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Abstract

Autonomous underwater robots working with teams of

human divers may need to distinguish between different

divers, e.g., to recognize a lead diver or to follow a spe-

cific team member. This paper describes a technique that

enables autonomous underwater robots to track divers in

real time as well as to reidentify them. The approach is

an extension of Simple Online Realtime Tracking (SORT)

with an appearance metric (deep SORT). Initial diver detec-

tion is performed with a custom CNN designed for realtime

diver detection, and appearance features are subsequently

extracted for each detected diver. Next, realtime tracking-

by-detection is performed with an extension of the deep

SORT algorithm. We evaluate this technique on a series

of videos of divers performing human-robot collaborative

tasks and show that our methods result in more divers being

accurately identified during tracking. We also discuss the

practical considerations of applying multi-person tracking

to on-board autonomous robot operations, and we consider

how failure cases can be addressed during on-board track-

ing.

1 INTRODUCTION

The state of the art in multi-person visual tracking has

greatly improved in both speed and accuracy in recent

years [1–3]. These improvements make multi-person track-

ers viable for use on realtime robotic platforms. How-

ever, utilizing multi-person tracking algorithms onboard au-

tonomous robots, particularly in adverse conditions, is still

an under-explored area [4]. In this paper, we propose a re-

altime multi-person tracker suitable for autonomous under-

water robots.

This work was motivated by the need for underwater

robots to distinguish between different human ‘teammates’
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in order to improve underwater human-robot collaboration.

Underwater robots are utilized for a wide range of tasks,

including data collection, ecological mapping, and wreck

investigations (e.g., [5–7]). These tasks frequently require

collaboration between robots and human divers. When the

robot collaborates with a team of divers, it is highly useful

for the robot to be able to identify different divers: for ex-

ample, the robot may need to follow a specific diver or to

recognize a lead diver from whom to take instructions.

In order to distinguish between different divers, the robot

must continually detect divers who are present in images re-

ceived from its cameras. The robot must also have a method

to “identify” detections; that is, the robot must keep track of

each person it has seen and determine whether a detection

corresponds to one of those people. This is roughly equiva-

lent to the multi-object tracking (MOT) problem, which has

been extensively studied in computer vision.

Most MOT research has focused on tracking pedestri-

ans [1–3]. In this work, we adapt these pedestrian-focused

strategies for use in an underwater human-robot collabo-

ration scenario. In particular, this involves shifting the

tracker’s focus from tracking many people that come and

go throughout a crowded scene, to tracking a small group

of people that may leave the robot’s field of view for an ar-

bitrary period of time, but remain in the scene indefinitely.

Also, human body postures are predominantly in a hori-

zontal orientation during the diver tracking scenario, which

is not the case for pedestrians. Our tracking problem has

some difficulties that are not present in the typical pedes-

trian tracking scenarios: there is the inherent difficulty in

detecting divers (see Section 2 for a discussion), as well

as the difficulty in distinguishing between two divers given

the poor visibility conditions underwater and similarities in

divers’ SCUBA gear (see Figure 1). However, in our prob-

lem we only need to track a few divers at a time, whereas

typical MOT sequences contain dozens of people in a given

frame.

Our approach is tracking-by-detection, which is the cur-

rent leading MOT paradigm. In tracking-by-detection, the

tracker first performs person detection on each image. The

tracker aims to match each of these detections to the correct

a
rX

iv
:1

9
1
0
.0

9
6
3
6
v
1
  
[c

s.
R

O
] 

 2
1
 O

c
t 

2
0
1
9



Figure 1: Two divers collaborating with an underwater

robot. It is desirable for the robot to be able to uniquely

identify its human partners; however, the divers’ similar

gear and the poor visibility conditions underwater make this

difficult.

Figure 2: Exemplary output of our tracker on an underwater

scene with multiple divers present. Two divers are detected

and determined to belong to tracks “1” and “3.”

track, where each track represents a unique person. Each

track typically models the person’s trajectory and/or appear-

ance in order to assist the tracker in matching detections to

tracks.

Our method is an extension of Simple Online Realtime

Tracking with an appearance metric (deep SORT), a tracker

that runs in realtime and performs well on standard track-

ing benchmarks. We extend this technique to use a custom

diver appearance metric, allow tracks to persist even after

arbitrarily long absences, and to recover from certain rei-

dentification errors.

Specifically, this paper contributes the following:

• A multi-diver tracker that can run on a realtime robotic

platform.

• An adaptation of the traditional multi-person track-

ing strategies, which focus on transient pedestrians in

crowded scenes, to a strategy that focuses on tracking

people who are always present in the scene (although

they may not always be present in the robot’s field of

view).

• Evaluation of the proposed tracker on a diverse set of

scenarios, including several that depict authentic un-

derwater human-robot collaboration.

2 Related Work

Distinguishing between different divers is typically a dif-

ficult task due to low in-class feature diversity: images of

different divers are often highly visually similar, both be-

cause of similar wearables (e.g., SCUBA gear) and poor vis-

ibility conditions underwater. The authors’ previous work

includes a first-of-its-kind method to identify divers via k-

means clustering on hand-crafted feature vectors [8]. The

current research extends this work to an online method that

can track and uniquely identify divers, utilizing a MOT ap-

proach.

MOT has been extensively studied in computer vision.

Most research in the area has focused on tracking pedestri-

ans [1–3,9], and the annual MOT challenges primarily con-

sist of pedestrian datasets [1, 10]. We refer the interested

reader to [2] for a thorough review of the field.

Many high-performing trackers process images in

batches, rather than online, which makes them infeasible

for realtime use [11–13]. Additionally, many of these track-

ers use computationally-intensive techniques such as opti-

cal flow analysis [14,15] and Multiple Hypothesis Tracking

(MHT) [12] which increase tracker accuracy at the cost of

processing speed. This phenomenon is illustrated by the

leaderboard for the Conference on Computer Vision and

Pattern Recognition (CVPR) 2019 MOT Challenge [10].

Only one of the three most accurate submissions has a track-

ing component that runs at more than two frames per second

(the processing time for the detection component is not re-

ported).

In contrast, the fastest trackers rely on relatively simple

yet robust heuristics, while still achieving reasonable accu-

racy. Many of these realtime trackers do not take people’s

appearances into account, and instead match detections to

tracks solely by analyzing the locations of the detections.

For example, the Intersection Over Union (IOU) Tracker

[16] matches a detection to a given track if there is a suffi-

ciently high IOU between the detection bounding box and

the track’s bounding box in the previous frame. Simple On-

line Realtime Tracking (SORT) [17] is a slightly more com-

plex model that uses a Kalman filter [18] to model people’s

motions and predict their next location. SORT matches de-

tections to tracks if there is a sufficiently high IOU between

a detection’s bounding box and the track’s predicted bound-

ing box. While these techniques are reasonable for track-

ing pedestrians, they are not able to reidentify a person af-

ter he or she is temporarily occluded. This shortcoming



was addressed by deep SORT [19], which extends SORT

to also use a deeply-learned appearance metric [20] to im-

prove reidentification after occlusions. This work extends

deep SORT further to improve reidentification after longer

occlusions or absences, as well as customizing the appear-

ance metric for diver reidentification.

Reidentification in visual tracking is closely tied to the

more general person reidentification (i.e., reID) problem.

The basic reID problem can be formulated as a task to com-

pare persons of interest appearing in ‘query’ datasets to a

‘gallery’ of potential candidate images, captured from dif-

ferent angles, different cameras and even different scenes.

Existing work focuses almost exclusively on person re-

trieval on land, which are either image-based or video-

based. Person reID methods often use visual cues based on

the individual’s height, face, complexion, and gait [21, 22].

However, these methods are not reliable in situations where

face or gait recognition is not feasible (e.g., for poor im-

age resolution, or in images captured from different an-

gles). Gheissari et al. propose a novel method [23] which

relies on features invariant to illumination, pose, and dy-

namic appearance of clothing [23]. Recent contributions

increasingly rely on deep machine learning ( [24–27]) for

their improved accuracy in the reID task, although most are

not realtime capable.

Detection is another crucial component of tracking-by-

detection systems. Diver detection is a difficult problem,

largely because underwater visual perception presents vari-

ous challenges, including color distortion, suspended parti-

cles, and light refraction, absorption, and scattering [28,29].

Additionally, divers have a wider range of potential po-

sitions and orientations than people on land, since divers

are suspended in a 6-DOF aquatic environment. Islam et

al. [30] design a CNN-based realtime-capable diver detec-

tion model while sacrificing relatively little accuracy. We

use this model for the detection component of our tracker.

3 Methodology

Our algorithm keeps a set of all known tracks, denoted

as T . After finding detections with the network described in

[30] for a given frame, the algorithm attempts to match each

detection to an existing track t ∈ T . Below we describe

how the algorithm makes these matches.

3.1 Intersection Over Union

Our algorithm first checks to see if any detections can

be matched to tracks via intersection over union (IOU). We

begin with this strategy because simple IOU trackers can

be very effective [16], and IOU can be computed quickly.

Therefore, we take the IOU “shortcut” if possible before

doing any more intensive computations.

Figure 3: An illustration of how the area and aspect ratios

of bounding boxes can oscillate rapidly during swimming.

We use the following definition for the IOU between

bounding boxes A and B:

IOU(A,B) =
A ∩B

A ∪B

Our IOU-assignment procedure is as follows: We have

a set of detections Dt that contains all detections found at

time t. We then calculate the IOU between each di ∈ Dt

and each dj ∈ Dt−1. If IOU(di, dj) ≥ 0.75, di is assigned

to the same track as dj . This is a more conservative thresh-

old than the 0.5 threshold used by the IOU tracker [16],

since the IOU tracker uses batch processing to eliminate

erroneous associations and we process each frame sequen-

tially.

3.2 Appearance and Location Metrics

To match the remaining detections to tracks, we utilize

two metrics: an appearance metric that describes the simi-

larity of a detection’s appearance and a track’s appearance,

and a location metric that describes the similarity between

a detection’s location and a track’s location.

The location metric is largely identical to the ap-

proaches in [20] and [17]. We use a simple Kalman filter

to model the motion of each track. Our tracking scenario

is defined on the four-dimensional state space (x, y, ẋ, ẏ)
where (x, y) is the bounding box’s center position in im-

age coordinates and ẋ and ẏ are the respective velocities

of x and y. We do not include the area or aspect ratio of

the bounding box in the state space because due to rapid

arm and leg motion from swimming strokes, the aspect ra-

tio and area of a diver’s bounding box can oscillate rapidly

(see Figure 3 for an illustration of this effect). The location

metric between detection di and track tj is then defined as

the squared Mahalanobis distance between the Kalman fil-

ter’s predicted location of tj and the actual location of di.

The appearance metric differs from the approach used

by other trackers. We calculate a series of hand-crafted fea-

tures to find a feature vector that describes the appearance

of the detected diver. In contrast, most trackers use a deep

neural network trained on a person reidentification dataset

to generate feature vectors, e.g., [20, 31, 32]. We do not

take this approach for two reasons: (a) networks trained on

person reidentification datasets are not well-suited to rei-

dentifying divers [33], and (b) diver-specific reidentification



datasets do not exist and data scarcity prevents us from cre-

ating one.

The appearance features we extract and the reasoning be-

hind their inclusion are fully described in [8]. In summary,

we use features that can satisfactorily differentiate between

divers, but are also relatively robust to changes in lighting,

and diver position and orientation:

• Average color distribution in the LAB color space

• Amplitude of the spatial frequency distribution

• Shape approximation through image contours

• Shape approximation through convex hull

• Hu image moment invariants [34]

These features have been shown to be sufficient for the k-

means algorithm to effectively cluster images of divers ac-

cording to their identities [8].

We take the same approach as [19] for calculating ap-

pearance similarities between tracks and detections. For

each track, we store the normalized feature vectors of the

100 most recent detections that have been matched to that

track. To measure the appearance similarity between a de-

tection and a track, we find the cosine similarities between

each of the track’s stored feature vectors and that detection’s

normalized feature vector. The smallest of these cosine sim-

ilarities is then the appearance similarity between the track

and detection. Concretely, if detection di’s normalized fea-

ture vector is fi, and Fj is the set of stored normalized fea-

ture vectors for track tj , then the appearance similarity be-

tween di and tj is calculated with:

simappearance(di, tj) = min(1− fT
i fj | fj ∈ Fj)

3.3 Matching Detections to Tracks

Next, we must use the location and appearance metrics

to match the remaining detections to tracks. We use the

typical strategy of formulating an assignment problem that

can be solved with the Hungarian algorithm [35]. This is

done by finding a cost, cij for matching detection di detec-

tion to track tj . We let cij = simappearance(di, tj). Because

of poor visibility underwater and strong resemblance be-

tween divers’ SCUBA gear, sometimes a detection is highly

visually similar to more than one track. In this case, we

introduce the location similarity as a tie-breaker and have

cij = simappearance(di, tj)+simlocation(di, tj) for all costs as-

sociated with that detection. The Hungarian algorithm then

finds the optimal matches between detections and tracks

such that the costs are minimized.

We do not rely heavily on the location similarity to con-

tribute to the cost of a match. This is because the location

similarity is derived through a Kalman filter, which is de-

signed to model linear systems [18]. Since divers’ move-

ments are not consistently linear, we cannot highly depend

on Kalman filter predictions. In addition, the robot’s exact

motions (and by extension the camera’s exact motions) are

unknown, which also negatively affects the Kalman filter’s

predictive power.

However, the Kalman filter can be useful for determining

which matches between detections and tracks are unaccept-

able. We consider matches between detections and tracks

to be unacceptable if the detection’s location is too far away

from the track’s predicted location (i.e., if the location met-

ric is above a certain threshold), or if the detection’s appear-

ance is too dissimilar from the track’s appearance (i.e., if the

appearance metric is above a certain threshold). The thresh-

olds used for unacceptable matches were found empirically

by testing our algorithm on a validation dataset. We used 25
for the location metric threshold and 1e−4 for the appear-

ance metric threshold.

We indicate an unacceptable match by setting cij = ∞.

If a detection cannot be matched to a track with a cost c <

∞, we create a new track for that detection. To account for

spurious detections, new tracks are not officially included in

T until they have been matched with a detection for three

consecutive frames.

3.4 Short Term vs. Long Term Reidentification

When a detection is not matched to a track for a frame,

the track is no longer active. If a person belonging to an

inactive track is detected, the person will need to be reiden-

tified, i.e., matched to their existing track.

Our algorithm as described above can accomplish rei-

dentification if the detection’s appearance is similar enough

to the inactive track and its location is similar enough to the

inactive track’s predicted location. However, our algorithm

changes its approach for tracks that have been inactive for

a longer period of time (i.e., more than five frames). In

this case, we no longer calculate a predicted track location,

because the track’s Kalman filter will have too much uncer-

tainty and propagated error. We also increase the appear-

ance similarity threshold slightly, to 5e−4. This is because

when a person is absent from the scene for a longer period

of time, there may be significant changes to their position

and orientation, as well as the scene’s lighting, so we adopt

a more forgiving threshold. The threshold was also obtained

empirically by testing our algorithm on a validation dataset.

3.5 Identity Recovery

One potential problem with our reidentification tech-

nique is that we must correctly reidentify a diver on the first

frame in which he or she reenters the robot’s field of view.







Scen. Location Exemplar DP ↑ DR ↑ Tracker IDF1 ↑ IDP ↑ IDR ↑ IDS ↓ FM ↓

1 ocean 49.7 38.7

SORT 2.0 28.6 1.0 0 0

deep SORT 17.9 20.5 15.8 22 25

diver SORT 27.7 39.3 21.4 7 19

2 ocean 59 35.9

SORT 11.1 57.1 6.2 1 1

deep SORT 26.9 35.9 21.5 3 7

diver SORT 60.4 78.0 49.2 0 8

3 ocean 64.5 49.1

SORT 2.6 42.9 1.3 0 0

deep SORT 21.1 24.4 18.5 24 29

diver SORT 27.6 41.6 20.7 15 27

4 ocean 62.7 37.2

SORT 15.4 25.3 11.1 11 25

deep SORT 27.2 36.6 21.7 16 26

diver SORT 33.6 46 26.5 19 46

5 ocean 70.7 54.7

SORT 30.4 42.2 23.8 23 63

deep SORT 34.1 39.2 30.3 30 80

diver SORT 49.2 58.6 42.4 19 92

6 ocean

30.5 25 SORT 9.8 12.9 7.9 15 37

deep SORT 13.4 15.4 11.9 9 37

diver SORT 24.5 28.4 21.5 10 53

7 pool

81.6 60.3 SORT 19.2 27.7 14.7 25 43

deep SORT 49.3 58.1 42.8 14 53

diver SORT 64.9 80.0 54.6 17 65

8 pool

63.2 25.8 SORT 31.4 68.6 20.3 2 13

deep SORT 26.6 46.3 18.6 4 15

diver SORT 37.4 51.9 29.2 12 26

ALL

SORT 18.6 29.6 13.6 77 182

deep SORT 30.0 36.3 25.5 122 272

diver SORT 42.1 53.1 34.9 99 336

Table 2: A comparison of our algorithm’s performance (diver SORT) and two other realtime trackers’ performance on several

videos of divers. See Table 1 for a brief description of the metrics used.

ever, in situations where the detector produces highly in-

accurate detections, all tested trackers perform poorly. This

has two implications: (1) improving our detector can re-

sult in highly significant tracking improvements, and (2) the



tracker has the potential to be highly unreliable in the field

when adverse conditions reduce detection accuracy. In such

situations, the erroneous tracker output could lead to erratic

and unpredictable robot behavior, which may jeopardize the

mission. Future work therefore involves improving real-

time diver detection and developing a system that can flag

poor detector performance (e.g., dropping many frames, in-

consistent numbers of detections between frames). When

poor detection conditions are identified, the humans work-

ing with the robot can be made aware that the robot’s track-

ing module should not be relied upon.
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[3] L. Leal-Taixé, A. Milan, K. Schindler, D. Cremers,

I. Reid, and S. Roth, “Tracking the trackers: an anal-

ysis of the state of the art in multiple object tracking,”

arXiv preprint arXiv:1704.02781, 2017.

[4] M. J. Islam, J. Hong, and J. Sattar, “Person Following

by Autonomous Robots: A Categorical Overview,” In-

ternational Journal of Robotics Research; accepted

for publication, Sept. 2019. preprint available: arXiv:

1803.08202.

[5] O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S.

Steneck, P. Greenfield, E. Gomez, et al., “Coral Reefs

under Rapid Climate Change and Ocean Acidifica-

tion,” Science, vol. 318, no. 5857, pp. 1737–1742,

2007.

[6] F. Shkurti, A. Xu, M. Meghjani, J. C. G. Higuera,

Y. Girdhar, P. Giguere, B. B. Dey, et al., “Multi-

domain Monitoring of Marine Environments using a

Heterogeneous Robot Team,” in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems

(IROS), pp. 1747–1753, IEEE, 2012.

[7] B. Bingham, B. Foley, H. Singh, R. Camilli, K. De-

laporta, R. Eustice, et al., “Robotic Tools for Deep

Water Archaeology: Surveying an Ancient Shipwreck

with an Autonomous Underwater Vehicle,” Journal

of Field Robotics (JFR), vol. 27, no. 6, pp. 702–717,

2010.

[8] Y. Xia and J. Sattar, “Visual diver recognition for

underwater human-robot collaboration,” in 2019 In-

ternational Conference on Robotics and Automation

(ICRA), pp. 6839–6845, IEEE, 2019.

[9] K. Bernardin and R. Stiefelhagen, “Evaluating multi-

ple object tracking performance: the CLEAR MOT

metrics,” Journal on Image and Video Processing,

vol. 2008, p. 1, 2008.

[10] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi,

D. Cremers, I. Reid, S. Roth, K. Schindler, and



L. Leal-Taixe, “CVPR19 tracking and detection chal-

lenge: How crowded can it get?,” arXiv preprint

arXiv:1906.04567, 2019.

[11] L. Fagot-Bouquet, R. Audigier, Y. Dhome, and

F. Lerasle, “Improving multi-frame data association

with sparse representations for robust near-online

multi-object tracking,” in European Conference on

Computer Vision, pp. 774–790, Springer, 2016.

[12] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple

hypothesis tracking revisited,” in Proceedings of the

IEEE International Conference on Computer Vision,

pp. 4696–4704, 2015.

[13] S. Tang, M. Andriluka, B. Andres, and B. Schiele,

“Multiple People Tracking by Lifted Multicut and Per-

son Re-identification,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

(Honolulu, HI), pp. 3701–3710, IEEE, July 2017.

[14] Y. Xiang, A. Alahi, and S. Savarese, “Learning to

track: Online multi-object tracking by decision mak-

ing,” in Proceedings of the IEEE international confer-

ence on computer vision, pp. 4705–4713, 2015.

[15] S. Shantaiya, K. Verma, and K. Mehta, “Multiple ob-

ject tracking using Kalman filter and optical flow,” Eu-

ropean Journal of Advances in Engineering and Tech-

nology, vol. 2, no. 2, pp. 34–39, 2015.

[16] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed

tracking-by-detection without using image informa-

tion,” in 2017 14th IEEE International Conference

on Advanced Video and Signal Based Surveillance

(AVSS), pp. 1–6, IEEE, 2017.

[17] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft,

“Simple online and realtime tracking,” in 2016 IEEE

International Conference on Image Processing (ICIP),

pp. 3464–3468, IEEE, 2016.

[18] R. E. Kalman, “A new approach to linear filtering and

prediction problems,” Journal of basic Engineering,

vol. 82, no. 1, pp. 35–45, 1960.

[19] N. Wojke, A. Bewley, and D. Paulus, “Simple online

and realtime tracking with a deep association metric,”

in 2017 IEEE International Conference on Image Pro-

cessing (ICIP), pp. 3645–3649, IEEE, 2017.

[20] N. Wojke and A. Bewley, “Deep Cosine Metric Learn-

ing for Person Re-identification,” in 2018 IEEE Win-

ter Conference on Applications of Computer Vision

(WACV), pp. 748–756, Mar. 2018.

[21] W. Zajdel, Z. Zivkovic, and B. Krose, “Keeping track

of humans: Have I seen this person before?,” in

Robotics and Automation, 2005. ICRA 2005. Proceed-

ings of the 2005 IEEE International Conference on,

pp. 2081–2086, IEEE, 2005.

[22] T. Huang and S. Russell, “Object identification in a

Bayesian context,” in IJCAI, vol. 97, pp. 1276–1282,

1997.

[23] N. Gheissari, T. B. Sebastian, and R. Hartley, “Per-

son reidentification using spatiotemporal appearance,”

in 2006 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR’06),

vol. 2, pp. 1528–1535, IEEE, 2006.

[24] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID:

Deep Filter Pairing Neural Network for Person Re-

identification,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

pp. 152–159, 2014.

[25] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “Joint

detection and identification feature learning for person

search,” in Computer Vision and Pattern Recognition

(CVPR), 2017 IEEE Conference on, pp. 3376–3385,

IEEE, 2017.

[26] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled

samples generated by GAN improve the person

re-identification baseline in vitro,” arXiv preprint

arXiv:1701.07717, vol. 3, 2017.

[27] N. McLaughlin, J. Martinez del Rincon, and P. Miller,

“Recurrent convolutional network for video-based

person re-identification,” in Proceedings of the IEEE

conference on computer vision and pattern recogni-

tion, pp. 1325–1334, 2016.

[28] J. Sattar and G. Dudek, “On the performance of color

tracking algorithms for underwater robots under vary-

ing lighting and visibility,” in Proceedings 2006 IEEE

International Conference on Robotics and Automa-

tion, 2006. ICRA 2006., pp. 3550–3555, IEEE, 2006.

[29] C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing

underwater imagery using generative adversarial net-

works,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp. 7159–7165,

IEEE, 2018.

[30] M. J. Islam, M. Fulton, and J. Sattar, “Toward a

generic diver-following algorithm: Balancing robust-

ness and efficiency in deep visual detection,” IEEE

Robotics and Automation Letters, vol. 4, no. 1,

pp. 113–120, 2018.



[31] C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian,

“Deep attributes driven multi-camera person re-

identification,” in European conference on computer

vision, pp. 475–491, Springer, 2016.

[32] C. Long, A. Haizhou, Z. Zijie, and S. Chong, “Real-

time multiple people tracking with deeply learned

candidate selection and person re-identification,” in

ICME, vol. 5, p. 8, 2018.

[33] Y. Xia, S. Xu, and J. Sattar, “On the Land and Un-

derwater: Person Re-Identification for Human-Robot

Collaboration.” Unpublished, In preparation: draft

available at http://irvlab.cs.umn.edu/files/personreid,

August 2019.

[34] M.-K. Hu, “Visual pattern recognition by moment

invariants,” IRE transactions on information theory,

vol. 8, no. 2, pp. 179–187, 1962.

[35] H. W. Kuhn, “The hungarian method for the assign-

ment problem,” Naval research logistics quarterly,

vol. 2, no. 1-2, pp. 83–97, 1955.

[36] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and

Q. Tian, “Mars: A video benchmark for large-scale

person re-identification,” in European Conference on

Computer Vision, pp. 868–884, Springer, 2016.

[37] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and

C. Tomasi, “Performance Measures and a Data Set for

Multi-Target, Multi-Camera Tracking,” in European

Conference on Computer Vision workshop on Bench-

marking Multi-Target Tracking, 2016.
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