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Abstract

Sliced inverse regression is an effective paradigm that achieves the goal of dimension re-
duction through replacing high dimensional covariates with a small number of linear com-
binations. It does not impose parametric assumptions on the dependence structure. More
importantly, such a reduction of dimension is sufficient in that it does not cause loss of
information. In this paper, we adapt the stationary sliced inverse regression to cope with
the rapidly changing environments. We propose to implement sliced inverse regression in
an online fashion. This online learner consists of two steps. In the first step we construct
an online estimate for the kernel matrix; in the second step we propose two online al-
gorithms, one is motivated by the perturbation method and the other is originated from
the gradient descent optimization, to perform online singular value decomposition. The
theoretical properties of this online learner are established. We demonstrate the numerical
performance of this online learner through simulations and real world applications. All
numerical studies confirm that this online learner performs as well as the batch learner.

Keywords: Dimension reduction, online learning, perturbation, singular value decompo-
sition, sliced inverse regression, gradient descent.

1. Introduction

With the advances in sensor technology and computer hardware, increasing amounts of
high dimensional data are being rapidly collected in many scientific and social studies.
Suppose Y ∈ R1 is a response variable and x = (X1, . . . , Xp)

> ∈ Rp×1 are the associated
covariates. To deal with the high dimensionality of x, one of the popular ideas is to replace
the high dimensional x with a small number of linear combinations, say (B>x), where B
is a p × K matrix. By the very purpose of dimension reduction, K is far less than p. In
many applications, K = 1, 2 or at most 3, depending on the complexity of the underlying
data structure. Sufficient dimension reduction (Li, 1991; Cook, 2009) is a paradigm that
combines the idea of linear dimension reduction with the concept of statistical sufficiency.
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To be precise, it seeks for a matrix B ∈ Rp×K such that

Y |= x | (B>x), (1)

where |= stands for statistical independence. The sufficiency is described as the fact that, in
model (1), (Y | x) and (Y | B>x) follow identical distributions. In other words, using (B>x)
to predict Y has the same power of using x. Therefore, replacing x with (B>x) is sufficient
to characterize the dependence of (Y | x), and this replacement does not cause any loss of
information. In addition, this reduction does not impose parametric assumptions on the
dependence structure. These two appealing properties make sufficient dimension reduction
very attractive in high dimensional data analysis because we are often lack of information on
the underlying dependence structure. We are hesitated to specify the dependence structure
because a mis-specified model may lead to severe bias in estimation.

In model (1), the basis matrix B is not identifiable. Instead of estimating B, the ultimate
goal of sufficient dimension reduction is to find the central subspace, denoted by SY |x and
defined as the column space of B with minimal dimension. With a slight abuse of notation,
we write SY |x = span(B) and denote K to be the structural dimension of SY |x.

Since the seminal work of sliced inverse regression (Li, 1991), many sufficient dimension
reduction methods have been developed to recover SY |x. This includes, but not limited to,
sliced average variance estimation (Cook and Weisberg, 1991), directional regression (Li and
Wang, 2007), cumulative slicing estimation (Zhu et al., 2010), semi-parametric approaches
(Ma and Zhu, 2012), and minimum average variance estimation (Xia et al., 2002). See Ma
and Zhu (2013) and Li (2018) for a comprehensive review on recent advances in the area of
sufficient dimension reduction. All these methods focus on the setting of batch learning.

In the big data era, how to perform dimension reduction on a stochastic data stream is
important and yet rarely touched in the literature. Our main interest is to adapt existing
sufficient dimension reduction methods to cope with the rapidly changing environments
where the observations arrive sequentially as {(xt, Yt), t = 1, . . .} in a data stream. We
advocate using sufficient dimension reduction because it remain valid even when the de-
pendence structures vary arbitrarily in the process of generating a data stream. The online
learner, which significantly reduces the computational complexity of the batch learner with
a small sacrifice of accuracy, is one of the most popular choices for solving large-scale prob-
lems (Bousquet and Bottou, 2008). In this article we propose to implement sliced inverse
regression (Li, 1991) in an online fashion. This online learner consists of two steps. In
the first step an online estimate for the kernel matrix of sliced inverse regression is con-
structed; in the second step two online algorithms are proposed, one is motivated by the
perturbation method and the other is originated from the gradient descent optimization, to
perform online singular value decomposition. The perturbation method and the gradient
descent optimization, in addition to the randomized algorithms (Warmuth and Kuzmin,
2008; Boutsidis et al., 2015; Nie et al., 2016), are widely used in the online principal compo-
nent analysis. See Li et al. (2000), Hegde et al. (2006), Arora et al. (2013) and Yang and Xu
(2015) for their respective applications of the perturbation method and the gradient descent
optimization. Despite its popularity, the theoretical properties of the perturbation method
has yet been studied for online singular value decomposition. In this article, we establish
the consistency of the perturbation method based on the quasi-martingale theory (Fisk,
1965). The theoretical convergence of the gradient descent optimization has been analyzed
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only for independent data (Oja and Karhunen, 1985; Balsubramani et al., 2013; Shamir,
2016). In our proposed two-step online learning algorithm, the first step gives a sequence
of solutions which act as the instances for the second step. Because the observations up
to the t-th step are also used in the (t + 1)-th step, the instances given by the first step
are highly correlated, violating the independence assumption which is typically required
to analyze the convergence properties of the online singular value decomposition problems
(Arora et al., 2012; Mitliagkas et al., 2013; Arora et al., 2013; Shamir, 2016). In this paper,
we accommodate highly correlated instances and show the strong convergence of the online
gradient descent optimization.

To accommodate data streams arriving sequentially by blocks, Chavent et al. (2014)
adapted sliced inverse regression to a block-wise version. They proposed to divide the en-
tire data set into many small data blocks, and perform sliced inverse regression on each of
these small blocks. Aggregating all the estimates yields a final estimate. Chavent et al.
(2014)’s methodology is more like a divide-and-conquer strategy, which is common for par-
allel distributed computing but uncommon in the online learning community. An important
requirement in Chavent et al. (2014) is that the data streams must arrive in blocks with suf-
ficiently many observations. In the present context, we assume that one observation arrives
after another in the data streams, which appears more challenging and is usually the focus
of online learning. Another relevant work is Bercu et al. (2015). They studied the recursive
sliced inverse regression with only two slices. In this case, the kernel matrix of sliced inverse
regression has at most one nonzero eigenvalue and the principal eigenvector has an explicit
form. The singular value decomposition step is thus completely avoided. In the present
context, we consider sliced inverse regression with a general number of slices. In this case,
the principal eigenvectors do not have explicit forms and singular value decomposition step
is essential. In this sense, our proposed two-step online sliced inverse regression procedure
is much more challenging and general than existing works.

This paper is organized as follows. In Section 2 we propose a two-step online procedure
for sliced inverse regression. Its theoretical properties are also established. In Section 3,
we demonstrate the numerical performance of our proposed procedure through simulations
and several benchmark datasets available from the UCI machine learning repository. We
provide some concluding remarks in Section 4. All proofs are relegated to the Appendix.

2. Online Sliced Inverse Regression

We first give a brief review of the classic sliced inverse regression (Li, 1991). Denote Σ =
cov(x), the covariance matrix of x. When Y is continuous, the slicing procedure partitions
the support of Y into H slices, I1, . . . , IH , where Ih = (qh−1, qh], and −∞ = q0 < q1 < · · · <
qH = ∞. Although Li (1991) suggested to set qh to be the (h/H) × 100%-th quantile of

Y , the cutting points qhs do not have to be the quantiles of Y . Let ph
def
= Pr(Y ∈ Ih) and

m0
h

def
= Σ−1E{(x − Ex) | Y ∈ Ih}. If Y is categorical or discrete taking H distinct values,

say, 1, . . . ,H, we can simply replace {Y ∈ Ih} in ph and m0
h with {Y = h}, for h = 1, . . . ,H.

The kernel matrix of the classic sliced inverse regression is defined by

M0 def
=

H∑
h=1

phm
0
hm

0
h
>
.
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Li (1991) showed that, under mild conditions on x,

m0
h ∈ SY |x, for h = 1, . . . ,H, (2)

which implies that the first K principal eigenvectors of M0 span SY |x and the (p − K)
smallest eigenvalues of M0 are identically zero. At the sample level, we replace qhs with
the sample quantiles q̂hs and estimate Σ, ph, m0

h and M0 with their moment estimates Σ̂,

p̂h, m̂0
h and M̂0, respectively. The space spanned by the first K principal eigenvectors of

M̂0 yields a consistent estimate of SY |x. Li (1991) also claimed that, the efficiency of sliced
inverse regression is very insensitive to the number of slices H.

In this paper, we are concerned with the situation where the observations arrive se-
quentially as {(xt, Yt), t = 1, . . .} in a data stream. To perform online dimension reduction,
we suggest to modify sliced inverse regression slightly when the response is a continuous
variable. First, the slices Ihs must be pre-specified. This is trivial when Y is categori-
cal or discrete taking finite number of values. When Y is continuous, its possible ranges
can be roughly decided in real world problems. We partition the ranges of Y into H
slices, I1, . . . , IH , where Ih = (qh−1, qh], and qhs are pre-specified cutting points satisfying
−∞ = q0 < q1 < · · · < qH = ∞. If the slices were not pre-specified and we insisted
to use the quantiles of Y in the slicing estimation, the sample quantiles would vary from
time to time as the data stream {(xt, Yt), t = 1, . . .} is evolving, resulting in unnecessary
complexities for an online algorithm. Define

mh
def
= Σ−1E{(x− Ex)1(Y ∈ Ih)} and M

def
=

H∑
h=1

mhmh
>.

The fact that m0
h = mh/ph and ph is a scalar, together with (2), immediately implies

mh ∈ SY |x, for h = 1, . . . ,H, (3)

and accordingly, the first K principal eigenvectors of M span SY |x. The sliced inverse
regression remains valid for an arbitrary slicing procedure as long as −∞ = q0 < q1 < · · · <
qH =∞. Therefore, we are allowed to use M instead of M0 to recover SY |x. In practice, we
can use a small batch of data to advise a series of cutting points q1, . . . , qH−1. This is our
second suggestion of modification. The strategy of using mh in lieu of m0

h is very useful.
Because the cutting points qhs are pre-specified, it may happen that only a small portion
of observations falls into the h-th interval Ih = (qh−1, qh], leading to a trivially small ph
and possibly very unstable estimates of m0

h and M0. We advocate using the kernel matrix
M instead of M0 in sliced inverse regression, which ensures to yield a stable estimate of
SY |x. The second modification indeed leads to a variation of cumulative slicing estimation
proposed by Zhu et al. (2010). These modifications facilitate the online implementation of
sliced inverse regression significantly.

2.1. Online Update for the Kernel Matrix

In the present context we assume the observations arrive sequentially as {(xt, Yt), t = 1, . . .}
in a data stream. We use the first t observations, {(xi, Yi), i = 1, . . . , t}, to estimate mh and
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M, which yields m̂t,h and M̂t, respectively. In parallel to the definition of M, we define

M̂t
def
=

H∑
h=1

m̂t,hm̂
>
t,h = (m̂t,1, . . . , m̂t,H)(m̂t,1, . . . , m̂t,H)>, (4)

where

Σ̂t
def
= t−1

t∑
i=1

(xi − xt)(xi − xt)
>, xt

def
= t−1

t∑
i=1

xi,

m̂t,h
def
= Σ̂−1t

{
t−1

t∑
i=1

(xi − xt)1(Yi ∈ Ih)

}
.

By definition, online updating M̂t+1 from M̂t amounts to updating m̂t+1,h from m̂t,h, for
h = 1, . . . ,H, when the (t+ 1)-th observation (xt+1, Yt+1) arrives.

Next we discuss how to update m̂t+1,h from m̂t,h using an online least squares approach.
We augment x by adding a row of ones, x̃ = (1,x>)> ∈ R(p+1)×1. Similarly, we define
x̃t = (1,x>t )>, t = 1, . . .. Adding a row of ones allows us to include an intercept in the
least squares approach. We notice that, mh is precisely the slope vector by regressing
1(Y ∈ Ih) on x̃ linearly, and at the sample level, m̂t,h is the least squares estimate of the
slope vector by regressing {1(Y1 ∈ Ih), . . . ,1(Yt ∈ Ih)}> onto (x̃1, . . . , x̃t)

> linearly. For
each h, the augmented design matrix (x̃1, . . . , x̃t)

> are exactly the same. Therefore, we can
simultaneously update (m̂t+1,1, . . . , m̂t+1,H) from (m̂t,1, . . . , m̂t,H). To be precise, we form
ỹt = {1(Yt ∈ I1), . . . ,1(Yt ∈ IH)}> ∈ RH×1. We further define 0p×1 to be a p-vector of

zeros, and Ip×p to be the p× p identity matrix. Write Ĩ
def
= (0p×1, Ip×p) and

At =
t∑
i=1

x̃ix̃
>
i ∈ R(p+1)×(p+1).

After simple algebra,

A−1t+1 = A−1t −
A−1t x̃t+1x̃

>
t+1A

−1
t

1 + x̃>t+1A
−1
t x̃t+1

. Define Ct+1
def
= Ĩp×(p+1)

(
A−1t −

A−1t x̃t+1x̃
>
t+1A

−1
t

1 + x̃>t+1A
−1
t x̃t+1

)
.

It follows immediately that

(m̂t,1, . . . , m̂t,H) = Ĩp×(p+1)A
−1
t

(
t∑
i=1

x̃iỹ
>
i

)
, and consequently,

(m̂t+1,1, . . . , m̂t+1,H) = Ct+1

(
t∑
i=1

x̃iỹ
>
i + x̃t+1ỹ

>
t+1

)
. (5)

The notations m̂t,hs and m̂t+1,hs are defined in an obvious manner. Left multiplying Ĩp×(p+1)

allows us to extract the slope vectors, or equivalently, to exclude the intercepts of the least
squares estimate. The display in (5) describes how we can update (m̂t+1,1, . . . , m̂t+1,H)
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from A−1t and (m̂t,1, . . . , m̂t,H) precisely, at the (t + 1)-th iteration. By definition in (4),

updating M̂t at the (t+ 1)-th iteration is straightforward. To be precise,

M̂t+1
def
=

H∑
h=1

m̂t+1,hm̂
>
t+1,h.

It is remarkable here that, online updating m̂t,h through (5) guarantees that

m̂t+1,h = Σ̂−1t+1

{
(t+ 1)−1

t+1∑
i=1

(xi − xt+1)1(Yi ∈ Ih)

}
, where (6)

Σ̂t+1 = (t+ 1)−1
t+1∑
i=1

(xi − xt+1)(xi − xt+1)
>, and x+1 = (t+ 1)−1

t+1∑
i=1

xi.

Directly updating m̂t,h through (6) involves the inversion of Σ̂t+1, which is typically re-
garded as computationally prohibitive. By contrast, online updating m̂t,h through (5)

takes the advantage of updating Σ̂−1t+1 from Σ̂−1t , which relaxes the computational com-
plexity substantially. Therefore, we advocate updating m̂t,h through (5) rather than (6),
although both (5) and (6) yield an identical solution.

By invoking similar arguments of Zhu and Ng (1995), we can easily prove that both

m̂t+1,h and M̂t+1 are root-t-consistent. In the present context, the slices Ihs are pre-specified

with fixed cutting points, m̂t+1,h and M̂t+1 are usual moment estimates. By assuming that
the fourth moment exists, or equivalently, E(x>x)2 < ∞, it is thus easier to show that

both m̂t+1,h and M̂t+1 are root-t-consistent. In other words, m̂t+1,h −mh = Op(t
−1/2), for

h = 1, . . . ,H, and M̂t+1 −M = Op(t
−1/2). Details are omitted from the present context.

2.2. Online Singular Value Decomposition

Estimating SY |x at the t-th iteration amounts to seeking for the K principal singular vectors

of M̂t. In this section we propose two online algorithms, one is motivated by the perturba-
tion method and the other is originated from the gradient descent optimization, to perform
an online singular value decomposition.

We first introduce the online singular value decomposition using the idea of perturbation.
The following lemma is a key to online learning and also a classic result in perturbation
theory of linear operators (Sibson, 1979; Kato, 2013).

Lemma 1 Let D ∈ Rp×p be a symmetric matrix and (λj ,vj) be the eigen-pairs of D, j =
1, . . . , p. Assume |λ1| > · · · > |λd| > λd+1 = · · · = λp = 0. Let ε be a very small constant
and G be a symmetric matrix. Denote the first order perturbation D(ε) = D + εG +O(ε2)
and the eigen-pairs of D(ε) by {λj(ε),vj(ε)}. Then

λj(ε) = λj + ε(v>j Gvj) +O(ε2), and

vj(ε) = vj + ε(λjIp×p −D)+Gvj +O(ε2), j = 1, . . . , d,

where (λjIp×p−D)+ stands for the Moore-Penrose pseudo-inverse of (λjIp×p−D) and Ip×p
stands for the p× p identity matrix.
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To put this lemma into online learning, we define

Γ̂t
def
= t−1

t∑
i=1

M̂t. It follows that Γ̂t+1 = Γ̂t − (t+ 1)−1(Γ̂t − M̂t+1). (7)

We apply Lemma 1 by defining D = Γ̂t, G = Γ̂t−M̂t+1 and ε = −(t+ 1)−1. Let (λ̂t,j , β̂t,j)

be the eigen-pairs of Γ̂t, j = 1, · · · , p. The algorithm for online singular value decomposition
with the permutation method is described in Algorithm 1.

Algorithm 1 Online sliced inverse regression via the perturbation method

1. Initialize M̂1 and Γ̂1 to obtain (λ̂1,j , β̂1,j), j = 1, · · · ,K, with a small sample.
2. As the data stream is being collected,

2a) online update for the kernel matrix: update M̂t+1 from M̂t through (5) to obtain

M̂t+1 =

H∑
h=1

m̂t+1,hm̂
>
t+1,h, (8)

and update Γ̂t+1 from Γ̂t through (7);

2b) online singular value decomposition: update the eigen-pairs of Γ̂t+1 through

λ̂t+1,j = λ̂t,j − (t+ 1)−1β̂>t,j(Γ̂t − M̂t+1)β̂t,j , and (9)

β̂t+1,j = β̂t,j − (t+ 1)−1(λ̂t,jIp×p − Γ̂t)
+(Γ̂t −Mt+1)β̂t,j . (10)

3. Output B̂t+1 = (β̂t+1,1, · · · , β̂t+1,K).

Note that B̂t+1 in the third step of Algorithm 1 may not be orthogonal due to small
computation errors. Thus an orthonormalization step may be needed to stabilize the nu-
merical performance, i.e., B̂t+1 = Porth(β̂t+1,1, · · · , β̂t+1,K), where Porth() is an operator
orthonormalizing matrix columns and can be realized by the Gram-Schmidt procedure. We
remark here that this orthonormalization procedure is not necessary for all t.

The perturbation method is widely used in the online singular value decomposition. See,
for example, Li et al. (2000) and Hegde et al. (2006). In the present context, we prove the
strong convergence of our proposed online algorithm based on the quasi-martingale theory
(Fisk, 1965). We first present the following regularity conditions.

(C1) The smallest eigenvalue of Σ is bounded away from zero.

(C2) The observations {(xt, Yt), t = 1, . . .} are independent and identically distributed.

(C3) The nonzero eigenvalues of M are all distinct.

(C4) E(x|B>x) is a linear function of the K-dimensional random vector B>x.
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These conditions are mild and widely used in the literature. Condition (C1) requires
that the covariance matrix is well-behaved. One can refer to Xiao (2010) and Mairal et al.
(2010) for discussions of condition (C2) used in the literature of online learning. We impose
condition (C3) to ensure identifiability of the corresponding eigenvectors. The identifiability
conditional plays an important role in the perturbation theory. See, for example, Cham-
pagne (1994) and Hegde et al. (2006). (C4) is the linearity condition commonly assumed
in the dimension reduction literature, see Li (1991) for example.

Theorem 2 Under Conditions (C1)-(C4), the eigen-pair (λ̂t,j , β̂t,j) of Γ̂t generated by Al-
gorithm 1 converges almost surely as t→∞, for j = 1, . . . ,K.

Bottou (1998) pointed out that online learning algorithms without almost surely con-
vergence property can be misled by specific improbable examples, presented a general
framework of the online learning algorithms and proved the almost sure convergence using
stochastic approximation theory. Mairal et al. (2010) proved the almost surely convergence
for online dictionary learning. Tarres and Yao (2014) and Lei et al. (2017) discussed the
almost surely convergence of the online learning algorithms in reproducing kernel Hilbert
spaces. Theorem 2 guarantees that the online perturbation algorithm converges almost
surely. This ensures the resulting estimate is well defined, although updating the eigen-
vectors involves calculating Moore-Penrose pseudo-inverse repetitively, which significantly
increases computational complexity.

In binary classification problems, a natural choice of K is one because the kernel matrix
M is known to have at most rank one. In general, however, K is often unknown and
has to be decided in an online and data-driven fashion. We discuss this issue in what
follows. In Section 2.1, we stated that M̂t+1 −M = Op(t

−1/2). The root-t-consistency of

M̂t+1 ensures that, there exists a symmetric random matrix G such that M̂t+1 = M +
t−1/2G + op(t

−1/2). This, together with the perturbation theory in Lemma 1, yields that,

λ̂t+1,j = λj + t−1/2β>j Gβj + op(t
−1/2). Following Zhu et al. (2010), we define a BIC type

criterion as follows:

K̂t = argmax
1≤k≤p

Dt(k)

where

Dt(k) =
k∑
j=1

λ̂2t,j

/ p∑
j=1

λ̂2t,j − Ctk(k + 1)/(2t).

By invoking the root-t-consistency of λ̂t,j , Zhu et al. (2010) proved that K̂t converges in
probability to K, as t → ∞, as long as t−1Ct → 0 and Ct → ∞. Deciding an optimal
selection of Ct is not straightforward. Throughout the present context we choose Ct = t1/2,
which performs quite well in our numerical studies. In practice, one may also use a small
batch of data to estimate K, if K̂t does not have to be updated online.

Next we introduce an alternative gradient descent optimization for online singular value
decomposition. The gradient descent optimization has also been widely used for online
analysis of independent data streams. See, for example, Arora et al. (2012), Arora et al.
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(2013) and Yang and Xu (2015). Its popularity owes to low computational complexity, low
memory requirement and excellent performance in practice.

The rationale goes as follows. We notice that, seeking for the K principal eigenvectors
of M̂t amounts to maximizing tr(M̂tBB>) over the manifold B>B = IK×K , where tr()

is the trace operator. The first order derivative of the objective function is 2M̂tB, which
inspires the proposal of the following online gradient descent optimization:

B̂t+1 = Porth(B̂t + γt+1M̂tB̂t), (11)

where γt+1 is a small step-size. This online gradient descent optimization is described in
Algorithm 2.

Algorithm 2 online sliced inverse regression via the gradient descent optimization

1. Initialize M̂1 to obtain B̂1 with a small sample.
2. As the data stream is being collected,

• online update for the kernel matrix: update M̂t from M̂t−1 through (8),

• online singular value decomposition: update the eigenspace of M̂t through (11).

The theoretical convergence of the gradient descent optimization has been extensively
analyzed for independent instances (Oja and Karhunen, 1985; Balsubramani et al., 2013;

Shamir, 2016). In (11) of our proposed online algorithm, M̂t+1 used at the (t + 1)-th

iteration and M̂t used at the t-th iteration are highly correlated because they differ only
in a single observation. The high correlation issue complicates the theoretical analysis
dramatically. In Theorem 3, we accommodate this high correlation issue and show the
almost sure convergence of the online gradient descent optimization.

To ensure the convergence of the gradient descent algorithm, γt must satisfy the usual
Robbins-Monro condition: ∑

t≥1
γ2t <∞ and

∑
t≥1

γt =∞.

In the present context, we make the following assumption to satisfy the Robbins-Monro
condition and also simplify the proofs.

(C5) Let γt = Ct−1, t = 1, 2, . . . , where C is some constant.

Theorem 3 Under Conditions (C2)-(C5), the column space of B̂t = (β̂t,1, . . . , β̂t,K) con-
verges almost surely to the column space of M, as t→∞.

The column space of M, defined as the space spanned by the eigenvectors associated
with nonzero eigenvalues, coincides with the central subspace SY |x, as demonstrated in

(3). Theorem 2 shows that the proposed online algorithm for the eigen-pair of Γ̂t is al-
most sure convergence. Theorem 3 provides us even stronger results since it shows that
B̂t is an asymptotically consistent basis matrix of SY |x. It is challenging in establishing
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the asymptotical consistence due to strong dependence between M̂t and M̂t+1. The strong
convergence of online principal component analysis (PCA) has been analyzed in the litera-
ture (Oja and Karhunen, 1985; Balsubramani et al., 2013; Arora et al., 2012, 2013; Shamir,
2016). Note that the contribution of the t-th data points to online covariance matrix is

additive, while this is not true for the M̂t any more. This makes theoretical analysis of the
online singular value decomposition (SVD) in SIR is much more complicated than the online
PCA. In Theorem 3, we tackle this technical difficulty and show the strong convergence of
the B̂t.

In the first step, the computational cost of online updating the kernel matrix is of order
O(p2H), which does not depend on t. Next we compare the computational complexity of two
online algorithms for singular value decomposition in the second step. The computational
complexity of updating (8) is of order O(p2H). In addition, the computational cost of
updating the eigen-pair (λ̂t+1,j , β̂t+1,j) is dominated by that of (10). Therefore, we analyze

(10) only in what follows. In (10), both (Ip×p − Γ̂t)
+ and (Γ̂t −Mt+1) are p× p matrices,

the computational complexity of their multiplication is of order O(p3), for each given j.
Therefore, the total complexity of Algorithm 1 is of order O(p2H + p3K). By contrast, in

(11), M̂t is a p× p matrix and B̂t is a p×K matrix, the computational complexity of their
multiplication is of order O(p2K). In addition, the orthonormalization step requires an
additional computational cost of order O(pK2), which is apparently dominated by O(p2K).
Therefore, the total complexity of Algorithm 2 is of order O(p2H+p2K). The above analysis
is formally stated in Proposition 4.

Proposition 4 The total computational complexity of Algorithm 1 is of order O(p2H +
p3K), and that of Algorithm 2 is of order O(p2H + p2K).

We remark here that, a major disadvantage of Algorithm 1 is that it requires to calculate
(Ip×p − Γ̂t)

+ and (Ip×p − Γ̂t)
+(Γ̂t −Mt+1), both of which have the computational cost of

order O(p3). However, the computational complexity of both algorithms does not depend
on t, which shows an obvious advantage of online learning.

2.3. An Extension

In this section, we generalize our proposed online learning to sliced average variance esti-
mation (Cook and Weisberg, 1991). The classic slicing procedure partitions the range of Y
into H slices, Ih = (qh−1, qh], h = 1, . . . ,H. When the slices are given, the kernel matrix of
the classic sliced average variance estimation is defined by

M1 def
=

H∑
h=1

phMhMh
>.

where Mh
def
= Ip×p−Σ−1var(x | Y ∈ Ih). To facilitate implementing sliced average variance

estimation in an online fashion, we propose to modify the kernel matrix slightly. To be

precise, we define Λh
def
= phIp×p −Σ−1var {x1(Y ∈ Ih)}, and

Λ
def
=

H∑
h=1

ΛhΛ
>
h .

10
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Following Cook and Weisberg (1991), we can show that Λh ∈ SY |x under mild conditions of
x. Therefore, the eigenvectors associated with the non-zeros eigenvalues of Λ spans SY |x.

We suppose the observations, {(xt, Yt), t = 1, . . . , }, arrive sequentially in a data stream.
In parallel to the online sliced inverse regression, the online sliced average variance estima-
tion consists of two steps. In the first step, we require to update the kernel matrix Λ in an
online fashion. This amounts to updating Λh sequentially. By definition,

Σ−1var {x1(Y ∈ Ih)} = Σ−1E
{
xx>1(Y ∈ Ih)

}
−Σ−1E

{
x1(Y ∈ Ih)

}
E
{
x>1(Y ∈ Ih)

}
.

In addition to ph = E
{

1(Y ∈ Ih)
}

, there are three quantities in the above display, Qh
def
=

Σ−1E
{
xx>1(Y ∈ Ih)

}
, mh

def
= Σ−1E

{
x1(Y ∈ Ih)

}
and uh

def
= E

{
x1(Y ∈ Ih)

}
, that must

be updated in an online fashion. We remark here that, updating ph and uh is very similar,
in that both are of the form of expectations and the inversion of Σ, Σ−1, is not required.
In addition, both Qh and mh can be updated with an online least squares approach.

We discuss online estimates of Qh and mh first. We first notice that both are the slope
vectors of the least squares regression with different responses. This allows us to regress
{x11(Y1 ∈ Ih), . . . ,xt1(Yt ∈ Ih)}> and {1(Y1 ∈ Ih), . . . ,1(Yt ∈ Ih)}> onto (x̃1, . . . , x̃t)

>, where
x̃ = (1,x>)> ∈ R(p+1)×1. The online least squares yields that

Q̂t+1,h
def
= Dt+1

{
t∑
i=1

x̃ix̃
>
i 1(Yi ∈ Ih) + x̃t+1x̃

>
t+11(Yt+1 ∈ Ih)

}
,

m̂t+1,h
def
= Dt+1

{
t∑
i=1

x̃i1(Yi ∈ Ih) + x̃t+11(Yt+1 ∈ Ih)

}
,

where

Dt+1
def
= Ĩp×(p+1)

(
A−1t −

A−1t x̃t+1x̃
>
t+1A

−1
t

1 + x̃>t+1A
−1
t x̃t+1

)
.

The online estimates of uh and ph are given, respectively, by

ût+1,h
def
= (t+ 1)−1

{
tût,h + xt+11(Yt+1 ∈ Ih)

}
, and p̂t+1,h

def
= (t+ 1)−1

{
tp̂t,h + 1(Yt+1 ∈ Ih)

}
.

With the above online estimates p̂t+1,h, Q̂t+1,h, m̂t+1,h and ût+1,h, we can easily construct
an online estimate of Λ. To be precise,

Λ̂t+1
def
=

H∑
h=1

Λ̂t+1,hΛ̂
>
t+1,h, where Λ̂t+1,h

def
= p̂t+1,hIp×p −

(
Q̂t+1,h − m̂t+1,hû

>
t+1,h

)
.

In the second step, we perform an online singular value decomposition on Λ̂t+1. Both
the perturbation method and the gradient descent optimization proposed in Section 2.2 can
be readily used, though it is required to replace M̂t+1 with Λ̂t+1 in both algorithms.

11
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3. Numerical Validation

3.1. Simulation

In this section we evaluate the performance of our proposal through simulations. Through-
out we consider the following three models.

Y = (β>1 x) + ε, (12)

Y = (β>2 x)3 + ε, (13)

Y = (β>3 x)/{1 + (β>4 x + 1)2}+ 0.2ε. (14)

In these three models, β1 = (1, 1, 0, 0, . . . , 0)> ∈ R20×1, β2 = (0, 0, 1, 0, . . . , 0)> ∈ R20×1,
β3 = (1, 0, 0, 0, . . . , 0)> ∈ R10×1 and β4 = (0, 1, 0, 0, . . . , 0)> ∈ R10×1. The covariate vector
x is drawn from multivariate standard normal distribution, and ε is standard normal.

We compare the performance of the following competitors.

(M1) Online sliced inverse regression via the perturbation method.

(M2) Online sliced inverse regression via the gradient descent optimization.

The above proposals correspond to Algorithms 1 and 2 in Section 2.2, respectively.

(M3) Sliced inverse regression via batch learning. This corresponds to the classic sliced
inverse regression proposed by Li (1991), and serves as a benchmark for comparison.

(M4) Sliced inverse regression via block-wise learning. Chavent et al. (2014) suggested this
proposal to deal with data streams arriving in blocks.

Li (1991) stated that sliced inverse regression is insensitive to the number of slices.
To implement sliced inverse regression (M1)-(M3) when the response variable is con-
tinuous, we simply set the slice number H = 5 throughout our numerical studies. To
implement the blockwise sliced inverse regression (M4), we fix the block size to be 10.

(M5) Online principal component analysis via the perturbation method.

(M6) Online principal component analysis via the gradient descent optimization.

Estimation Accuracy: We first compare the estimation accuracy of the above competi-
tors. Let B be an orthonormal basis of SY |x, which reduces to β1/‖β1‖ in model (12), β2

in model (13), and (β3,β4) in model (14). Suppose B̂ is an estimated orthonormal basis
matrix. Ye and Weiss (2003) proposed to measure the distance between B and B̂ through

d(B, B̂)
def
= 1−

∣∣det(B>B̂)
∣∣ (15)

where det(·) stands for the determinant operator. It ranges from 0 and 1, with a smaller
value indicating a better performance. Thus it is reasonable to use d(B, B̂) to measure
the estimation accuracy of B̂. We report the averaged distance based on 100 replications.
The simulation results are summarized in Table 1. The classic sliced inverse regression
(M3) serves as a benchmark. It is not surprising to see that all the supervised learners
(M1)-(M4) perform better as the sample size t increases from 1000 to 10000, and these

12
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supervised learners are significantly superior to the unsupervised ones. The online sliced
inverse regressions (M1) and (M2) perform much better than their competitors (M4)-(M6).
In addition, (M2) is comparable to (M1) in the one-dimensional models (12) and (13), and
is however much better in the two-dimensional model (14).

Algorithm 1 also gives an online estimate of the eigenvalues. This allows us to estimate
the structural dimension K of SY |x. We apply the BIC type criterion suggested in Section
2.2 to estimate K. Throughout all three models, the BIC type criterion yields an accurate
estimate of K. The empirical probabilities of observing K̂ = 1 in models (12)-(13) and
K̂ = 2 in model (14) are exactly one in our simulations.

Table 1: The averages of the distance d(B, B̂) based on 100 replications, where (M1) and
(M2) stand for the respective online sliced inverse regression via the perturbation
method and the gradient descent optimization, (M3) corresponds to the classic
sliced inverse regression, and (M4) stands for the sliced inverse regression via block-
wise learning, (M5) and (M6) stand for the respective online principal component
analysis via the perturbation method and the gradient descent optimization.

Models sample size (M1) (M2) (M3) (M4) (M5) (M6)

(12)
1000 0.0276 0.0996 0.0102 0.2256 0.8240 0.8598
5000 0.0059 0.0196 0.0023 0.1415 0.8746 0.8493
10000 0.0035 0.0112 0.0014 0.1431 0.8521 0.8491

(13)
1000 0.1476 0.2299 0.0320 0.5767 0.8168 0.8590
5000 0.0422 0.0684 0.0105 0.5364 0.8558 0.8763
10000 0.0280 0.0380 0.0081 0.5350 0.8278 0.8427

(14)
1000 0.6112 0.2497 0.0537 0.6995 0.9140 0.9170
5000 0.4800 0.0915 0.0130 0.5286 0.9129 0.9292
10000 0.3638 0.0479 0.0078 0.5310 0.9231 0.9097

Computational Efficiency: Next we compare the computational efficiency of these com-
petitors. We report the averages of the computing time in Table 2. In the present context
we assume the observations arrive sequentially as {(xt, Yt), t = 1, . . . , }. For fair compari-
son, Chavent et al. (2014) suggested to implement the classic sliced inverse regression (M3)
each time when a new observation arrives. It can be clearly seen that, the online learners
are much faster than the batch learner (M3). In addition, the online learners (M2) and
(M6) obtained through the gradient descent optimization are the fastest. This echoes our
theoretical analysis in Proposition 4.

We further compare the computational efficiency of these competitors when the data
streams are so massive that the batch learner hits the memory limit. In this case, the batch
learner, which processes all observations simultaneously, cannot be used any more. The
online learners, which update the estimates each time when a new instance arrives, have to
be used instead. In other words, the online learners possess an additional advantage of low
memory requirement. The averaged computing time of online learners are summarized in
Table 3. These simulation results based on model (12). The second column of Table 3 gives
the maximum sample sizes that the batch learner can process under the memory constraint
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Table 2: The averaged computation time (in seconds) based on 100 replications. Refer to
the caption of Table 1 for (M1)-(M6).

Models sample size (M1) (M2) (M3) (M4) (M5) (M6)

(12)
1000 12.3209 0.3188 60.4872 0.4240 12.3371 0.2302
5000 30.8054 0.8229 320.073 1.1961 31.3361 0.5918
10000 59.2208 1.5360 1204.12 2.0451 60.0115 1.1051

(13)
1000 6.0793 0.1570 34.9824 0.2007 6.0796 0.1125
5000 27.9957 0.7352 307.925 0.9260 28.4534 0.5253
10000 52.9072 1.4286 1003.98 1.7310 55.0116 1.0429

(14)
1000 1.3369 0.1020 3.9825 0.1692 1.3191 0.0749
5000 6.6453 0.5110 70.2830 0.8268 6.6539 0.3763
10000 14.5415 1.1511 210.439 1.9740 14.6161 0.8499

given in the first column. The simulation results in the last five columns of Table 3 carry
similar messages to those in Table 2, again indicating that the gradient descent optimization
is more efficient than the perturbation method.

Table 3: The averaged computation time based on model (12). The second column gives
the maximum sample sizes that the batch learner can process under the memory
constraint given in the first column. Refer to the caption of Table 1 for (M1)-(M6).

memory sample sizes (M1) (M2) (M4) (M5) (M6)

1GB 1× 107 1.2 hour 25.0 min 24.1 min 1.1 hour 21.0 min
2GB 2× 107 2.4 hour 25.6 min 51.8 min 2.0 hour 22.7 min
4GB 4× 107 9.8 hour 54.3 min 1.7 hour 8.6 hour 46.7 min
8GB 9× 107 14.4 hour 1.8 hour 3.7 hour 13.2 hour 1.5 hour
16GB 1.8× 108 25.3 hour 3.9 hour 7.5 hour 20.4 hour 3.2 hour

3.2. Real Data Analysis

In this section we further compare the performance of batch and online learners through
real world applications. We consider 4 classification problems. To be specific, in the “wbc”
and “magic04” data sets, the response is binary and the kernel matrices of sliced inverse
regression have rank at most one. The “digits” data set aims to identify 10 hand-written
digits {0, 1, . . . , 9}, and the “ditigs069” data set aims to identify three similar digits {0, 6, 9}.
The latter is a subset of the former. We further consider 4 regression problems. In particu-
lar, the housing data is available at http://lib.stat.cmu.edu/datasets/boston, the “abalone
male” and “abalone female” data sets are available at http://archive.ics.uci.edu/ml, and
the “ozone” data set is available at https://www.stat.umn.edu/arc/software.html. A brief
description of these datasets are provided in Table 4. In these data sets, we estimate K
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with the BIC type criterion. The estimated structural dimension K̂ is given in the last
column of Table 4.

Table 4: The first two columns give, respectively, the name of each data set and the general
task of usual data analysis. The third and the fourth columns stand for the
sample sizes and the covariate dimensions, and the last column gives the estimated
structural dimension K̂.

data set task size p K̂

wbc classification 699 9 1
magic04 classification 19020 10 1
digits069 classification 2219 16 2
digits classification 7494 16 4
housing Regression 506 14 2
abalone male Regression 1528 8 1
abalone female Regression 1307 8 1
ozone Regression 330 9 1

To compare the estimation accuracy of the online learners, we use the batch learner
as a benchmark. We denote by B̂0 the estimate obtained with the batch learner, and by
B̂ the estimated obtained with the online learners. We calculate the distance d(B̂0, B̂)
between B̂0 and B̂ using (15). We report the averaged distances of the online learners,
(M1)-(M2) and (M4)-(M6), based on 100 permutations in Table 5. The online learners
(M1) and (M2) appear closer to the batch learner (M3) than both the online learner (M4)
and the unsupervised learners (M5)-(M6) in most situations.

Table 5: The averaged distances d(B̂0, B̂) based on 100 permutations. The estimate B̂0 is
obtained with the batch learner (M3), and the estimate B̂ is obtained with the
online learners. Refer to the caption of Table 1 for (M1)-(M6).

data set (M1) (M2) (M4) (M5) (M6)

wbc 0.0371 0.1329 0.5500 0.3775 0.1113
magic04 0.2969 0.4428 0.2444 0.9941 0.9955
digits069 0.1377 0.0625 0.7232 0.5994 0.6054
digits 0.3190 0.0695 0.8320 0.8393 0.7687
housing 0.3848 0.2031 0.9803 0.9997 0.9999
abalone male 0.2585 0.1369 0.3241 0.8410 0.8404
abalone female 0.3309 0.2277 0.2999 0.8937 0.8973
ozone 0.4826 0.4215 0.8164 0.9778 0.9777

Next we compare the prediction accuracy of all online and batch learners (M1)-(M6).
Towards this goal, we randomly select 75% of the observations as a training set and the
remaining 25% as a test set. We use the SVM algorithm implemented in the R package e1071
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(Meyer et al., 2017) to learn classifiers and build up regression models. We further build up
a prediction model using all the original p covariates without dimension reduction. We refer
to it as (M7). To evaluate the prediction performance, we use the misclassification error
rate in classification problems, which is defined as the proportion of incorrectly predicted
labels in the test sets, namely,∑

i∈{test}

1(Yi 6= Ŷi)
/

size of test set.

In regression problems, we use the relative prediction error, which is defined as∑
i∈{test}

(Yi − Ŷi)2
/ ∑
i∈{test}

(Yi − Y )2.

The above procedure is repeated 100 times. We report the averages of prediction errors in
Table 6. Our proposed online learners, (M1) and (M2), are comparable to the batch learn-
ing (M3) in classification problems, and significantly superior to the unsupervised learners
(M5)-(M6) in regression problems. In addition, (M1) and (M2) performs better than (M7)
which uses all p covariates without dimension reduction in the last regression problems.
This indicates that, if there exists a low dimensional structure, dimension reduction does
enhances the prediction power. The unsupervised online learners, (M5) and (M6), exhibits
relatively high predictive power in the “wbc” and “digits” data sets, partly because the co-
variates are highly correlated. Similar phenomenon is observed in Artemiou and Li (2009).

Table 6: The averaged prediction errors based on 100 repetitions. Refer to the caption of
Table 1 for (M1)-(M6). (M7) stands for the prediction model built up with SVM
using all the original p covariates without dimension reduction.

data set (M1) (M2) (M3) (M4) (M5) (M6) (M7)

wbc 0.0351 0.0477 0.0330 0.0822 0.0770 0.0313 0.0357
magic04 0.2111 0.2085 0.2073 0.2238 0.3170 0.3333 0.1329
digits069 0.0115 0.0154 0.0135 0.0135 0.1188 0.0502 0.0096
digits 0.1126 0.1026 0.1063 0.1443 0.0623 0.0648 0.0208
housing 0.3353 0.3373 0.2338 0.4109 0.7725 0.7801 0.1867
abalone male 0.3624 0.3953 0.3115 0.1899 0.5966 0.5976 0.4389
abalone female 0.3445 0.3729 0.2841 0.2024 0.5985 0.5972 0.4450
ozone 0.5725 0.4844 0.6556 0.2077 0.5201 0.5209 0.7468

In our previous analysis, we use the SVM to build up a prediction model. In what follows,
we compare SVM with the classification tree, linear discriminant analysis, generalized linear
model, and random forest, to build up prediction models. We use the “ digits” data as an
example. The prediction errors are summarized in Table 7. All these numbers exhibit very
similar patterns, although the random forest and the support vector machine exhibit the
highest prediction power. This indicates that using the SVM to build a prediction model
does not have an essential effect in our comparative studies.
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Table7:Thepredictionerrorsbasedonthe“digits”data. Themodelsarebuiltupwith
supportvectormachines(SVM),classificationtree(TREE),lineardiscriminant
analysis(LDA),generalizedlinearmodel(GLM),andrandomforest(RF).

method (M1) (M2) (M3) (M4) (M5) (M6) (M7)

SVM 0.1126 0.1026 0.1063 0.1443 0.0623 0.0648 0.0208
TREE 0.3530 0.2372 0.2830 0.4505 0.2710 0.2458 0.2612
LDA 0.2415 0.2035 0.2026 0.3130 0.2747 0.2475 0.1703
GLM 0.2038 0.1589 0.1532 0.2767 0.2449 0.1961 0.1037
RF 0.1069 0.0963 0.1043 0.1535 0.0663 0.0706 0.0345
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Figure1:Thehorizontalaxisdenotestheproportionofsamplesizeusedbythebatchand
onlinelearners,andtheverticalaxisdenotesthedistancebetweentheestimates
obtainedwiththebatchandonlinelearners.Thesolidlinesmarkedwithcircles
andsquaresrepresentonlineslicedinverseregressionwithperturbationmethod
(M1)andgradientdescentoptimization(M2),respectively.Thesolidlinemarked
withtrianglesrepresentsslicedinverseregressionviablock-wiselearning(M4).
Thehollowlinemarkedwithcirclesandsquaresrepresentonlineprincipalcom-
ponentanalysisviaperturbationmethod(M5)andgradientdescentoptimization
(M6),respectively.
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4. Concluding Remarks

In this paper we propose to implement sliced inverse regression in an online fashion. This
procedure consists of two steps. In the first step we construct an online estimate for the ker-
nel matrix of sliced inverse regression. Towards this goal, we modify sliced inverse regression
slightly to reduce the computational complexity of the online learners. This modification
indeed leads a variation of cumulative slicing estimation. In the second step we propose
two algorithms, one is motivated by the perturbation method and the other is originated
from the gradient descent optimization, to perform online singular value decomposition.
We investigate thoroughly the theoretical convergence properties of the online learners.
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Appendix A. Technical Lemmas

To prove Theorem 2, we state a lemma on quasi-martingales, which provide sufficient con-
ditions of convergence for a stochastic process.

Lemma 5 (Bottou, 1998; Fisk, 1965) Define (Ω,F , P ) to be a measurable probability space.
Let wt, t > 0, be the realization of a stochastic process and Ft be the filtration determined
by the past information at time t. Let εt = 1{E(wt+1−wt | Ft) > 0} If for all t, wt ≥ 0 and∑∞

t=1E{εt(wt+1 − wt)} < ∞, then wt is a quasi-martingale and converges almost surely.
Moreover,

∑∞
t=1 |E(wt+1 − wt | Ft)| < +∞ almost surely.

The following three lemmas are essential to the proof of Theorem 3. The ideas are originated
from Oja and Karhunen (1985). Let (λj ,βj), j = 1, · · · ,K be the corresponding eigen-

pairs of M. Firstly, we consider the case of K = 1, where B̂t only consists of β̂t,1. Recall

that for the time t update, the gradient descent algorithm can be written as β̂t+1,1 =

Porth(β̂t,1 + γt+1M̂tβ̂t,1). We write β̂t,1 as β̂t with slightly abuse of notations. By using
Taylor expansion, this equation can be expressed as a power series in γt+1

β̂t+1 = β̂t + γt+1

{
M̂tβ̂t − (β̂>t Mtβ̂t)β̂t

}
+ γt+1bt

where bt = o(γt+1). Since β̂>t β̂t = 1, this equation can be further rewritten as

β̂t+1 = β̂t + γt+1

(
M̂tβ̂t −

β̂>t M̂tβ̂t

β̂>t β̂t
β̂t

)
+ γt+1bt
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We construct the next Lemma to deal with the dependence structure of M̂t. It shows that
even without the independence assumption, the tail of sum of root-n convergent sequences
converges to zero.

Lemma 6 Assume that a sequence of non-negative random variables {rn} satisfy rn =
Op(n

−1/2). Then ∀ε > 0

lim
k→∞

Pr

( ∞∑
n=k

n−1rn > ε

)
= 0

Proof ∀ε > 0, write ε = ε(
∑∞

n=k n
−3/2)H, whereH = (

∑∞
n=k n

−3/2)−1. Since
∑∞

n=k n
−3/2 ∼

O(k−1/2), it is true that H ∼ O(k1/2). On the other hand, we have

Pr(
∞∑
n=k

n−1rn > ε) = Pr(
∞∑
n=k

n−1rn >
∞∑
n=k

εn−3/2H)

≤Pr(n−1rn > εn−3/2H) = Pr(n1/2rn > εH)

for some n > k. And by the definition for rn = Op(n
−1/2), it is true that for ∀ε̃ > 0, there

exists constants M and N , such that for ∀n > N

Pr(n1/2rn > M) < ε̃

Since ε > 0 and H ∼ O(k1/2), we can take k large enough such that k > N and εH > M .
Combine those two inequalities above, we have Pr(

∑∞
n=k n

−1rn > ε) < ε̃, ∀ε̃ > 0. �

The following Lemma 7 is a slightly modified result of Theorem 2.3.1 from Kushner and
Clark (2012), which is also similar with Lemma 1 from Oja and Karhunen (1985). Thus we
only need to verify the technical conditions.

Lemma 7 Assume conditions C2-C4 hold. Let z0 be a locally asymptotically stable (in the
sense of Liapunov) solution to

dz

dt
= Mz− (z>Mz)z

z>z
(16)

with domain of attraction D(z0). If there is a compact set A ⊂ D(z0) such that the solution
β̂t ∈ A infinitely often, then β̂t tends to z0 almost surely.

Proof We verify the conditions of Theorem 2.3.1 from Kushner and Clark (2012) as follows.
Assumptions A.2.2.1 and A.2.2.3 are due to (16) and condition C4. The boundedness of β̂t
is due to the projection onto the orthonormal space. The reminder term bt can further be
expanded as

bt = −1

2
γt+1(β̂

>
t M̂2

t β̂t)β̂t−
1

2
γt+1αtM̂tβ̂t+γ

−1
t+1{(1+γt+1αt)

−1/2−1+
1

2
γt+1αt}(I−γt+1M̂t)β̂t

where αt = 2β̂>t M̂tβ̂t + γt+1β̂
>
t M̂2

t β̂t. bt is a.s. bounded and tends to zero as γt+1 → 0

because both β̂t and M̂t are a.s. bounded. Thus condition A.2.2.2 is verified. As for
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condition A.2.2.4, we first control the following term into sum of univariate variables as
follows:

sup
m≥k
‖

m∑
i=k

γi{(M̂i −M)β̂i − β̂>i (M̂i −M)β̂iβ̂i}‖1

≤ sup
m≥k

m∑
i=k

γi{1>p |(M̂i −M)β̂i|+ 1>p |β̂>i (M̂i −M)β̂iβ̂i|}

≤
∞∑
i=k

γi{1>p |(M̂i −M)β̂i|+ 1>p |β̂>i (M̂i −M)β̂iβ̂i|}

Let rt = 1>p |(M̂t −M)β̂t| + 1>p |β̂>t (M̂t −M)β̂tβ̂t|, we have rt = Op(t
−1/2) as a result of

the root-t consistency of M̂t. Thus

Pr(sup
m≥k
‖

m∑
i=k

γi{(M̂i −M)β̂i − β̂>i (M̂i −M)β̂iβ̂i}‖1 ≥ ε) ≤ Pr(
∞∑
n=k

γirn ≥ ε)

In the meanwhile, Lemma 6 implies Pr(
∑∞

n=k γirn ≥ ε) → 0 as k → ∞. Thus condition
A.2.2.4 holds true. The proof is completed by Theorem 2.3.1 of Kushner and Clark (2012).�

Lemma 8 (Oja and Karhunen, 1985) Assume C2 holds. The points β1 and −β1 are
uniformly asymptotically stable. The domain of attraction of β1 is D(β1) = {x ∈ Rp|x>β1 >
0} while for −β1 is D(−β1) = {x ∈ Rp | x>β1 < 0}.

Appendix B: Proof of Theorem 2

Firstly, we show the almost surely convergence of (λ̂t,1, . . . , λ̂t,K). For the j-th element λ̂t,j ,

the update formula is given by (9). Denote djt as β̂>t,j(Γ̂t − M̂t+1)β̂t,j with slightly abuse
of notation. Thus the update of eigenvalues can be rewritten as

λ̂t+1,j = λ̂t,j − (t+ 1)−1djt

To apply the lemma on quasi-martingales, we first show that tE[|djt|] is uniformly bounded.
We begin with the expression of |djt|,

|djt| = |β̂>t,j(
1

t

t∑
i=1

M̂i − M̂t+1)β̂t,j |

≤ |β̂>t,j ||(
1

t

t∑
i=1

(M̂i −M)− (M̂t+1 −M))||β̂t,j |

≤m>|(1

t

t∑
i=1

(M̂i −M)− (M̂t+1 −M))|m

≤m>|1
t

t∑
i=1

(M̂i −M)|m + m>|(M̂t+1 −M)|m

20



Online Sufficient Dimension Reduction

where we used the fact that the absolute value of the orthogonal eigenvectors β̂t,j can be

uniformly bounded by a positive vector m. Since M̂t −M =
∑H

h=1(m̂t,hm̂
>
t,h −mhm

>
h )

and H is a finite constant, it suffices to study E(m̂t,hm̂
>
t,h −mhm

>
h ). Define εh = 1(Yt ∈

Ih) − 1t×1α −Xmh. By condition C2 we have Eεh = 0 and Var(εh) = σ2I, where σ2 is a
constant and I is the identity matrix. Let X̃ = (x̃1, . . . , x̃t)

> ∈ Rt×(p+1). By the formulation
and the online algorithm for the kernel matrix estimate in Section 2, we know that m̂t,h =

Ĩp×(p+1)(X̃
>

X̃)−1X̃
>

1(Yt ∈ Ih). Thus m̂t,hm̂
>
t,h = Ĩp×(p+1)(X̃

>
X̃)−1X̃

>
(X̃mh+εh)(X̃mh+

εh)>>X̃
>

(X̃
>

X̃)−1Ĩ>p×(p+1). It follows that

m̂t,hm̂
>
t,h −mhm

>
h ∝(X̃

>
X̃)−1X̃

>
εhε
>
h X̃(X̃

>
X̃)−1+

mhε
>
h X̃(X̃

>
X)−1 + (X̃

>
X̃)−1X̃

>
εhm

>
h

,S1 + S2 + S>2

Notice that E[S1|X̃] = σ2(X̃
>

X̃)−1, which is of order t−1 by condition C1. E[S2|X̃] = 0.
Thus E[m̂t,hm̂

>
t,h−mhm

>
h ] = E[E{(m̂t,hm̂

>
t,h−mhm

>
h )|X̃}] is also of order t−1. This shows

that E[|djt|] can be uniformly bounded by C/t, where C is a constant. Therefore, define εt
as in Lemma 5, it follows that

∞∑
t=1

E[εt(λ̂t+1,j − λ̂t,j)] ≤
∞∑
t=1

E[
1

t+ 1
|djt|] ≤

t∑
i=1

C

t(t+ 1)
<∞

It follows from Lemma 5 that λ̂t,j is a quasi-martingale and converges almost surely, which

holds true for j = 1, . . . ,K. The proof of strong convergence for the eigenvectors β̂t,j
proceed along with very similar lines and is omitted here. This completes the proof. �

Appendix C: Proof of Theorem 3

Consider the case of K = 1. Firstly, we show that there exists a number ε such that the
event |β̂>t β1| > ε occurs infinitely often almost surely. From (11), we have

β̂>t+1β1 =
β̂>t β1 + γt+1β

>
1 {(M̂t −M) + M}β̂t

(1 + γt+1M̂t)β̂t

Without loss of generality, we assume that β̂>t β1 > 0. Because M̂t is an asymptotically
consistent estimate of M, there exist positive numbers δ and ρ such that for t large enough,
Pr{β>1 (M̂t −M)β̂t ≥ δ} ≥ ρ uniformly. Denote η to be the almost sure upper bound for

M̂t and also let η be larger than λ1. Thus

β̂>t+1β1 ≥(1 + γt+1η)−1(β̂>t β1 + γt+1δ + γt+1λ1β
>
1 β̂t)

=
1 + γt+1λ1
1 + γt+1η

β>1 β̂t +
γt+1

1 + γt+1η
δ

Because M̂t is highly correlated, there exists a positive number ρm such that with probability
at least ρm, β>1 (M̂n −M)β̂n ≥ δ for all n = t, t+ 1, . . . , t+m. It follows that

β̂>t+1β1 ≥
1 + γn+1λ1
1 + γn+1η

β>1 β̂n +
γn+1

1 + γn+1η
δ, n = t, . . . , t+m
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which gives

β̂>t+mβ1 ≥
t+m∏
n=t

(
1 + γn+1λ1
1 + γn+1η

)
β>1 β̂n + δ

t+m∑
n=t

(
γn+1

1 + γn+1η

) t+m∏
i=n+1

(
1 + γiλ1
1 + γiη

)

≥δ
t+m∑
n=t

(
γn+1

1 + γn+1η

) t+m∏
i=n+1

(
1 + γiλ1
1 + γiη

)
Since γt = t−1, we may assume without loss of generality that 0 ≤ γn+1 ≤ λ−11 for all n ≥ t.
Define the product of the form

∏t+m
i=t+m+1 to have the value 1, we have

δ
t+m∑
n=t

(
γn+1

1 + γn+1η

) M∏
i=n+1

(
1 + γiλ1
1 + γiη

)

=
δ

η − λ1

t+m∑
n=t

(
(1 + γn+1η)− (1 + γn+1λ1)

1 + γn+1η

) t+m∏
i=n+1

(
1 + γiλ1
1 + γiη

)

=
δ

η − λ1

{
1−

t+m∏
i=t

(
1 + γiλ1
1 + γiη

)}

The fact that η > λ1 ensures there exists a positive constant θ such that e−θw ≥ (1 +
wλ1)/(1 + wα) for w ∈ [0, λ−1]. Therefore, (1 + γiλ1)/(1 + γiα) ≤ e−θγi for i = t, t +
1 . . . , t+m. This gives

t+m∏
i=t

(
1 + γiλ1
1 + γiη

)
≤ exp−θ

∑t+m
i=t γi . Consequently, β̂>t+mβ1 ≥

δ

η − λ1

(
1− exp−θ

∑t+m
i=t γi

)
We choose ε = δ/2(η − λ1).Since

∑
γi is divergent, we can always find a m such that

δ

η − λ1

(
1− exp−θ

∑t+m
i=t γi

)
≥ ε.

Thus, the event β̂>t+mβ1 ≥ ε happens with a positive probability ρm. Next we show that

β̂t is a Markov process. This is because by (11), we have

β̂t+1 =
β̂t + γt+1M̂tβ̂t

‖β̂t + γt+1M̂tβ̂t‖

where M̂t plays an essential role. From M̂t’s update formula (5), we can verify that M̂t is
a Markov process because {(xt, Yt), t = 1, . . .} are independent and identically distributed.
Thus, β̂t is also a Markov process. Starting from any state such that β̂>t β1 > 0, the region
{β̃ : β̃>β1 > 0} will be eventually reached with probability one. Similarly, starting from
β̂>t β1 < 0, the region {β̃ : β̃>β1 < 0} will also be reached with probability one. Thus,
β̂t visits infinitely often a compact subset of the domain of attraction, which is one of the
asymptotically stable points β and −β in (16). By Lemma 7, β̂t converges almost surely to
β or −β. For the case of K > 1, we refer the readers to Theorem 2 of Oja and Karhunen
(1985). The proofs will follow in a similar way and here we omit them for simplicity. �
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