
we link to the highest-level intent that an app submitted.

For the intent state transitions, we added hooks in the
intent phase classes. These hooks associate an intent’s current
state with an intent provenance graph’s relevant nodes and
edges. For the intent state changes that were made as a result
of network state changes (e.g., topology updates), we added
hooks in the intent manager’s event listener trackers. The
hooks use the nSU relation to associate intent state changes
with the relevant calls. For the network state changes brought
about by intent state changes (e.g., flow rule insertions), we
added hooks in the intent installer classes. The hooks associate
PROVSDN’s provenance information about flow rule service
API calls with PROVINTENT’s intent information by using the
nSGB relation. For any other network information referenced
by the intent in its compilation, we added hooks in the intent
compiler classes and use the nSU relation.
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Fig. 4. Evaluation topology using 2 hosts and 4 switches.
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V. EVALUATION

We evaluated the efficacy of PROVINTENT by using
ONOS’s ifwd app [18], which implements reactive forwarding
with intents and flow objectives. We used a 2-host, 4-switch
Mininet [19] topology as shown in Figure 4. As our topology
allows for multiple paths between hosts, we administratively
shut down links to force a topology change. That allowed us to
show how intents change states after they have been submitted.

Scenario: To begin, the ifwd app requests a HostTo-
HostIntent between hosts h1 and h2. The HostToHostIntent
compiler (i.e., HostToHostIntentCompiler) gets information
about the available hosts on the network (via the HostService)
and the available shortest paths between the hosts (via the
PathService). HostToHostIntents compile to LinkCollec-
tionIntents and (installable) FlowRuleIntents. The installer
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selects path 1 and installs flow rules f1 through f6, which
implement the bidirectional communication between hosts h1

and h2 across the 3 switches s1, s2, and s4.
To force a reinstallation, we administratively bring down

links in path 1 between switches s1 and s4. That leaves path
2 as the only viable path between hosts h1 and h2. The tracker
service tracks the resulting network state changes and triggers
a recompilation. As a result, the installer installs flow rules f7
through f12 across the 3 switches s1, s3, and s4.

Analysis: Figure 5 shows the salient features of the resulting
provenance graph, which combines intent and control plane
provenance from PROVINTENT and PROVSDN, respectively.
Following the most recently installed intent state, a practitioner
backtraces through the graph’s iSC edges to understand the
transitions that the intent took in the intent state machine. He
or she determines that the intent was reinstalled once.

The practitioner notices that different sets of paths were
returned during each compilation. He or she starts to inves-
tigate why different paths were chosen, a question that one
can answer by backtracing through PROVSDN’s control plane
provenance. Had PROVINTENT’s intent provenance not been
included in the provenance graph, the practitioner’s task of
analyzing the reasons would have been more complicated.

Now suppose that the practitioner wants to validate the
extent to which the intent’s policy (e.g., “allow communication
between hosts h1 and h2”) was followed in practice. The
practitioner performs a backward trace starting at the most
recently installed phase, and then performs a forward trace to
find all control plane data structures (i.e., entities) relevant to
the intent. The result returns flow rules f1 through f12, and
the practitioner can analyze these flows to validate the policy.

VI. DISCUSSION AND FUTURE WORK

IBN abstracts away unnecessary information when reason-
ing about policy. However, such abstraction creates visibility
challenges when such information is needed to answer ques-
tions about what caused network failures, whether policies
were implemented in practice, or whether policies could be im-
proved [4]. Those challenges will only become more difficult
with increased automation and the rise of machine-learning-
based decisions on changing network intents and policies.
PROVINTENT balances the need to provide the right amount
of information and the ability to track additional details about
the network’s state as necessary.

The intent provenance model’s concepts are applicable
to other IBN frameworks and their intent state machines
(e.g., OpenDaylight’s Network Intent Composition [20]). In-
tent state machine standardization is an open research problem.

Given that intents are extensible and can be tailored to a
particular domain (e.g., data protection [21]), we anticipate
that the intent provenance model can fit into a domain-specific,
provenance-aware system that can be queried at various ab-
straction levels. We imagine that a practitioner will be able
to issue queries about past high-level activities (e.g., business
policies or workflows) that are mapped into lower-level activ-
ities (e.g., intents and control plane configurations).

VII. CONCLUSION

We presented PROVINTENT, an IBN provenance framework
that extends SDN control plane provenance to account for
intent semantics. PROVINTENT provides capabilities to record
and understand past intent and network activities. We defined
an intent provenance model and designed a tool to capture
and understand the resulting provenance. We used ONOS to
implement PROVINTENT to show the practicality and utility
of intent provenance for practitioner queries.
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