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Abstract

A secret-sharing scheme allows to distribute a secret s among n parties such that only some pre-
defined “authorized” sets of parties can reconstruct the secret, and all other “unauthorized” sets learn
nothing about s. The collection of authorized sets is called the access structure. For over 30 years, it
was known that any (monotone) collection of authorized sets can be realized by a secret-sharing scheme
whose shares are of size 2" ~°(") and until recently no better scheme was known. In a recent break-
through, Liu and Vaikuntanathan (STOC 2018) have reduced the share size to 20-9947+°(") which was
later improved to 20-8927+2(") by Applebaum et al. (EUROCRYPT 2019).

In this paper we improve the exponent of general secret-sharing down to 0.637. For the special case
of linear secret-sharing schemes, we get an exponent of 0.762 (compared to 0.942 of Applebaum et al.).

As our main building block, we introduce a new robust variant of conditional disclosure of secrets
(robust CDS) that achieves unconditional security even under limited form of re-usability. We show that
the problem of general secret-sharing reduces to robust CDS with sub-exponential overhead and derive
our main result by implementing robust CDS with a non-trivial exponent. The latter construction follows
by presenting a general immunization procedure that turns standard CDS into a robust CDS.
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1 Introduction

Secret-sharing schemes, introduced by Shamir [49] and Blakley [17], are a central cryptographic tool with
a wide range of applications including secure multiparty computation protocols [14, 19], threshold cryptog-
raphy [24], access control [45], attribute-based encryption [33, 52], and oblivious transfer [50, 51]. In its
general form [36], an n-party secret-sharing scheme for a family of authorized sets F' C 2/ (referred to as
access structure) allows to distribute a secret s into n shares, s1, ..., sp, one for each party, such that: (1)
every authorized set of parties, A € F, can reconstruct s from its shares; and (2) every unauthorized set of
parties, A ¢ F, cannot reveal any partial information on the secret even if the parties are computationally
unbounded. For example, in the canonical case of threshold secret-sharing the family F' contains all the sets
whose cardinality exceeds some certain threshold. For this case, Shamir’s scheme [49] provides a solution
whose complexity, measured as the total share-size ) _, |s;|, is quasi-linear, O(nlogn), in the number of
parties n. Moreover, Shamir’s scheme is linear, that is, each share can be written as a linear combination of
the secret and the randomness which are taken from a finite field. This form of linearity turns to be useful
for many applications. (See Section 3 for a formal definition of secret sharing and linear secret sharing.)

The complexity of general secret sharing. Determining the complexity of general access structures is
a basic, well-known, open problem in information-theoretic cryptography. Formally, given a (monotone)
access structure! F' we let SS(F) := minp realizes  |D|, Where |D| denotes the total share size of a secret-
sharing scheme D.? For over 30 years, since the pioneering work of Ito et al. [36], all known upper-bounds
on SS(F) are tightly related to the computational complexity of the characteristic function F'. Here we think
of F' as the monotone function that given a vector z € {0, 1}" outputs 1 if and only if the corresponding
characteristic set A = {i : z; = 1} is an authorized set. Specifically, it is known that the complexity of an
access structure is at most polynomial in the representation size of F' as a monotone CNF or DNF [36], as a
monotone formula [15], as a monotone span program [39], or as a multi-target monotone span program [16].
This leads to an exponential upper-bound of on(1—o(1) for any n-party access structure F'.

On the other hand, despite much efforts, the best known lower-bound on the complexity of an n-party
access structure is Q(n?/logn) due to [23]. Moreover, we have no better lower-bounds even for non-
explicit functions!? This leaves a huge exponential gap between the upper-bound and the lower-bound. For
the case of linear schemes, a counting argument (see, e.g., [9]) shows that for most monotone functions
F : {0,1}" — {0,1}, the complexity of the best linear secret-sharing scheme, denoted by LSS(F') is
at least 2"/2=°(") 4 Furthermore, Pitassi and Robere [47] (building on results of [48, 46]) prove that for
every n there exist an explicit n-input function F' such that LSS(F) = 22(") " In his 1996 thesis [6],
Beimel conjectured that an exponential lower-bound of 221 also holds for the general case. Resolving this
conjecture has remained one of the main open problems in the field of secret-sharing [7]. Taking a broader
view, similar exponential communication-complexity gaps exist for a large family of information-theoretic
secure computation tasks [27, 35, 5, 31, 11]. Among these, secret-sharing is of special interest due to its
elementary nature: Secret data is only stored and revealed without being processed or manipulated.

"Monotonicity here means that for any A C B it holds that A € F' = B € F. Itis not hard to see that a non-monotone access
structure does not admit a secret-sharing scheme, and therefore this requirement is necessary.

2This complexity measure essentially ignores the bit-length of the secret. The alternative information-ratio measure normalizes
the bit length of the longest share by the length of the secret, and is therefore more suitable to the case of long secrets. Indeed,
recent results [2] suggest that the ratio achievable for (very) long secrets may be significantly better than the ratio achievable for
short secrets.

3In contrast, in the computational complexity setting, counting-based methods lead to exponential lower-bounds on the com-
plexity of most monotone functions over n-bits for various computational models including the ones mentioned above. These
bounds can be shown to be tight for a random (monotone) function; see, e.g., [38].

“The bound holds for any finite field. From now on when the field is unspecified we take it, by default, to be the binary field.
This only makes our positive results stronger.



The LV construction. In a recent breakthrough, Liu and Vaikuntanathan [40] (hereafter referred to as LV)
showed, for the first time, that it is possible to construct secret-sharing schemes in which the total share size
is 2¢7+0(") with an exponent ¢ strictly smaller than 1. In particular, they showed that every access structure
can be realized by a linear scheme of complexity 20:999n+0(n) - and by a non-linear scheme of complexity
20:994n+0(n) n a nutshell, for a balancing parameter § > 0, the LV construction decomposes an access
structure I’ into three access structures:

1. The “middle slice” F},,;q,s that agrees with F' on all sets whose density is in (% -9, % + ¢) and assigns
zero to sets of smaller density and one to sets of larger density.

2. Two other “extreme slices”, Fyor,s and Fiop 5, that essentially agree with /' on bottom inputs of
density smaller than % — 4 and on top inputs of density larger than % + J. (A more accurate definition
appears in Appendix A.2.1.)

The extreme slices can be realized by a secret-sharing scheme with exponent smaller than 1 since they admit
a monotone formula (or even a monotone CNF/DNF) of this size. Thus, the main effort in [40] is devoted
to realizing Fiiq,s With a non-trivial, smaller-than-one, exponent. Towards this end, LV show that the
function F}y,;q, 5 can be computed by an exponential-size constant-depth formula with a non-trivial exponent
of My (d) < 1 that employs standard AND/OR-gates together with a special form of block-regular gates.
Roughly speaking, in such a gate, G : {0,1}" — {0, 1}, the n-bit input is partitioned into equal-sized
blocks of size B each, and the main feature is that G is defined only on inputs € {0, 1}" that hit exactly
b of the indices in each block for some integer parameter b. Equivalently, the parties are partitioned into
B-size committees and we can determine whether a set A is authorized or not for every set A that consists
of exactly b members out of each committee.

Example 1.1. Assume that n = 8, B = 4, b = 2, and consider the partition to the first 4 coordinates and last

4 coordinates. There are (3)2 inputs that G is defined on. E.g., G should be defined on the input 10100110,
and is not defined on the input 11100001.

LV then show how to implement block-regular gates with sub-exponential complexity of 2°(") based on
recent sub-exponential constructions of Conditional Disclosure of Secrets (CDS) problem from [42]. (We
postpone the description of CDS protocols to a later point.) Taken together, this allows to realize Finiqs
with complexity of 2Mwv (92 The final result is obtained by choosing a parameter § that balances the cost
of Finiq,6 with the cost of Fi,ot 5 and Figp, 5.

In a follow-up work, Applebaum et al. [3] improved the LV bound to 20-9427+0(") in the linear case,
and to 20-8927+0(") ip the non-linear case. This was done by reducing the problem of realizing the extreme
slices to (many) general secret-sharing problems over a smaller domain, leading to a recursive construction.
However, the complexity of mid-slice access structures has remained unchanged.

2  Our Contribution

In light of the exponential gap between the lower bounds and the upper-bounds, we believe that it is both
important and useful to study on the best-achievable exponent of secret-sharing sharing. Formally, we define
the secret-sharing exponent S to be

1
S =i ~log SS(F),
P I o SS)

where M(n) is the family of all n-party access structures (equivalently, all monotone functions over
{0,1}™). The linear exponent, Sy, is defined analogously except that SS(F') is replaced with LSS(F'), the



minimal complexity of a linear scheme that realizes F'. Under this definition, it holds that % < S, <0.942
and 0 < S < 0.892. The existence of sub-exponential secret-sharing schemes would imply that S = 0,
whereas Beimel’s conjecture asserts that S is strictly positive.

In this work, we improve the upper-bounds on S and Sy, and, more qualitatively, provide new directions
that may eventually lead to sub-exponential solutions. Along the way, we introduce a new notion of robust
conditional disclosure of secrets, that may be of independent interest. We proceed with a detailed account
of our results.

Better secret-sharing schemes. We significantly improve the secret-sharing exponent both for the linear
and non-linear case.

Theorem 2.1 (main theorem). Every access structure over n parties can be realized by a secret-sharing
scheme with a total share-size of 90-63Tn+o(n) ypg by a linear secret-sharing scheme with a total share size
of 20-762n+o(n)  Thar is, S < 0.637 and Sy < 0.762.

The proof of Theorem 2.1 is based on a new secret-sharing schemes for mid-slice access structures.
Recall that a mid-slice access structure with parameter J is a monotone function Finiq5 : {0,1}" — {0,1}
that takes the value zero on inputs of Hamming weight smaller than (% —9d)n, takes the value one on all inputs
of Hamming weight larger than % + 0, and may take arbitrary values in-between. As already mentioned, LV
showed that such functions can be implemented by a formula over OR/AND gates and block-regular gates
of exponential size 2Mv (9)" We begin by showing that if one considers a more powerful basis that consists
of somewhat-regular gates (together with general threshold gates), then this can be done by a linear-size
formula with only O(n) gates.

A somewhat-regular gate G : {0,1}" — {0, 1} is parameterized by a pair of integers, (a, b), a block-
size parameter B where a < b < B and a partition II of [n] to B-size blocks. An input z € {0,1}" is
parsed to B-size sub-strings (1, . .., 2, p) according to I, and the gate can be arbitrarily programmed on
inputs that each of their components x; has Hamming weight of at least @ and at most b. Such an input is
referred to as (II, a, b)-regular. (Under the committee-based terminology, in each committee the set x has at
least a and at most b members.) We do not care what value G takes over all other inputs.”

Example 2.2. Assume that n = 8, B = 4,a = 1,b = 2, and consider the partition to the first 4 coordinates

and last 4 coordinates. There are ((]) + (3))2 inputs that G is defined on. E.g., G should defined on the

inputs 10100110 and 10100001, and is not defined on the input 11100001.

From somewhat-regular gates to mid-slice functions. We can realize any mid-slice access function
Finia,s by a formula that makes use of ¢ = O(n) somewhat-regular gates with parameters B = /n, a =
(% —d)Band b ~ (% + §)B. Roughly speaking, we show (via the probabilistic method) that one can
choose ¢ = O(n) B-partitions IIy, ..., II; of [n] such that any input x € {0,1}" of Hamming weight
wt(z) € [(5 £ 6)n] is (IL;, a, b)-regular with respect to a majority of the II;’s. In contrast, LV used regular
partitions and they needed exponentially many partitions to guarantee that an input x has exactly b ones in
each part of the partition.

By programming the i-th gate G; according to the restriction of Fiyiq s to the (II;, a, b)-regular inputs,
we can realize F},,;q s by computing Majority over all the £ somewhat-regular gates. (One still has to make
sure that the formula works well for light/heavy inputs = of Hamming weight wt(z) & [( & &)n], however,
this can be achieved easily with few additional threshold gates.) Using standard secret-sharing techniques,

STechnically, this means that the corresponding access structure is viewed as a partial (or promise) access structure. Interest-
ingly, it turns out that the freedom to work with partially-defined specifications as components (without enforcing a full specification
on each such sub-component) significantly simplifies the overall construction.



the resulting formula allows us to efficiently reduce the problem of realizing a general mid-slice access
structure Fiyiq 5 to the problem of realizing somewhat-regular access structures with parameters B = /n,
a~ (% —d)Band b ~ (% + 0)B. Our next goal is therefore to realize somewhat-regular access structures.
For this, we will have to present a new notion of robust conditional disclosure of secrets.

Conditional disclosure of secrets. Conditional Disclosure of Secrets (CDS) protocols were introduced
by Gartner et al. [30] in the context of private information retrieval, and since then were used in many
cryptographic applications, such as attribute based encryption [29, 4, 53], priced oblivious transfer [1], and,
as already mentioned, secret-sharing schemes [40, 12, 3]. In a CDS protocol, there are k servers and a
referee; each server ¢ holds a private input x; € X;, acommon secret s, and a common random string r. The
referee holds all private inputs (x1,...,zx) but, prior to the protocol, it does not know neither the secret
nor the random string. The goal of the protocol is to let the referee learn the secret if and only if the inputs
of the servers satisfy some pre-defined condition f : X7 x --- x X — {0,1}. The challenge is that the
communication model is minimal — each server sends one message to the referee, without seeing neither the
inputs of the other servers nor their messages.

Example 2.3 (CDS for equality). One can define a 2-sever CDS protocol for the equality predicate EQ :
X x X — {0,1} as follows. The common randomness consists of an hash function » : X — {0,1}
that is sampled from a pair-wise independent hash function family, the first server sends the message h(z1)
and the second server sends the message h(z2) @ s. The second message “perfectly-encrypts” the secret
under the “key” h(x2), and the first message releases the key if 1 = x5 and otherwise consists of a random
independent element.

It is shown in [40] that secret-sharing for general regular gates with block-size of B can be efficiently
realized based on CDS protocols for t = (n/B) servers for general predicates over the domain {0, 1}7 x
- x {0,1}B. Loosely speaking, any set of secret-sharing parties z = (z1,...,2) € ({0,1}5)! gets
to learn, for every server i € [t], the CDS message that the i-th server computes over the input x;. (See
Section 5.1 for full details.) While this leads to an efficient implementation of regular secret-sharing schemes
based on the recent CDS constructions of [41], the transformation fails to produce the more powerful form
of somewhat-regular secret-sharing. The problem is that a somewhat-regular set of secret-sharing parties
= (x1,...,7) € ({0,1}5)" gets to learn the CDS messages that correspond to all inputs 2’ < 2 where <
stands for the standard partial order over binary strings. Furthermore, all these CDS messages are computed
with the same randomness. In such a case, the privacy guarantees of the CDS are completely lost, even if
none of the inputs satisfy the CDS predicate f!

To get a better understanding of the problem, let us consider, for example, the CDS for equality from
Example 2.3. Suppose that the first server releases the CDS messages that correspond to two inputs, x; and
), that are both unequal to the second server’s input x2. Assuming that A is implemented via a random
affine function, the CDS privacy completely breaks. Given the values of h(x;) and h(x)) together with x;
and 2} (who are known to the referee) one can fully recover the description of h, evaluate it over z3 (which
is also public), and recover the secret s from h(z2) @ s.

We remedy the situation by showing that if one starts with a stronger form of CDS protocols, then the
LV transformation does lead to somewhat-regular secret-sharing schemes. Specifically, we introduce the
following new notion of robust CDS (RCDS) that may be of independent interest.

Robust conditional disclosure of secrets. We say that a CDS protocol is robust if it provides information-
theoretic privacy even if it is invoked on a bounded number of multiple inputs using the same randomness.
The general notion of robustness is parameterized by the input sets over which the protocol may be re-used.
For now, let us consider the special case where each server ¢ may re-use the randomness over any set of ¢
different inputs. Since this may happen simultaneously for all servers, the randomness may be re-used over a

4



set of t* inputs. We present a general transformation that takes any CDS protocol, and “immunizes” a single
server. By applying the construction to each server separately, we derive {-robustness with an overhead of
roughly (t polylog u)¥, where u is the number of possible input tuples that may be re-used together by a
single server. In order to explain the transformation, it will be instructive to consider the following more
abstract “secure channel” setting.

How to immunize a channel? Suppose that a sender wishes to send ¢ private messages to a receiver. The
messages arrive in on online manner, one after the other, and the sender is connected to the receiver via
N unidirectional channels that offer one-time privacy. That is, once a channel is being used twice all the
messages that were sent over it are revealed to everyone. The goal is to minimize IV as a function of ¢ while
maintaining perfect privacy for all messages. Our sender is stateless, and so it cannot even remember how
many messages have been sent so far. In particular, the trivial solution of sending the i-th message over the
1-th channel is inapplicable.

Fortunately, each message m; arrives with some (non-private) unique tag x; € X that is available to
both parties. Therefore, we can naively solve the problem with N = | X| channels by allocating a channel
to each possible tag. The question is can we do better when ¢ is significantly smaller than |X|? More
generally, say that we know ahead of time that the sequence of ¢ tags belong to one of u possible ¢-subsets
Z1,..., 72y C X which are a-priori fixed. How small can N be as a function of ¢ and u?

A natural way to solve the problem is to secret share each message m € M to shares (s1, .., sn) € MY
via some secret-sharing scheme D, and deliver these shares over a subset of the channels that is selected
according to the tag . That is, we send s; over the i-th channel if 7 is in the set H (x) where H is some “hash”
function that maps a tag x € X to subsets of N. Correctness is guaranteed as long as H (x) is an authorized
set of the secret-sharing scheme for every x € X. On the other hand, as long as the pair-wise intersections of
H(z) ., forms an unauthorized set, we get privacy for the set of inputs Z. The immunization question now
boils down to designing such an admissible hash-function/secret-sharing pair (D, H) for a given sequence
of t-size input sets 71, ..., Z, C X while minimizing N.

We describe two different solutions for the problem that achieve N = (¢ polylog u) complexity. In both
cases, the starting point is an inefficient construction with quadratic overhead. The first approach is based
on a family of ¢ perfect hash functions H = {hy,..., hy : X — [t?]} for the set family (Z;);c[,). That
is, for every i € [u] there exists a function h € H that perfectly hashes the elements of Z; to ¢ distinct
values. We place the NV channels on an ¢ x t? matrix, and given a message m labeled by x, we share m via
(-out-of-£ secret-sharing scheme to (s1, .., s¢), and send the secret s; over the channel (i, 7) iff h;(x) = j.
Accordingly, a subset of channels is authorized iff it contains at least a single channel in each row. Clearly,
every message is delivered over an authorized set of channels. On the other hand, since h; € H is perfect
over Z;, the pair-wise intersections of H (x) 7z, completely avoids the j-th row of channels.

By taking ¢ to be logarithmic in « (as in the perfect hashing of [28]), we get a quasi-quadratic bound on
N. In order to reduce the overhead to ¢ polylog u, we apply the quadratic solution over the collection (1 O)é t)
of all log t-subsets of X. This effectively upgrades one-time security into a log ¢-security. The latter channel
can be further immunized via a more liberal combination of secret-sharing/hashing pair: Only log t-wise
intersections of H(x),., should form an unauthorized set. This condition translates to a weaker version
of perfect hashing that can be obtained with poly-logarithmic overhead. Overall, the resulting two-level
hashing construction resembles a similar construction of [21], that was suggested in the context of traitor-
tracing schemes.

We also present an alternative construction that achieves similar parameters based on “sparse-hashing”.
Roughly, the message is secret-shared via a threshold secret-sharing with threshold SN, and each z is
mapped to a 3-sparse subset of IV so that the Z;-intersection of the sets results in a sparser set of density
strictly smaller than (. This construction is inspired by the a similar construction of [32] that was presented



in the context of Functional Encryption.® To optimize the parameters, we apply it again in a two-level way.

Back to RCDS. The channel solution can be immediately adopted to the distributed CDS setting. The
servers use their shared randomness to secret-share the CDS secret s according to the secret-sharing scheme
D, and use N copies of CDS with independent random strings to deliver the shares si,...,sy. The i-
th server, that should be immunized, sends his messages only for the CDS instances that are indexed by
H(x;) and remains silent in all other instances. All other parties send their messages for all the CDS
instances. Correctness and privacy follow immediately from the correctness and privacy guarantees of the
channel problem. As already mentioned, by immunizing the servers one after the other, we derive a general
immunization procedure that transforms a general CDS to a RCDS.

We do not know whether there is a more direct, cheaper approach for constructing a robust CDS. As a
positive sign, we show that the best known linear CDS constructions already achieve some partial form of
robustness. Indeed, for the linear case, it is more cheaper to use these robust schemes, than to apply the
immunization procedure. The existence of similar cheaper non-linear robust CDS remains as an intriguing
open question, whose resolution may lead to further improvement in the complexity of general secret-sharing
schemes.

Organization. Secret-sharing schemes and CDS protocols are defined in Section 3. Some parts of the
definitions are deferred to Appendix B. Robust CDS protocols are defined and constructed in Section 4.
The construction of secret-sharing schemes from RCDS protocols is described in Section 5. An abstraction
of the immunization construction that is used to transform a CDS protocol to a RCDS protocol as well as
an alternative immunization construction appears in Section 6. A simple construction of a secret-sharing
scheme with exponent less than 1 is described in Appendix A. Some additional probability background
(especially, on negatively associated random variables) is presented in Appendix C. Linear CDS and RCDS
protocols for arbitrary functions are discussed in Appendix D. Specifically, a proof that a variant of the linear
k-server CDS protocol of [12] is already robust for half of the servers is depicted in Appendix D.1 and a
construction of a more efficient linear 2-server RCDS protocol is given in Appendix D.2.

3 Preliminaries

Secret-sharing schemes. We present the definition of secret-sharing schemes, similar to [8, 22]. For the
privacy of these schemes, we use the following notation: For two random variables X and Y, we say that
X =Y if they are identically distributed.

Definition 3.1 (Partial access structures). Let P = {Py,...,P,} be a set of parties. A partial access
structure is a pair of collections I' = (I'yo, I'yes), where Iy, Iyes © 2 are non-empty collections of sets
such that B € A for every A € 'y, B € Fyes.7 Sets in I'yes are called authorized, and sets in I'y, are
called unauthorized. If T'no U L'yes = 2P then T is called an access structure and will be denoted by the
collection of authorized sets I yes.

We represent a subset of parties A C P by its characteristic string x4 = (21, ...,x) € {0,1}", where
for every j € [n] it holds that x; = 1 if and only if P; € A. A partial access structure I' = (T'no, I'yes)
will also be described by the partial function F' : {0,1}" — {0,1}, where F(x4) = 1 for every subset of
parties A € T'yes and F(x 1) = 0 for every set A € T'yq .

SIndeed, the fact that the channel abstraction captures previous scenarios suggests that this is a useful notion that may be also
applied in future contexts.
"We do not require that oF \ T'no and T'yes are equal (this simplifies our presentation).



Definition 3.2 (Secret-sharing schemes). A secret-sharing scheme, with domain of secrets S, domain of
random strings R, and finite domains of shares S1, ..., Sn, is a deterministic function D : S x R — S1 X
-+ X Sp. A dealer distributes a secret s € S according to D by first sampling a random string r € R with
uniform distribution, computing a vector of shares D(s,r) = (s1,...,Syn), and privately communicating
each share s; to party P;. For a set A C P, we denote D (s, ) as the restriction of D(s, ) to its A-entries
(i.e., the shares of the parties in A).

A secret-sharing scheme D realizes a partial access structure I' = (Iyo, yes) if the following two
requirements hold: (1) Perfect Correctness: The secret s can be reconstructed by any authorized set of
parties. That is, for any set B = {P;,, ..., B BI} € D'yes there exists a reconstruction function Recongp :
Sip X -0 X S,"B‘ — S such that for every secret s € S and every random string v € R, it holds that
Reconp (Dp(s,r)) = s. (2) Perfect privacy: Any unauthorized set cannot learn anything about the secret
from its shares. Formally, for any set T = {P;,,... ’PiITl} € T'wo, every pair of secrets s, s € S, it holds
that Dp(s,r) = Dr(s',r), where r is sampled with uniform distribution from R.

The secret size in a secret-sharing scheme D is defined as log |S| and the complexity of the scheme D
is defined as the total share size Y, ..., 1og|S;|.3 The scheme D is a linear secret-sharing scheme over a

finite field F if S = F, R = F* for some integer { > 1, the sets Sy, . .., S, are vector spaces over F, and
the function D : 1 — Sy x - x S, is a linear mapping over F. By default, linearity is defined over the
binary field F.

Conditional disclosure of secrets protocols. Next, we define k-server conditional disclosure of secrets
(CDS) protocols, first presented in [30]. We consider a model where a set of k servers Q = {Q1,...,Qk}
hold a secret s and a common random string r. In addition, every server (J; holds an input z; for some
Ek-input function f. In a CDS protocol for f, for every ¢ € [k], server ); sends a message to a referee, based
on r, s, and x;, such that the referee can reconstruct the secret s if f(z1,...,z;) = 1, and it cannot learn
any information about the secret s if f(z1,...,zx) = 0.

Definition 3.3 (Conditional disclosure of secrets protocols). Let f : X1 x --- x X — {0,1} be a k-input
function. A k-server CDS protocol P for f, with domain of secrets S, domain of common random strings
R, and finite message domains My, ..., My, consists of k deterministic message computation functions
ENCy, ..., ENCy, where ENC; : X; X S X R — M, for everyi € [k|. Foraninput x = (x1,...,x1) € X1 X
-+« X Xy, secret s € S, and randomness r € R, we let ENC(x, s,7) = (ENC1 (21, 8,7), ..., ENCi (2L, 5,7)).
We say that a protocol P is a CDS protocol for f if it satisfies the following properties: (1) Perfect correct-
ness: There is a deterministic reconstruction function DEC : X1 X - -+ X X X My X - - - X My — S such that
for every input x = (z1,...,x) € X1 X -+ X Xy for which f(z1,...,x) = 1, every secret s € S, and
every common random string v € R, it holds that DEC(z, ENC(z, s,7)) = s. (2) Perfect privacy: For every
input x = (x1,...,x) € X1 X -+ X Xy, for which f(x1,...,xr) = 0 and every pair of secrets s, s' € S it
holds that ENC(z,s,7) = ENC(x,s',r), where r is sampled with uniform distribution from R.

The message size of a CDS protocol P is defined as the size of the largest message sent by the servers,
ie., maxi<i<k log |MZ|

The protocol P is a linear CDS protocol over a finite field F if S = F, R = F* for some integer £ > 1,
M, ..., Mj, are vector spaces over F, and the function ENC; : F“*1 — M is a linear function over T for
every i € [k|. By default, we take T to be the binary field F.

Notations. We denote the logarithmic function with base 2 and base e by log and In, respectively. For
0 < a < 1, we denote the binary entropy of a by Ha(a) = —alog a — (1 — ) log(1 — o). Next, we present
the standard approximation of the binomial coefficients.

8The complexity is sometimes defined to be the maximal share size, i.e., maxlgign{log |Si|}. However, since the two differ
by at most a linear factor of n, the difference is not important in our context.



Fact 3.4. Let n be an integer and let k € [n)]. Then, (}) = O(k~1/22H2(k/n)ny,

Sets and strings. We use the notation [n] to denote the set {1,...,n}. For a set A, we let 24 denote the
collection of all subsets of A, let (‘2) denote the collection of all subsets of A of size k and let ( <Ak) denote
the collection of all subsets of A of size at most k. B

Given two binary strings of the same length, a = ajas...a, and b = b1bs ... b,, we say that a < b if
a; < b; for every i € [n]. We denote wt(a) as the Hamming weight of the string a.

4 Robust CDS: Definition and Construction

4.1 Definition of Robust CDS

In the definition of CDS protocols in [30] (as presented in Definition 3.3), if a server sends messages for
two different inputs with the same randomness, then the privacy is not guaranteed and the referee can
possibly learn information on the secret s. We generalize the notion of CDS protocols to robust CDS
(RCDS) protocols, where the secret is hidden even if the referee sees multiple messages of servers computed
on different inputs with the same randomness. Of course, this requirement makes sense only if all the
corresponding inputs are zero inputs of f.

Definition 4.1 (Zero sets and robustness collections.). Let f : X1 x---x X — {0, 1} be a k-input function.
We say that a set of inputs Z C X1 x --- x Xy, is a zero set of f if f(x) = 0 for every x € Z.

A robustness collection is a product of k collections of inputs Z = Zy X - x Zj, C 2% x ... x 2%k,
where each Z; is downward closed, i.e., if Z € Z; and Z' C Z then Z' € Z;, and contains all singletons,
ie, {x;} € Z; for every x; € X;. A robustness collection is a (u,t)-collection if each of the collections

Z1, ..., 2y contains at most v maximal sets, and each of these sets is of size at most t. We denote the
collection by (Z1,. .., Zy).
For sets Z1, . . ., Zy, we denote ENC;(Z;, s,1) = (ENC;(x4, $,7))z;ez;,, and ENC(Z1 X -+ - X Zy, s,1) =

(ENC1(Z4,8,7),...,ENCR(Zk, s,7)).

Definition 4.2 (Robust conditional disclosure of secrets (RCDS) protocols). Let P be a k-server CDS pro-
tocol for a k-input function f : X1 X -+ x Xg — {0,1} and Z = Z1 X --- x Z}, € X7 X -+ x X,
be a zero set of f. We say that P is robust for the set Z if for every pair of secrets s,s' € S, it holds that
ENC(Z,s,7) = ENC(Z,s',r). Let Z be a robustness collection. We say that P is a Z-RCDS protocol
if it is robust for every zero set Z € Z.

For example, the original (non-robust) definition of privacy of CDS protocols is Z; X - -- X Zj-robust,
where Z; contains all singletons, i.e., Z; = {{z;} : ; € X;} U {0}. We next discuss some choices made in
our definition of robustness.

Rectangles. Suppose that a 2-server CDS protocol is robust for a zero set Z that contains the inputs
(z,y),(2',y"). This means that the messages ENC((z,y),s,7) = (ENCi(x,s,7),ENCa(y,s,7)), and
Enc((«,y'),s,r) = (ENCy1 (2, s,7), ENCa(Y/, s, 7)) perfectly hide the secret s. Observe that given these
messages, the referee can also compute the messages ENC((2', y), s, ) and ENC((z,y'), s, 7), which corre-
spond to the inputs (x,y’) and (2, y), i.e., the referee can try to reconstruct the secret for every input in the
minimal combinatorial rectangle that contains (z,y), (z',%).> For this reason, we always use combinatorial
rectangles as sets for robustness.

Aset Z C X1 X --- X X}, is a combinatorial rectangle if it can be written as a product set Z = Z1 X - - - X Zj, where Z; C X;.



Monotonicity. We also observe that if a protocol is robust for a zero set Z = Z; X --- X Zj, then it is
also robust for every sub-rectangle of Z. It will be convenient to keep this property even when Z is not a
zero-set. That is, we will always make sure that if Z is a member of our robustness collection Z then so are
all sub-rectangles of Z, i.e., Z; will always be downward closed collection for every ¢ € [k].

Product collections. For simplicity of notations, we focus on the case of product collections, i.e., Z =
21 X -+ X Zj, where Z; C 2%, We always require that Z; contains all the singletons of X;, thus, Z-
robustness implies privacy as defined in Definition 3.3.

Example 4.3 (t-RCDS). Consider the case where each server may output, simultaneously, messages for
any subset of its inputs of size at most ¢. This notion, referred to as {-RCDS, can be captured by the

product collection (Z1,..., 2x) where Z; = (ﬁ;) Consequently, this is a (u, t)-robustness collection,

where u = maxi((pii')).

4.2 Construction of Robust CDS Protocols

In the rest of this section we show how to convert a CDS protocol for a function f to a Z-RCDS protocol
for f, where Z = Z; X --- X Zj is a (u, t)-robustness collection. The message size in the resulting RCDS
protocol is only @(t log u)* times the message size of the CDS protocol. The construction of the RCDS
protocol is done in k steps, where in the k’-th step we immunize the messages of the k' server, that is, we
start with a protocol that is robust when servers ()1, ..., Q1 can send messages for many inputs and
servers Qi . . ., Qk can only send a single message and transform it to a protocol that is robust also when
server (J;s can send messages for many inputs.

To simplify notation, we say that a CDS protocol is a (£, Zs, ..., Z)-RCDS if it is Z-RCDS for
Z2=(21,...,2, 2141,..., 2k), where Z; = {{z;} : ; € X;}U{0} foreveryi e {k'+1,...,k} (ie.,
Z; contains all singletons).

Theorem 4.4 (Immunization Theorem). Let f : X1 X --- x X — {0,1} be a function, 1 < k' < k be
an integer, and (Z1,...,2) C 251 x --- x 2% be a (u,t)-robustness collection. Suppose there is a
(Z1,..., Z_1)-RCDS protocol Py _1 for a secret taken from a domain S in which the size of the messages
of server Q;, fori € [k], is c;. Then, thereis a (Z1, ..., Z_1, Z})-RCDS protocol Py for a secret taken
from the domain S in which the size of the messages of server Q;, fori € [k]\ {k'}, is O(t ¢; log | X;| log u),
and the size of the messages of server Qy is Ot(ck/ log | X;|log w). Moreover, if Pys_1 is linear, then so is
P

The main idea of our construction for immunizing a server i/ is to partition the input domain Xj;
of the server into sets and for each set to execute a CDS protocol with independent randomness. If the
server sends encodings of a few inputs such that each input is in a different set, then the referee gets at most
one encoding from each execution and the privacy of the CDS protocol implies the robustness of the new
protocol. However, one partition of the inputs is not good for all sets of inputs so we use several partitions.
We use a family of perfect hash functions to specify the partitions.

To reduce the message size in the construction, we use two levels of hashing. To provide robustness
for ¢ inputs, we first use a family of hash functions with range of size 2¢. This will ensure that for at least
one partition, the server sends encodings of at most log ¢ inputs in the same execution of the CDS protocol.
Thus, the CDS protocol should be robust for log ¢ inputs; this is done by a second level of hashing using a
family of perfect hash functions with range of size log? t. The idea of using two levels of hashing is similar
to the construction of traitor-tracing schemes in [21].

By taking the best known CDS constructions and iteratively applying the immunization theorem, we
derive the following results.



Theorem 4.5. Let f : X1 x - -- x X}, — {0, 1} be a k-input function, where | X;| < 2%, and (21, ..., Z;,) C
2X1 % ... x 2%k be a (u, t)-robustness collection. Then,

e There is a ~(Zl, ..., 2k)-RCDS protocol with a 1-bit secret, where the size of the messages of each
server is 20(\/@0(75)]“*1(5 log u)*, and

e If k is odd, then there is a linear (21, ..., Z})-RCDS protocol with a 1-bit secret, where the size of
the messages of each server is O(t2¢ log u)(kfl)/?

The rest of the section is organized as follows. In Section 4.2.1, we provide some results on families of
hash functions. In Section 4.3, we prove an immunization lemma, which is used for both levels of hashing,
and prove the immunization theorem (Theorem 4.4) using the immunization lemma. Finally, in Section 4.4,
we show how to use the immunization theorem to construct RCDS protocols and prove Theorem 4.5.

4.2.1 Families of Hash Functions

We next present the definition of a family of ¢’-collision free perfect hash functions; the original definition
of perfect hash functions [28] refers to the case that ¢’ = 1.

Definition 4.6 (Families of ¢'-collision free hash functions). A set of functions Hy, 41, = {hq : [n] — [v] :
d € [0]} is a family of t'-collision free hash functions for a collection T C (@) if for every set T € T there
exists at least one function h € Hy, ; y ., for which for every b € [v] it holds that |{x € T : h(z) = b}| </,
that is, h restricted to T is at most t'-to-one. A family H,,  ,, is a family of perfect hash functions if it is a
family of 1-collision free hash functions.

The following lemma is a well-known result, which can be proved, e.g., using the probabilistic method.

Lemma 4.7. Let n be an integer and t € [\/n]. Then, there exists a family of perfect hash functions (i.e.,
1-collision free) H,, ; y» = {h; : [n] — [t*] : i € [{]}, where £ = 16tInn.

The following lemma is proved in Appendix C.2.

Lemma 4.8. Let n be an integer, t € {15,...,n/2}, T C (L"l) and u be the number of maximal sets in T
Then, there exists a family of log t-collision free hash functions Hy, 4 10g+,2¢ 0f size £ = 16 In w.

4.3 The Immunization

The next lemma, called the immunization lemma, improves the immunization of server J, that is, it takes
a protocol that is robust when Qs sends encodings of ¢’ < t messages, and constructs a protocol that is
robust when ;. sends encodings of ¢t messages. This is done using a few copies of the original protocol
and a family of ¢'-collision free hash functions.

Lemma 4.9. Let f, k', Z1,..., Zy, and t be as in Theorem 4.4 and Z,, = (fg/) for some integer t' < t.
Suppose there is a (Z1, ..., Z_1, Z;,)-RCDS protocol P with domain of secrets S in which the size of the
messages of server Q;, for i € [k], is ¢;. Furthermore, suppose there is a family of t'-collision free hash
functions H\x,,| 1110 = {h1,...,he}. Then, thereisa (Z1,..., 2 _1, 2k )-RCDS protocol P’ with secrets
from S in which the size of the messages of server Q;, for i € [k] \ {k'}, is O(c; vl) and the size of the
messages of server Qs is O(cys £). Moreover, the transformation preserves linearity.

Proof. Let R be the set of random strings of P and let ENC; be the encoding of server (); in this protocol.
The encoding function ENC}, of @; in the RCDS protocol P’ for f is as follows:
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e Common inputs: a secret s € S, randomness 7 consisting of s1,...,s,-1 € S and (r4,5)de(e],jelv]»
where each rg ; € R.

Private input of server Q;: x; € X;.

Let sy = s — (s1 + -+ s¢—1), where the sum is in S.
(If S is not a group, choose an injective mapping from S to Z5| and use addition modulo |S].)

If i # K/, then ENC}(x;, s,7) = (ENCi(a:i, Sd’rd’j))de[z],g’e[v}'

i ENC;c/ (mkU S, ’f’) = (ENC/C’ (xkla Sd, Td,hd(mk/)))de[g] :

Notice that the encoding of server (s contains one encoding from P for each sg; this will provide the
robustness. In contrast, the encoding of any other server contains many encodings from P for each s, (each
one with an independent random string); this will ensure the correctness of the protocol.

We first show the correctness of the RCDS protocol P’. For input (z1,...,2%) € X1 X -+ X X} such

that f(z1,...,2) = 1, the referee can reconstruct s4, for every d € [¢], using the decoding function of
P on the encodings of the inputs 1, ..., x) with the secret s and random string 74 p,,(z,,). Overall, the
referee can learn all the strings sy, .. ., Sy, so it can reconstruct the secret s by summing these strings.

For the robustness of the protocol P/, let Z1 x - -+ x Zj, be a zero set of f such that Z; € Z; for every
1 <i<koand|Z] =1forevery k¥ +1 < i < k,andlet Zy 4, = {z € Z : hq(x) = j} for
every d € [(] and j € [v]. Since H|x,,| 1o is a family of ¢'-collision free hash functions, there is at least
one d € [{] for which hg restricted to Zj, is at most t'-to-one. Fix a j € [v]; by the collision freeness,
| Z1 4, j\ < t'. The referee gets the encodings of the inputs in Zy q,; from server @y in the execution of the
RCDS protocol P for the secret s4 and random string 74 ;, i.e., it gets at most ¢’ encodings from Qs for
rq,j. Furthermore, in this execution the referee gets encoding of messages of server Q; on inputs Z; € Z;
for 1 < i < k' — 1 and an encoding of at most one message from server @Q; for ¥ + 1 < i < k. Since
Pisa (21,..., 21, Z,Q,)—RCDS protocol, the referee cannot learn any information about s4 from this
execution, that is, for Y% = Z; x -+ X Zw_1 X Ziy qj X Zy41 X -+ X Zy, and two secrets sd,sfi es

ENC(Yd’j,sd,rdJ) = ENC(Yd’j,s’d,rdJ).
For two secrets s, 8" € S, fix s1,...,80-1. Letsy = s — (s1+ -+ s¢_1), and s, = s, for e # d and
sl = sq + s — s. Note that s1,...,s, are used when the secret is s, while s/, ..., s, are used when the

secret is s’. Since the random strings {re j }cc[q je[s] are statistically independent,

(ENC(Y'™, S¢,Tej))ecijep] = (BNC(Y 80,7 j))ecld] jeo]-

Hence, the referee cannot learn any information on the secret s.

The message size of each server Q., for e # k', in protocol P is O(v|H x| ¢v/.v|) = O(vf) times its
message size in P and the message size of server Q. in protocol P’ is O(‘H\Xk/\,t,t’,v‘) = O(¥) times its
message size in P. O

We next prove Theorem 4.4, the Immunization Theorem, by using two levels of the construction of
Lemma 4.9.

Proof of Theorem 4.4. Lett' = logt, Vi = (ﬁ’;,’ ), and Hy | v 2 be the family of perfect hash functions of

size £ = O(t' log | X}-|) guaranteed by Lemma 4.7. Note that this family is 1-collision free. By Lemma 4.9
applied to Py and H|x, ,| ¢/ 2, there exists a (Z1,..., Zi—1, Vi )-RCDS protocol P;,, where the message
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size of server Q;, for i # k', is O(c; - " - t'log | Xp|) = O(c;log® tlog | Xy|), and the message size of
server Qk/ is O(Ck/ logtlog ‘Xk/‘)

We next apply Lemma 4.9 using Py,. Let H| X,/ | t,log t,2¢ be the family of log ¢-collision free hash func-
tions for Zj of size { = O(log u) guaranteed by Lemma 4.8 (where w is the number maximal sets in Zj/).
By Lemma 4.9 applied to P;, and H Xt log t,2¢> there exists a (Z1,..., 21, 2 )-RCDS protocol where

the message size of server Q;, for i # k', is O((c; log® tlog | Xp|) - 2t - log u) = O(c;t log | X | log u), and
the message size of server Qs is O(cy log tlog | Xy |logu) = Oy(cx log | Xy |log ). O

4.4 Constructing RCDS protocols

In this section we present our constructions of RCDS protocols, proving Theorem 4.5. We begin by apply-
ing Theorem 4.4 k times, immunizing all parties.

Lemma 4.10. Let f : X1 x --- x X}, — {0, 1} be a k-input function, where | X;| < 2%, and (21, ..., Z;,) C
2X1 % ... % 2%k be a (u, t)-robustness collection. Suppose there exists a CDS for f where the message size
of server Q; is ¢;. Then, there is a (21, ..., Z1)-RCDS protocol, where the size of the messages of server
Qi, fori € [k], is c; - O(t)F~1 - (Clogu)*. Moreover, this transformation preserves linearity.

Proof. We use Theorem 4.4 k times iteratively, starting with the original CDS protocol. In the k’-th it-
eration, we transform a (Z1,..., Zp_1)-RCDS protocol to a (21, ..., 21, 24 )-RCDS protocol. The
communication overhead in each step is O¢(¢log u) for the immunized server and O(t{log u) for all other
servers. Since every server is immunized once, the total communication overhead is O(¢)*~!(¢logu)*. O

We move on, and prove Theorem 4.5.

Proof of Theorem 4.5. The non-linear RCDS protocol is obtained by applying Lemma 4.10 to the CDS
protocol of [42], which has message size 20(VkD)

For the linear RCDS protocol, we start with the variant of the linear CDS protocol of [12] with message
size O(2€(k_1)/ 2) (a protocol with a similar message size also appears in [42]), and prove in Lemma D.1
that when £ is odd, this protocol is already immune for (k+ 1) /2 servers. Thus, we need to immunize, using
Theorem 4.4, only (k — 1)/2 servers. The resulting RCDS protocol has message size O(t2¢ log u)(+~1/2,

O

4.5 (a,b)-monotone RCDS

An important example of a robustness collection is the case of monotone robustness in which whenever a
server ();, holding a string x € {0, 1}5, sends all the messages that correspond to inputs ' < z. In fact,
we consider a more refined version of this scenario where the above happens only when z is of Hamming
weight at most b and z’ is of Hamming weight at least a for some integers a < b < /.

Definition 4.11 ((a, b)-monotone RCDS). For an input x € X;, define the set Sy , C X; as
Sga = {x’ € X;:2' <zand wt(w’) > a}.

Furthermore, for i € {1,...,k}, let Z; = { Sz a}zex; a<wi(x)<b- An (@, b)-monotone RCDS protocol is a
(Z1,...,2)-RCDS protocol.

Let X; C {0, 1}6. Each string of weight exactly b correspond to a maximal set of Z;. Hence, the
collection Z is a (u,t)-collection where

¢ /b
u:<b> and t:§::<2> (1)
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5 Secret-Sharing Schemes for General Access Structures

In this section, we realize any access structure based on RCDS protocols. By plugging the RCDS construc-
tions from Theorem 4.5, we prove our main theorem — Theorem 2.1. We follow the outline sketched in
the introduction: We begin by realizing somewhat-regular access structures, then move to handle mid-slice
access structures, and end up by realizing general access structures. Throughout this section we will identify
an access structure with its characteristic Boolean function F', as described in Definition 3.1. We also make
use of partial (or promise) access structures.

5.1 Somewhat-regular Secret-Sharing from RCDS

Definition 5.1 ((k, a, b)-somewhat-regular access structure). Let II be a partition of the set of n parties P
to k equal-sized sets (I1,...,Ii). A (partial) access structure I' = (I'no, I'yes) over n parties is (11, a, b)-
somewhat-regular if for every A € I'yo U I'yes and every i € [k],

a<|ANIL| <b. 2)

In other words, I" puts no restriction on sets A C [n] that violates (2) for some i. We sometimes omit 11 and
refer to T as being (k, a, b)-somewhat-regular.

Remark 5.2 (Function notation). Using the terminology of functions and strings, the partial function F
describing a (k, a, b)-somewhat-regular access structure is defined only on n-bit strings € {0, 1}" with
the following property. For every ¢ € [k], the string x[/;], obtained by restricting x to the index set I;, has
Hamming weight of at least a and at most b. That is, 2 can be parsed to (1, . .., x}) where z; € {0,1}"/*
and we care only about the case where the Hamming weight of each z; is in between a and b.

Remark 5.3. We can take a fully defined access structure F' and “puncture it” according to a given partition
IT and parameters (a,b) and derive a (II, a, b)-somewhat-regular version of F’, denoted by Fiy,p, Where
Fi1,4,p is undefined on inputs = for which some x; has weight greater than b or smaller than a.

As the first step towards secret-sharing schemes for general access structures, we build secret-sharing
schemes for any (k, a, b)-somewhat-regular access structures over n parties based on (a, b)-monotone robust
CDS protocols for k servers. (The latter notion is defined in Definition 4.11.)

Construction 5.4. Let I1 be a partition of n parties to k equal-sized sets (I, ..., I) and let F' be a (II, a, b)-
somewhat-regular access structure over n parties for integers a < b. We share a secret s as follows.

1. Let X; = {0,1}* and let f : X; x --- x Xz — {0,1} be some predicate that agrees with F.!°
Sample a random string r for a k-server (a, b)-monotone RCDS protocol P = (ENC;);¢y) for f.

2. Forevery i € k, and z; € X; such that the Hamming weight w = wt(z;) of x; is in the interval [a, b],
compute the message of the i-th server of P:

y(z, T, 8) = ENCi(:CD T, S)a

and share it between all the w parties in (the set that corresponds to) x; via a w-out-of-w secret-sharing
scheme (using fresh randomness R, for each x;). We denote the share of j € x; by y(7, z;, s, 7).

3. The share of the j-th party (which is in a set I;) is (y(%, s, S, J) )as:jca; -

10We say that a pair of partial functions f and g agree with each other if they take the same value on every input z for which both
functions are defined.
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Lemma 5.5. Construction 5.4 realizes F' with share sizes of m - Z?: a (”j/ k) for each party, where m is the
message size of the underlying RCDS protocol.

Proof. We start by proving correctness. Let x = (z1,...x) be a string with a < wt(z;) < b for every
i € [k] and F(z) = 1. For every i € [k], the parties represented by x; can reconstruct the RCDS message
ENC;(z;, 7, s) of the i-th server of P. Since the RCDS predicate f agrees with F, it holds that f(z) = 1, and
by the correctness of the RCDS protocol the parties can compute the secret s from the £ RCDS messages.

We move on to prove privacy. Fix a string x = (x1,...,x) that corresponds to an unauthorized set.
Consider a pair of secret sg and s;. Our goal is to show that the corresponding shares of the parties in =,
denoted by D, (sp) and D,(s1), are identically distributed. To see this, consider a modified construction in
which for every 7 € [k] and every u € X; for which u £ z;, the random variable y(i, u, so) (which is shared
via a wt(u)-out-of-wt(u) secret-sharing scheme) is replaced with some fixed string y(i, u) of appropriate
length (say the all zero string). We claim that, in the modified scheme, the view D/ (so) of the parties in
x is distributed identically to D, (so). Indeed, since u £ x; there exists at least one party j € wu that does
not participate in x. Therefore, by the privacy of the wt(u)-out-of-wt(u) secret-sharing scheme, and since
each y(i,u, sg) is shared with fresh randomness, the random variables D, (sg) and D’ (sq) are identically
distributed. Similarly, D,.(s1) and D/, (s1) are identically distributed, and so it suffices to show that D’ ()
is distributed identically to D’ (s1). Let us condition on some fixing of the shares of y(i,u) for all u € X;
for which u £ z;. By the robustness of the RCDS, the remaining random variables

{y(i,v,80) : 1 € [k],v < x;} and {y(i,v,81) : 1 € [k],v < x;}

are identically distributed, so the corresponding shares are also identically distributed and privacy follows.
For every j € [n], the share of party P; contain a share of the RCDS protocol for every string x; of

length n/k and weight between a and b such that j € x;. Then the share size of P; is m - Z?: " (”j/k ) O

5.2 Mid-slice Secret-Sharing from Somewhat-Regular Secret-Sharing

Definition 5.6 (Mid-slice access structure [40]). An n-party access structure F' is a § mid-slice access
structure with parameter § € (O, %) if:

1. F takes the value 0 for every input x of Hamming weight wt(x) < (% — (5) n;
2. F takes the value 1 for every input x of Hamming weight wt(zx) > (% + 5) n;

A “middle-slice” input x of weight (% — (5) n < wt(z) < (% — (5) n can be assigned any value (as long as
monotonicity is preserved).

A partial mid-slice access structure is defined similarly except that we drop the requirements (1) and (2),
and F' is undefined over light inputs (wt(z) < (% — 5) n) and over heavy inputs (wt(x) > (% + (5) n).

We now turn to build a secret-sharing scheme for mid-slice access structures from (k, a, b)-somewhat-
regular secret-sharing schemes. Fix some parameter § € (0, 1) and set a proximity parameter € to be n 1.
LetIT = (I3, ..., I}) be a partition of [n] to k = /n subsets of size n/k = \/n each.!! In the following, we
say that an input - € {0, 1}" is good for the i-th block of II, if the sub-string z; € {0, 1}V™ is of Hamming
weight at least (% —0— e) v/n and at most (% +4+ e) v/n. We say that x is good for the partition IT if x is
good for all the blocks ¢ € [k] of IL. If « is not good then it is called bad. We will use the following lemma.

""'The choice of 1/n is somewhat arbitrary and any choice of block size w(logn) < |B| < o(n) suffices for the final result.
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Lemma 5.7. For every constant 6 > 0, there exists a collection of { = O(n) partitions 111, ... I, of [n]
to \/n subsets of size \/n each, such that every n-bit string x of Hamming weight (% —0)n < wt(z) <
(% + (5) n is good for at least 0.7¢ of the partitions.

The hidden constant in the big-O notation depends on the constant 9.

Proof. We use the probabilistic method to choose at random such a collection of size £ = O(n), and see
that with positive probability all inputs are good for at least 0.7¢ of the partitions.

Fix an input « of weight (1 — 6) n < wt(z) < (3 + §) n. We start the analysis by sampling a partition
I1. We first focus on a single block ¢, and denote by Y ; the indicator random variable that is equal to 1 if and
only if the j-th bit of the i-th block is 1. For every i € [\/n], the \/n variables {Y;};c[, ) are negatively
associated (see Claim C.6). We now denote Y; = ). Y; ; to be the random variable representing the number
of ones of x that are placed in the i-th block of II. Due to the linearity of expectation, and to = being of
“middle” weight, we get that the expectation p of Y; satisfies

1 1
(15 iz (bes) i
The probability that x is bad for the -th block is a sum of two probabilities, that x puts too many ones or
too few. These probabilities behave the same asymptotically, so we will analyze only the former probability.
By the negative associativity we can use the Chernoff bound, and get

2.2

1 €ETCT .
Pr [YZZ <2+(5+6) \/ﬁ:| <e” 5 :6_9(02"03)’

where ¢ = 1/ (1 4 6) and the last equation follows since € = n %1,

Now by union bound over all blocks, the probability that z is bad for the partition II is at most

p _ \/ﬁe_Q(CZnOS) _ 0(1)

Finally, if we independently sample ¢ partitions, the probability that x is bad for at least 0.3¢ of the partitions
is, by a Chernoff bound, at most 290, By taking ¢ = C'n for sufficiently large constant C, the latter
probability is smaller than 27", so the lemma follows by applying a union bound over all possible inputs. [

We can now realize a mid-slice access structure.

Lemma 5.8. Let F' be a mid-slice access structure over n parties with parameter § € (07 %) Then, F
can be realized by a secret-sharing scheme with share size of m' - O(nlogn), assuming that any (k, a,b)-
somewhat-regular access structure can be realized by a secret-sharing scheme with share size of m/, where

k=+/n, a=<;—5—n0‘1>\/ﬁ, and b:<;+5+n0'1>\/ﬁ.

Proof. We start by considering a partial mid-slice access structure. Recall (Definition 5.6) that such an
access structure is defined only over the middle slice, i.e., over inputs whose Hamming weight is in the
interval [0.5n £ dn).

Construction 5.9. We realize such an access structure I as follows:
1. Let L = (IIy, ..., IIy) be the list of partitions of length £ = O(n) promised by Lemma 5.7.

2. Share s into ¢ shares (o1, ...,0,) via an £/2-out-of-¢ threshold secret-sharing scheme (using fresh
randomness).
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3. For every i € [{] share each o; with a different random string 7; by a secret-sharing scheme realizing
the (k, a, b)-somewhat-regular access structure F, 45 (as defined in Remark 5.3).

We analyze the construction. Fix some input  of Hamming weight (3 — ) < wt(z) < (3 — ). Let
I C [{] denote the set {i : x is good for II; }, and recall that, by Lemma 5.7, the set [ is of size at least 0.7¢.
Observe that F'(x) = Fiy, o p(x) for every ¢ € I. If F(x) = 1 then at least 0.7¢ shares 04,7 € I, can be
reconstructed by the parties in x and s can be recovered. If F'(x) = 0 then at least 0.7/ shares 0,7 € I, are
kept perfectly hidden (due to the privacy of FTy, 45) and so s remains perfectly hidden (i.e., we can perfectly
simulate the view of the parties that participate in x).'?

We use Shamir’s secret-sharing to implement the threshold part and so each o; is of length O(log /).
Hence, the share size per party is O(m/flog¢) = O(m/nlogn) where m' is the size of shares of the
underlying somewhat-regular scheme.

We move on to handle the case where F' is defined over all inputs. This part of the construction is quite
start-forward. Recall (Definition 5.6) that such an access structure takes the value 0 over light inputs, the
value 1 over heavy inputs and may take arbitrary values over the middle slice. Letting F” denote the partial
mid-slice access structure that agrees with F' over the mid slice, we realize F' as follows:

1. Share s via a ((% + 5) n+ 1)—0ut—0f—n secret-sharing scheme and give the i-th share, denoted by u;,
to the i-th party.

2. Share s via 2-out-of-2 secret sharing into sg and sj.

3. Share sg viaa (% — 5) n-out-of-n secret-sharing scheme and give the i-th share, denoted by v;, to the
i-th party.

4. Share s to all parties according to F’ (using Construction 5.9) and give the i-the share, denoted by
w;, to the ¢-th party.

Correctness: Any input x of weight at least (% + 5) n+1 can reconstruct s via the u shares, and any middle-
slice input x which is authorized (i.e., F'(z) = 1) can recover sy and s; (via the v and w shares) and can
therefore recover s. Privacy: A coalition that corresponds to a light inputs learns nothing from the « shares
and from the v shares (due to the privacy of the threshold schemes) and therefore learns nothing about s.
A medium-slice coalition that is unauthorized (i.e., F'(x) = 0) learns nothing from the u shares (due to the
privacy of the threshold scheme) and learns nothing from the w shares (due to the privacy of the F’ scheme)
and so it learns nothing on s.

Since each w; is of length O(m’nlogn) and the bit-length of u; and v; is O(logn), the share size per
party is O(m/nlogn) + O(logn) = O(m/nlogn). O

5.3 The Exponent of Mid-slice Access Structures

Let us denote by M(4) the exponent of mid-slice access structure with parameter . Namely,

1
M) = liga_}sip FEH/\I/?(}(;TL) - log SS(F),

where M (9, n) is the family of all n-party -mid-slice access structures. The linear exponent, My(4), is
defined analogously except that SS(F’) is replaced with LSS(F').

'2 Note that when i ¢ I there are no guarantees on the share o, e.g., it is possible that F'(z) = 0 and the parties in 2 can recover
o; or that F'(z) = 1 and the parties in = would have no information on o;. However, since we use a threshold scheme to share s,
this does not affect the correctness and privacy of the construction.
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In [40] it was shown that
M(6) < H9(0.5 =) + 0.2h(108) + 106 — 0.210g(10),
and for the linear case
M;(6) < H(0.5 —0) + 0.2H2(105) + 21og(26)d — 0.11og(10).
Based on Lemma 5.8, and our constructions for robust CDS protocols we prove the following bound:

Lemma 5.10. For every § € (0, %) the following holds

(3+0) M (1553) o <1/6

M(5) < { .
(5 +9) 5> 1/6

For the linear case, when 6 < 1/6, it holds that

1 1/1 1/2—-6
M) <=+=|=+6|H .
f )_2+2<2+ > 2(1/2+5>
Proof. Using the secret-sharing schemes with properties promised by Lemma 5.5 and Lemma 5.8, a mid-
slice secret-sharing scheme for an access structure Fi,iq s over n parties can be realized from an (a, b)-
monotone RCDS protocols with k servers for predicates f : ({0,1}Y)* — {0,1} where k = £ = \/n, and

a=(3-0—€)vn b= (3+65+¢€)/n where e = n=°1. Assuming that these RCDS protocols have
communication complexity m, we get a secret-sharing scheme for F},,;q s with complexity

b
m - O(nlogn) - Z <n§k> =m - poly(n) - O(2V") = m - 2°0,

j=a

Similarly, we get a linear secret-sharing of complexity my - 2°(") where my is the share size of an underlying
linear robust CDS protocols. So, the exponent is derived solely from the cost of the underlying robust CDS
protocol. By definition (see (1)) an (a, b)-monotone collection is a (u, t)-collection where

¢ " (b
U= (b) and t= ; <z> 3)
So, by applying Theorem 4.5, we can realize (a, b)-monotone robust CDS with complexity of
o(n) g (% +0+ 6) \/ﬁ Vet \/ﬁ Ve
m = 2°0" . Z . ‘ - |v/nlog .
S\ vntj (4+0+€)vn

For the linear case, Theorem 4.5 yields the bound m; < Oy(2‘tlogu)v™/? which, under our choice of
parameters, simplifies to

me < 0@ {f< I ) e \/ﬁ)\/ﬁ)}ﬁﬂ'

S \(G——¢) Vit S+d+e
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Both terms m and m, have different asymptotic behavior for § < 1/6 or § > 1/6. Specifically, recalling
that e = n~0!, and using the standard entropy-based bound for the binomial coefficients (Fact 3.4), we get

2(%""5) H2<¥§;g>”+a(") if § < 1/6
m = ,
9(3+8)nto(n) if6>1/6
and for linear CDS we get
my = 2%n+%(%+6) Hg(%)n-w(n)
when § < 1/6, and my = Q(2") when § > 1/6. O

5.4 Putting it altogether (Proof of Theorem 2.1)

In [40] the exponent of general access structures was reduced to the exponent of mid-slice access structures.
To realize an access structure F', they realize the mid-slice of F' and in addition they realize the access
structure whose minterms are the light minterms of F' and the access structure whose maxterms are the heavy
maxterms of F' (where a minterm is a minimal authorized set and a maxterm is a maximal unauthorized set);
the latter two access structures are realized by the trivial schemes. In [3] more efficient schemes realizing
the latter two access structures were presented (using schemes with exponent smaller than 1). Using the
current notation, we get the following lemma:

Lemma 5.11 ([3]). For every § € (0,1) it holds that

S < max(X'(6),M(0)) and S; < max(X'(d),My(4))

X/(5) = H (;—5> - <;—5> log<§+§>.

The proof of Theorem 2.1 now follows directly from the combination of Lemma 5.10 and Lemma 5.11
with § ~ 0.1429 for the general case, and d; ~ 0.09 for the linear case. Indeed, Lemma 5.11 yields
exponents of 0.637 in the general case and 0.762 in the linear case.

where

6 Immunizing CDS Servers: Abstraction and an Alternative Construction

In this section we provide an abstraction of the construction in Theorem 4.4, which shows how to ‘immu-
nize” a single server. The goal is to transform a CDS protocol that is robust over some collection I x Y
(where I consists only of singletons of the input of the first server) to a CDS protocol that is robust over
Z x Y for some collection Z. We begin with a general template that abstracts the work of [32] in Section 6.1.
The template requires a pair of hash function and secret-sharing scheme with specific properties. These are
chosen later in Section 6.2 in a way that immunizes a server over a (u, t) collection, of v maximal sets of
maximal cardinality ¢. This will allow us to turn any CDS protocol to one that is robust over any robustness
collection, by immunizing one server at a time.
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6.1 A Template for Inmunizing a Single Server

We follow the outline suggested in the introduction. That is, we secret-share s to N shares and send each
one of them via an independent copy of a CDS protocol. The immunized server will only use a subset of
these copies that will be determined based on the input of the immunized server via the aid of some hash
function.

Construction 6.1. Let f : X1 x - x Xy — {0, 1} be a predicate for a CDS protocol P = (ENC;);c[y]

for secrets in S and randomness domain R. Let N be an integer, H : X; — 2!"] be a mapping, and let D
be a (randomized) sharing function that maps a secrets s € T into a vector of N shares (s}, ..., s%y) € SV
using randomness from the domain Ry. Define the following new CDS for a secret s € T, and randomness
domain of Ry x RV:

1. Given s € T and (rg,71,...,71) € Ry x RN, each server applies D to s and ry and generates the
shares (], ..., s'y).

2. Each server j computes a vector v; of /N messages

v; = (ENC]'(JZ]', 8,1,7“1), ey ENCj(l‘j, S/N,’I"N)).

3. The first server computes the set H (1) C [N] and outputs only the entries (v1[i])ic fr(xy)-
4. Every other servers j > 1 outputs its entire vector of messages v;.

Before analyzing the construction we need the following simple definition. The set of collisions of a
collection of sets Ay, ..., A, is the set of elements that appear in at least two of the sets Ay,..., A,.

Lemma 6.2. Suppose that:
1. Forevery x € X the set H(x) is an authorized set of the secret-sharing scheme D
2. The underlying protocol P is a Z x )-RCDS protocol, where T = {{z} : v € X1} U0.

3. For every Z € Z, the set of collisions of the set system {H (x)},cz is a non-authorized set of the
secret-sharing scheme D.

Then Construction 6.1 is a Z1 x Y-RCDS protocol.

Proof. We claim that the protocol is perfectly correct. Indeed, fix an input (x1,y) for which f(z1,y) = 1.
Then, the decoder computes the set A = H(x1) and for every ¢ € A it applies the decoder of the original
CDS to i-th component of the transcript, i.e., to (v1[é],...,vk[i]). By the correctness of the underlying
CDS, the value s/, is recovered. Since A is an authorized set of the secret-sharing scheme (by the lemma’s
hypothesis) the shares (s});c4 can be used to recover the secret s.

Next, we prove that the protocol is robust over a zero-set Z x Y, where Z € Z; and Y € ). For
secret s € T, input (x1,y), and randomness r = (ro, ..., rr), let D(z1,y,r, s) denote the concatenation of
the messages that are sent by all the servers. Also, let D(x1,y,r, s)[i] denote the concatenation of the i-th
messages of the servers. (If i ¢ H(x1) then the first entry of D(x1,y,r, s)[¢] is taken to be L.) Fix a pair of
secrets s and s’, we show that the random variables

D(S) = (D(x17y7r7 5))(x17y)€Za and D(Sl) = (D(xlay77a7 3/))(x1,y)€Za

induced by a uniform choice of r, are distributed identically.

19



Let A C [N] be the set of collisions of {H(x1)},,cz. To prove that D(s) and D(s’) are identical,
we show that (1) The restriction of D(s) and D(s’) to the indices in A is identically distributed; and (2)
Conditioned on every fixing of D(s)[A] and D(s")[A], for every i ¢ A the random variables D(s)[i] and
D(s')[i] are identically distributed, and are independent of all other i’s outside A.

We prove (1). Since the set A of collisions is a non-authorized set, the A-shares (s;);ca of s and the
A-shares (s]);ca of s’, induced by a uniform choice of r(, are identically distributed. Hence, for uniformly
chosen 7o and ra = (7;);c4 (and every fixing of (7;);¢ 4), the A-components of D(s) and D(s’) are identi-
cally distributed.

We move on to (2). Fix some arbitrary 7,74 and let (s;),.4 and (s}),. denote the resulting A-shares
of s and s'. For every i € A, let

I; .= {.’L‘l S Z:iEH(l‘l)}

denote the set of inputs for which the first server “speaks” in the i-th session. By assumption, |/;| < 1 and
therefore the underlying CDS is robust over the zero-set I; x Y. It follows that the i-th components of D(s)
and D(s') are identically distributed when 7; is uniformly chosen. Since the r;’s are chosen independently,
we conclude that D(s) is distributed identically to D(s'). O

6.2 Instantiating the Template

The above template can be instantiated based on perfect hash functions as shown in Section 4.2. We provide
here an alternative instantiation based on sparse hash functions.

Recall that Construction 6.1 makes use of a secret-sharing scheme over a set of N parties. In the
following we let N = NNy, and view the set [N] as [IN1] x [IV2]. Correspondingly a subset M of [IV] can be
represented as N1 X No binary matrix. We will need a (partial) access structure for which M is an authorized
set if at least S-fraction of the rows have at least y/N> ones, and M is unauthorized if there are at most 0.5
fraction of the rows with more than 0.6y/N5 ones. (The parameters Ny, No, 5, will be defined below.) We
refer to this access structure as a (3, , N1, Na)-access structure. Such an access structure can be easily
realized by applying a two-levels threshold secret sharing (or ramp-secret sharing). For example, distribute
the secret to N; shares sy, . .., sy, , say via Shamir’s secret-sharing scheme with threshold 0.8 3N, and then
distribute each s; to Na shares s; 1, ..., s; N, via Shamir’s secret-sharing scheme with threshold of 0.8v.NVs.
The share s; ; is held by the (4, j)-th party.

Fact 6.3. For every positive integers N1, No and reals 3,y € (0,1) and every field F of size at least
max (N1, No) + 1, there exists a secret-sharing scheme that realizes the (3,7, N1, Na)-access structure and
maps a secret s € F to the shares (si j)ic[n,],je[N2] € FN1x N2,

Next, we need a hash function H that maps € X to subsets of [IN;] x [Na] (or to N3 x N binary
matrices). It will be convenient to view H as a sequence of Nj hash functions hy,...,hn, : X — 2[Ne]
one for each row. That is, (i,j) € H(z) if 7 € hi(z). The collection should be compatible with the
(8,7, N1, Na)-access structure and with the collection of input tuples against which we should immunize.

Definition 6.4. Let X be a set and let Z+, . .., Z,, be a sequence of t-subsets of X, i.e., Z; € ()t() for every
i. A (8,7, N1, No) hash function family H = {h1,...,hy,}, hi - X — 2IN2] for Z satisfies the following
properties:

1. Forevery x € X exactly BN functions in H, map x to a subset of [Na) of size at least yN».

2. For every set of inputs Z;, i € [ul, for all but 3 /2-fraction of the hash functions h;j, j € [N1] it holds
that the family of sets {h;(x)}ycz, has at most 0.6y Ny collisions.

In Section 6.3 we will prove the following lemma.
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Lemma 6.5. For every X and Z1,...,7, € ()t{), there exists (3,7, N1, Na)-hash function H with N1 =
O(tlogu) and Ny = logt - polylog(t,logu) where for every x the set H(x) = \J; hi(x) is of size exactly
BN Ny, and behaves asymptotically as log® u - polylog(t,logu).

We can now immunize a single server (the (¥’ + 1)-th server) against u different ¢-subsets 71, ..., Z,
of the server’s input domain (and any subset of these sets). The communication overhead will be log? u -
polylog(t, log u) for the immunized server, and O(t log® u) for the others. Formally, we prove the following
theorem.

Theorem 6.6. Let f : X1 x --- x X — {0, 1} be a predicate. Suppose that P is a CDS for f that achieves
robustness over some k'-product collection Y = (Q1, ..., Vi) for some 0 < k' < k. Let Z € 2%k 41 pe
a downward-closed collection of subsets of X1 that contains at most u maximal sets Z1, . .., Z,, each of
cardinally of at most t. Then the protocol P can be converted into a CDS P’ for f which is robust over the
(k' + 1)-product collection (Y, Z) in which the communication complexity of the k' + 1 server grows by a
factor of log? u - polylog(t, log w), and for all the servers grows by a factor of O(tlog? ).

Proof. We immunize the (K’ + 1)-th server against the sets Z € Z by applying Construction 6.1 to the
original CDS (while treating the &’ 4 1 party as the first party).

Let H be (5,7, N1, N2)-hash family for (Z,...,Z,) as promised by Lemma 6.5 where N; =
O(tlogu) , No = logu - polylog(t,logu) and (3, are as promised by the lemma. Take N = N; x Ny =
O(tlog? u). Let IF be a finite field of size at least max(Ny, No) + 1 < O(tlogu) and let D denote a secret
sharing that realizes the (3,7, N1, N2)-access structure (as promised in Fact 6.3) that maps a secret s € T to
FN1xNz Fyrthermore, let us slightly modify the underlying CDS into a CDS P that supports secrets from
[F. If the original domain S is larger than F we can simply take P as P;. Otherwise, this can be achieved
by concatenating several elements from S. This modification increases the communication complexity by a
factor of at most log |F| = O(logt 4 loglog u).

Instantiate Construction 6.1 with the underlying CDS, with the mapping H, and with the secret-sharing
D. (Recall that we view subsets of [N] as N7 x Ny binary matrices and we abuse notation and let H ()
denote the matrix whose (i, 7)-th cell is 1 iff j € h;(z).) Fix some zero-set Z x Y where Z € Z, and
Y C X Vi X X (*}’). Recall that Z is a subset of Z; for some i € [u]. Lemma 6.2 shows that the
protocol is robust over (Z x Y), since the following three conditions hold:

1. By assumption, the underlying CDS protocol is robust for every set of the form I x Y for every
singleton I C Z.

2. Since H is (3,7, N1, N2)-hash function for the maximal sets (71, ..., Z,) and since Z C Z; for
some i € [u], it follows that the set of collisions of { H(x)},cz is a non-authorized set of the scheme
D. (Written as a matrix, this set has at most 0.55/N; rows that have at least 0.6y /N2 ones.)

3. Forevery z € X}/, the set H(x) is an authorized set of the secret-sharing scheme D.

A promised by Lemma 6.5, the immunized server sends 5N messages of the protocol P; and each other
server sends N CDS messages. Compared to the original CDS P, the communication complexity of the
immunized server grows by a multiplicative factor of O(SyN log |F|) = log? u - polylog(t,log ), and for
all other servers by a factor of O(N log |F|) = O(tlog? u). O

By iterating over all parties, we derive the following corollary.

Corollary 6.7. Let P be a k-server CDS protocol for a predicate f : X1 x -+ x Xy, — {0, 1} in which each
server has a communication complexity 0. Let Z = (Z1,--- , Zy) be a (t, q)-product collection. Then, the
CDS P can be transformed into a robust CDS P’ which is robust over the collection Z with multiplicative
communication overhead of O(qk*1 log2k t). Furthermore, if the original P is linear then so is P'.
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Proof. We use Theorem 6.6 k times iteratively starting with the original CDS. At the i-th iteration, we
transform a CDS which is robust over the (i — 1, u, t)-product collection (21, - - - , Z;_1) into a CDS which
is robust over the (i, u, t)-product collection (Z1,--- , Z;). The communication overhead in each step is
log? u - polylog(t,logu) for the immunized server, and O(t log? u) for all others. Since every server is
immunized once, the overall communication grows by a factor of O(t*~!log?* u).

Finally, assume that the original protocol P is linear over a field F. In order to preserve F-linearity,
it suffices to employ an F-linear secret sharing in Fact 6.3. This is immediate when F is larger than
max(N1, N2) + 1; When F is smaller this can be achieved by combining a pair of ramp-secret sharing
(e.g., by using random linear codes) over [ or by using an implementation over a larger extension field. [

6.3 Proof of Lemma 6.5

The proof is via the probabilistic method. We define the family H in two steps. We start by selecting for
each x a random N;-subset I, C [N1]. In addition, we select N; random functions h;, Vi € [Nq] from X
to v Na-subsets of [Na]. The final mapping is defined as follows: For every i € [IN7] let h;(x) be the empty
set if ¢ ¢ I, and otherwise let h;(z) = h/(z). In matrix terminology, the 1-cells of the matrix H (X) that
corresponds to x are selected by first choosing a random SN rows and then choosing random /N> cells in
each of these rows. Clearly, the mapping satisfies the first property of Definition 6.4 and the “Moreover”
part. Let

log N-
Ny =2tlogu, f= 00571’ Ny = /(28t)*log(3tN1) = O(log?® Ny log(Nyu)),
and v = 1/(4c? log? N1) where ¢ and ¢ are some positive constants. Fix some tuple of inputs Z =

(z1,...,x). We show that, except with probability 1/(3u), the collection H satisfies the second property
of Definition 6.4 for the input tuple Z, and so the lemma follows by a union bound over all input tuples.

Analyzing /. We say that a “row” j € [N] gets a copy of x if j € I,. Since each x € Z is placed in a
random [SN; subset, each row j gets a copy of every x € Z independently with probability /5. Call a row
J bad if it holds more than 23t of the elements of Z, and let x; be an indicator random variable that takes
the value 1 if the j-th row is bad. By a Chernoff bound, x; gets the value 1 with probability p < e B3,
Say that I = {I,} is good for Z if there are less than log ¢ < 0.55N; bad rows. Since the random variables
X1,-- -, XN, are negatively associated (see proof in Claim C.5), the probability of having at least log u bad
cells can be upper-bounded by

M log u lo
< (Ny - g < —
<logu>p < (Ni-p)™ < o,

where the last inequality holds as long as p < 1/10/N; which holds for § = c¢log N /q for sufficiently large
constant c.

Analyzing h}. Fix some I and consider a good row i € [N1] (i.e., has at most £ = 2/t inputs). We say
that h is good for Z, if h! induces at most 0.6y Ny colliding cells. Here an index j € [N2] is counted as a
collision if at least two distinct inputs z # 2’ € Z have i € h(xz) Nh(z') and j € h}(z) N A}(z’). (In matrix
notation, both z and 2’ put 1 in their (i, j)-th cell.) In the above we restrict the attention to good rows; If the
i-th row is bad then we treat h as being vacuously good.

Claim 6.8. Let ¢ = 1/(3ulN), and recall that -y = 1/¢? and that Ny = c'(?1og(1/¢). Then, for sufficiently
large constant c, the following holds. For every i € [Ny], with probability 1 — € over the choice of h}, the
function hl is good (i.e., it yields at most 0.6yN3 collisions).
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Proof of claim. Fix some good ¢ € [Ni]. The function h}(x) maps every input = independently to a random
v Na-subsets of [N]. Therefore every index j € [Na] gets z (i.e., j € h/(x)) independently with probability
~v. We define an indicator random variable ¢; that takes the value 1 if the j’th index in the 7’th row gets more
than one input mapped into it. By a union bound,

PriG=1< ) Pr[jehi)]- Pr[j € ni)]

xFx el N
Since 7 is a good row, there are at most (g) < £?/2 pairs & # z’ for which i is in both I, and I,,. Hence,
Pr[¢; = 1] < 0.5¢*4%

Next we define the random variable { = ) ; Gj representing the number of collisions in the ¢’th row. By the
linearity of expectation and since y¢? = 1 it holds that

E[¢] < 0.5024%Ny = 0.5y Ns.

Finally, since the variables (; are negatively associated (from the same reasons as the variables in Claim C.5),
we can apply the Chernoff bound and conclude that

Pr[¢ > 0.6yN2] < exp(—Q(yN2)) <€
where the inequality holds for sufficiently large constant ¢’. O

Since ¢ = 1/(3tN7), we can apply union bound over all ¢ € [N;] we conclude that all ;s are good
except with probability 1/3u. Overall, the event that I and h], ..., h'N1 are all good for all the u predefined
input vectors Z1, . .., Z, happens with probability 1 — u(1/3u + 1/3u) > 1/3, and the proof follows.
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A A Simple General Schemes with Exponent Less Than One

In this section we present a relatively simple construction of a secret-sharing scheme for an arbitrary n-
party access structure with share size 2" for a constant ¢ < 1. To achieve this goal, we present a simple
2-server RCDS protocol in Appendix A.1 and a reduction from secret-sharing to 2-server RCDS protocols
in Appendix A.2. The purpose of this section is pedagogical and its aim is to give a full description of this
scheme without relying on undescribed schemes, e.g., on the CDS scheme of [42] (which uses a construction
of matching vectors of [34]). To understand this section, the reader needs the definitions given in Sections 3
and 4.1; no material from other sections is needed.
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A.1 A 2-Server Robust CDS Protocols

We say that an RCDS protocol is a (1, t2)-RCDS if it is robust for every zero-set Z = Z; x Z such that
|Z1] < t; and |Z2| < to. In this section, we present a 2-server (|X|,¢)-RCDS protocol for a function
f: X xY — {0,1} (that is, the robustness is guaranteed when server ()7 can send unbounded number of
messages and server ()2 can send at most ¢ messages). We start by showing that a CDS protocol described
in [12] (inspired by the protocol of [29]) is robust when server ()1 can send unbounded number of messages
and server (o can send only one message.

Protocol P,

The secret: A bit s € {0,1}.

Inputs: @; and ()2 hold the inputs € X and y € Y, respectively.

Common randomness: The two servers hold |Y| 4+ 1 uniformly distributed and independent random bits
70,71, -, T)y| € {0, 1}

The protocol:

1. Q1 sends to the referee the bit m, = s © 10 © P,y F(w,i)=0 i
2. @2 sends to the referee the bits m, = (ro,71,...,Ty—1,Ty+1,-- -, r|y|).

3. If f(z,y) = 1, the referee computes m, & ro ® D, cy. ()0 Ti-

Figure 1: A 2-server CDS protocol P for a function f : X x Y — {0, 1}.

Lemma A.l. Let f : X XY — {0, 1} be a function. Then, protocol P, described in Figure 1, is a 2-server
(|X|, 1)-RCDS protocol for f in which the message size of Q1 is 1 and the message size of Q2 is |Y|.

Proof. For the correctness of the protocol P, consider inputs x, y such that f(x,y) = 1. In this case ry is
not part of the exclusive-or in the message m, sent by ()1 and server ()2 sends all r;’s except for r,. Thus,
the referee can recover s from m, and m,, as described in Ps.

For the robustness of the protocol, assume that ()2 sends the message of input ¥y € Y and (); sends
multiple messages for a subset of inputs Z C X, such that f(z,y) = 0 for every x € Z. We prove below
that the probability of these messages is the same for s = 0 and s = 1. Recall that the referee gets the bits
To, ..., ry| except for r, from (2 and the bit

My =s®rod @ ri=(s®ry) ®rod® @ T
€Y, f(2,i)=0 i€Y\{y},f(z,i)=0

forevery x € Z from (). For every x € Z, the element r,, acts as a one-time-pad protecting s in my, that is,
if the messages (1 )zcz, My are generated with common randomness 7, 71, . . ., 7)y| and the secret s = 0,
then the same messages are generated from the common randomness 7o, 71, . . ., T'y—1, Ty, Ty+1, - - - , |y | @nd
the secret s = 1.

Next, we show how to transform the above CDS protocol to a (|X|,%)-RCDS protocol for |Y'[V/* <
t < |Y|'/2. This is done by immunizing Q5 using a family of perfect hash functions H vtz (introduced

in [28]), that is, a family of functions h : ¥ — [tz] such that for every set T' € (}t/) there exists at least one
h € Hjy| s such that h restricted to T is one-to-one, i.e., h(y1) # h(yz) for every distinct y1,y2 € T.
The following lemma is proved by a simple probabilistic argument (i.e., choosing the hash functions with
uniform distribution from the functions satisfying (4)); we omit its proof.
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Lemma A.2. Let n be an integer and t € [\/n]. Then, there exists a family of perfect hash functions
H, ;2 = {hi : [n] = [t?] : i € [(]}, where { = 16tInn, such that for every i € [(] and every b € [t?] it
holds that

{a € [n] : hi(a) = b}| < [n/t*]. )

Lemma A3. Let f : X x Y — {0,1} be a function and |Y |'/* < t < |Y|'/? be an integer. Then, there is
a 2-server (| X|,t)-RCDS protocol for f with one-bit secrets in which the message size is O(t3log |Y|).

Proof. The desired protocol P} is described in Figure 2. Let Hyy |2 = {h; : Y — [t?] : i € [(]}, where
¢ = O(tlog|Y]), be the family of perfect hash functions promised by Lemma A.2.

Protocol P

The secret: A bit s € {0,1}.

Inputs: @; and ()2 hold the inputs € X and y € Y, respectively.

Common randomness: The two servers hold ¢ — 1 uniformly distributed and independent random bits
s1,...,5¢—1 and £t common random strings for the CDS protocol Ps.

The protocol:

1. Compute sy = 5B s1 DB ---PB Sp_1.
2. For every ¢ € [{] do:
o LetY; ={y €Y :hi(y) =j}, forevery j € [t?].

e For every j € [t?], independently execute the CDS protocol Py of Lemma A.1 for the re-
striction of f to X x Yj with the secret s;. That is, )1 with input x sends a message for the
restriction of f to X x Yj, for every j € [t?], and Q2 with input y sends a message only for
the restriction of f to X X Y}, ).

Figure 2: A 2-server (] X|, ¢)-RCDS protocol P for a function f : X x Y — {0,1}.

For the correctness of the protocol, let z € X and y € Y for which f(z,y) = 1. Then, for every i € [¢],
the input y is in Y}, (,), so the referee can reconstruct s; using the messages on the inputs z, y in the CDS
protocol Py for the restriction of f to the inputs of X X Y}, (,y with the secret s;. Overall, the referee can
learn all the bits s, ..., Sy, so it can reconstruct the secret s by xoring these bits.

For the robustness of the protocol, let (Z71, Z3) be a zero set of f such that |Z5| < ¢. By Lemma A.2,
there is at least one ¢ € [¢] for which |h;(Z2)| = | Z2|. We prove that the referee cannot learn any information
on s;, and, thus, cannot learn the secret s.

Since h; is one-to-one on Z3, each input of Z5 is in a different subset Y} in the partition induced by h;,
and the referee gets at most one message of () in each execution of the CDS protocol P, for the restriction
of fto X x Y with the secret s;. Since the CDS protocol P; is a (| X, 1)-RCDS protocol and f(x,y) = 0
forevery (x,y) € Z1 X Zs, the referee cannot learn any information about s; from any execution of the CDS
protocol P for the restriction of f to the inputs of X x Y with the secret s;, for every j € [t?]. Since each
execution of P, for each function h; is done with independent common random strings, the referee cannot
learn any information on s;, and, hence, it cannot learn any information on the secret s.

We next provide an analyzing of the message size. Consider the execution of step 2 of P%.
By Lemma A.2, |Y;| = O(|Y|/t?) for every j € [t)]. The message size of Q; is ¢? times the mes-
sage size of ()1 in Po, i.e., it is t2. The message size of ()2 is the message size of Qo in Po, i.e., it is
O(|Y'|/t?). Since there are ¢ = O(tlog |Y|) hash functions and ¢ > |Y'|'/4, the message size of both servers
is Ot log |Y]). O

28



A.2 A Secret-Sharing Scheme from a 2-Server RCDS
A.2.1 Liu and Vaikuntanathan Decomposition of Access Structures

As in [40], we decompose an access structure F' to three parts, depending on a parameter 6 € (0, %) A
bottom part F,o¢ s, which handles small sets, a middle part F},;q 5, which handles medium-size sets, and a
top part i, 5, which handles large sets. This decomposition presented in the following proposition.

Proposition A.4 (Liu and Vaikuntanathan [40]). Let F' be an access structure over a set of n parties and
5 € (0, %) Define the following access structures Fiop 5, Fyot,5, and Fiyid 5.

1
A¢Ft0p76 — 3A/¢F7A§A/and‘A/’>(2_'_5)7%
1
A€ Foorg < A € FA'C Aand |A'| < <2 - 5) n,
AGFmid’d — Ac Fand (2—5>n§|14\§<2+5>n, 07’|A|><2+5>n.

Then, F' = Fiops N (Fimid,s U Fhot,s5). Therefore, if Fiop 5, Fhot s, and Fiqs can be realized by secret-
sharing schemes with share size O(2°") then also F' can be realized by a secret-sharing scheme with share
size O(2°").

As mentioned in Proposition A.4, F' = Fiop 50 (Fmid,s UFbot,s ). Thus, by standard closure properties of
secret-sharing schemes, realizing F' can be reduced to realizing Fiop 5, Fhot,6, and Fryiq s (that is, choose a
random bit sy, share s1 @ s with a scheme realizing Fi,, 5 and independently share sy with schemes realizing
Finia,s and Fy,o¢ 5). In [40], the access structures F,o¢ 5 Was realized by sharing the secret independently for

. . . .. . . 1
each minimal authorized set, resulting in a scheme realizing F},¢ s with share size ( (L f&)n) < O(2H2(2 5)”)
2

(where Hp(+) is the binary entropy function). A similar construction was used for Fi, 5. The properties of
the resulting scheme for F’ are stated in the following lemma.

Lemma A.5 ([40]). Let F be an access structure and § € (0, %) and assume that Fliq s can be realized

by secret-sharing schemes with share size 2™ @) Then, F can be realized by a secret-sharing scheme with

share size o(max{Hz(5-6),M(8)})n_

A.2.2 Secret-Sharing Schemes Realizing the Access Structure ;4 s

Our main construction in this section is a secret-sharing scheme realizing the middle access structure Fiyiq 6
whose exponent is smaller than 1. Towards this construction, we defined balanced access structures in Def-
inition A.6, represent F},,;q s as a union of a polynomial number of balanced access structures, and show
how to realize each such access structure using an RCDS protocol. By closure properties of secret-sharing
schemes, we can realize Fy,iq 5 using the schemes for the balanced access structures, and, hence, we can
realize F' with a smaller share size.

Definition A.6 (The access structure F'g miq,5). Let F' be an access structure with n parties, 6 € (0, %), and
B be a subset of parties. The access structure F'g iq 5 is the access structure that contains all subsets of
parties of size greater than (% + 0)n, and all subsets of parties that contain authorized subsets A’ € F of
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size between (§ — §)n and (3 + 8)n that contain exactly || A'|/2| of their parties from B. That is,

1 1
Fpmias = {A:3A e F A C A, <2 — 6> n <A < <2 +5> n, and |[A' N B| = ||4|/2]}

U {A:]4] > <;+5>n}.

Following the above definition, we present our main secret-sharing scheme, which realizes the access
structure F'g mid,s-

Lemma A.7. Let F be a an access structure over a set of n parties, § € (0.027, %), and B be a subset of
parties such that | B| = n/2. Then, there is a secret-sharing scheme realizing Fp wid s with a one-bit secret
(3+H2(5533) B+ 5 )+o(1)n

in which the share size is 2

Proof. Assume without loss of generality that n is even (this can be done by adding dummy parties). Define

1 9 1 6

— (1 4 1 6
= - I < <[ =4+ = .
BQ {SQ_B <4 2)”_‘52_ <4—|—2)n}

Note that |[B1| = |Bs| < 2/2 Moreover, define the function f : By x By — {0,1}, where f(S1,52) =1
if and only if S; U Sy € F, (3 — §)n < [S1 U So| < (5 + 0)n, and [Sy| = [ S| or |[S1] = [So| — 1. The
scheme Dp 1iq realizing F'g miq is described in Figure 3.

and

Scheme DB,mid,(S

The secret: A bits € {0,1}.
The scheme:

1. Share the secret s among the n parties using a ((3 + 6)n + 1)-out-of-n secret-sharing scheme.

2. Choose a random bit s; € {0, 1} and define sy = s ® s1.
3. Lett =0 (n2H2(ﬁ7§§)(%+%)") (this choice of ¢ will be explained later).

4. Execute the 2-server (2811, #)-RCDS protocol of Lemma A.3 for the function f with the secret s;;
for every Sy € By (respectively, So € Bs) share the message of (1 (respectively, (J2) when holding
the input Sy (respectively, Ss) among the parties of S; (respectively, S2) using an | .Sy |-out-of-| .S |
(respectively, |Sa|-out-of-|Ss|) secret-sharing scheme.

5. Execute the 2-server (¢, 2/52|)-RCDS protocol of Lemma A.3 for the function f with the secret sy;
for every Sy € By (respectively, Sy € Bs) share the message of (), (respectively, Q) when holding
the input S; (respectively, S2) among the parties of Sy (respectively, S3) using an |S; |-out-of-| S |
(respectively, |Sa|-out-of-|S3|) secret-sharing scheme.

Figure 3: A secret-sharing scheme Dp p,iq,s realizing the access structure F'g mid,s-

For the correctness of the scheme, take a minimal authorized set A € Fg niq,, thatis, A = S1 U S
for some Sy C B, S> C Bsuchthat S; U S € F, (3 —6)n < |S1 U Ss| < (5 +6)n, and [S1] = |Sa] or
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|S1] = |S2| — 1. The parties in A = S7 U Sy can reconstruct the messages of ()1 and Q)2 when holding the
inputs S7 and Sy, respectively, in the first RCDS protocol (i.e., the protocol of step 4), and can reconstruct sy
from these messages using the reconstruction function of this protocol (since f (.51, S2) = 1). By symmetric
arguments, the parties in A can reconstruct so (using the protocol of step 5), and, thus, the parties in A can
reconstruct the secret s by xoring s; and sy. Authorized sets of size greater than (% + 0)n can reconstruct
the secret s using the ((% + d)n + 1)-out-of-n secret-sharing scheme (i.e., the scheme of step 1).

For the privacy of the scheme, take an unauthorized set A ¢ T’ B,mid,s> that is, A = Sy U Sa such that
S1C B,Sy C Band|S;USs| < (% +0)n (subsets of size greater than (% +0)n are authorized), and assume
without loss of generality that [S1| < (3 + g)n (otherwise, [So| < (§ + %)n and we consider the second
RCDS protocol, i.e, the protocol of step 5). In the first RCDS protocol (i.e, the protocol of step 4), the parties
in S1 know a message of ()1 on an input S| € B if and only if S1 C Sp. That is, they can reconstruct the

messages of the inputs (which are sets) in B; for the set T, = {S’ € Bi:5, C 51,8 > (L—3)n}. The
number of subsets in Tg, is at most

i=(;3-%)n

Since 6 < %, we have that (§ — %)n > 1/2 %4'% )n and

t=0 (n ) n2H2 1+25)(i+g)”> .

For every S7 C 51 and S} C S, we have that (S7, S%) is a zero set of f, and the parties in A = S7 U Sy
(which learn the messages on the inputs of T, of ()1 and possibly many messages of (J2) learn only
messages of the zero set T's, x {5} € By : Sé C Sy} in the first RCDS protocol. Thus, by the robustness of
the RCDS protocol, the parties in A cannot learn any information on si, and, hence, they cannot learn any
information on the secret s.

Overall, in the resulting scheme each party P; gets a share of size logn from the threshold scheme
of step 1 and less than |B;| = |Bz| < 2"/2 shares from the threshold schemes of step 4 (respectively,

step 5), one for each message of the RCDS protocol for f on an input .S such that P; € S. Thus, since
1-26\¢1, 94
§ > 0.027 implies that t = oHa(1335) (1T to(In  on/8 |By|1/#, the message size of the RCDS protocols

osstep 4 and step 5 is O(t3n), and the share size of each party in the scheme Dp a5 is O(2"/2 - t3n) =
9 +H2(3EH(F+5)+o(W)n -

We use the following family of subsets, in which every set of medium size is equally partitioned by one
of the subsets in the family (a similar family appears in [3]). The proof of the claim is by a simple use of the
probabilistic method.

Claim A.8. Let P be a set of n parties for some evenn and § € (0, %). Then, there are { = O(n3/?) subsets
Bi,...,By C P, each of them of size n/2, such that for every subset A C P for which (3 — 6)n < |A] <
(3 + 0)n it holds that | AN B;| = ||A|/2] for at least one i € [(].

We use the above scheme and the family of “balancing” subsets of Claim A.8 to construct a scheme that
realizes the access structure Fiyiq 5.

Theorem A.9. Let F' be an access structure over a set of n parties and 6 € (0.027, %) Then,
there is a secret-sharing scheme realizing Fl,iqs with a one-bit secret in which the share size is
o(3 +Ha (1732) (3+ %) +0(1 n

31



Proof. As in Lemma A.7, assume without loss of generality that n is even. By Claim A.8, there exist
¢ = ©(n3/?) subsets By, ..., By C P, where |B;| = n/2 forevery i € [¢], such that for every subset A such
that (3 — 6)n < |A| < (3 + 6)n, it holds that |A N B;| = ||A|/2] for at least one i € [¢]. Thus, we get that
Fid,s = UleFB“mid,g. By Lemma A.7, for every i € [¢] there is a secret-sharing scheme Dp, iq ¢ realiz-
3HH(E55) G+ 5)+o(D)n.

ing the access structure F'g, miq,s With a one bit secret in which the share size is 2l
For every i € [¢], we independently share the secret s using the secret-sharing scheme Dp; 1iq 5 realizing the
access structure F'g, miq,5. The combined scheme is a secret-sharing scheme realizing the access structure

Fluias in which the share size is O(n®/?) - 2z HH2(555) (G4 P)to)n — oG HH(555) G+ ) +on

A.2.3 Secret-sharing Schemes Realizing any Access Structure

Theorem A.10. There exists a constant ¢ < 1 such that for every n and every n-party access structure F
there is a secret-sharing scheme realizing ' with a one-bit secret in which the share size is leto(1))n,

Proof. By Lemma A.5 and Theorem A.9, for every 6 € (0.027, %) the access structure F' can be realized by
a secret-sharing scheme with share size

2(max{H2(%—5),%+H2(%)(%-ﬁ-%))}—&-o(l))n. (5)

By taking 0 ~ 0.04063789 (i.e., t ~ O(20:165076564n)) the above two expressions in the exponent are
equal, and we achieve share size of 2(cto()n for ¢ = (0.99523. O

B Known Secret-Sharing Schemes

In this section we present known results on threshold and ramp secret-sharing schemes and closure properties
of secret-sharing schemes. First, we define threshold secret-sharing schemes, and provide some known result
for such schemes.

Definition B.1 (Threshold secret-sharing schemes). We say that an n-party secret-sharing scheme is a k-
out-of-n secret-sharing scheme if it realizes the access structure I'y, ,, = {A C P : |A| > k}.

Claim B.2 ([49]). For every k € [n] there is a linear k-out-of-n secret-sharing scheme realizing I', ,, for
secrets of size m in which the share size is max{m, O(logn)}.

Now, we define ramp secret-sharing schemes as in [18] and present results about an efficient ramp
secret-sharing scheme implicit in [20].

Definition B.3 (Ramp secret-sharing schemes). Let D be a secret-sharing scheme on a set of n parties and
let 0 < ki < ko < n. The scheme D is a (k1, ka2, n)-ramp secret-sharing scheme if each subset of parties
of size at least ko can reconstruct the secret and each subset of parties of size at most k1 cannot learn any
information about the secret. There are no restrictions on other subsets of parties.

Claim B.4. For every constants 0 < b < a < 1 there is py such that for every prime-power q > py, there
is a linear (bn, an,n)-ramp secret-sharing scheme over the field F in which each share is a field element
(where pg is independent of n).

Finally, we present the following claim, dealing with decomposition of secret-sharing schemes.

Claim B.5 ([15]). LetI'1,...,I'; be access structures over the same set of n parties, and letI' = I'1U- - -UI'y
and I =Ty N --- N Ty. If there exist secret-sharing schemes realizing I'1, . .., Ty with share size at most c,
then there exist secret-sharing schemes realizing I' and T with share size at most ct. Moreover, if the former
schemes are linear over a finite field IF, then there exist linear secret-sharing schemes over I realizing I" and
I with share size at most ct.
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C Some Probabilistic Facts

C.1 Negative Association

Definition C.1 (Negative association [37]). Let X := (X1,...,X/) be a vector of random variables. The
random variables X are negatively associated if for every two disjoint index sets, I, J € [{],

E[f(Xi,i € 1) -g(X;,j € J)] <E[f(X;,i € 1) Elg(X;,j € J)]
for all functions f : R — R and ¢ : RYI — R that are both non-decreasing or both non-increasing.

We are interested in this definition since the Chernoff-Hoeffding bounds are applicable to sums of vari-
ables that satisfy the negative association condition [43] (see also [26, Proposition 5]). We will also use the
following facts. The first one is presented in [25] in the context of applications of negative associativity in
statistical physics, and the description of the Fermi-Dirac occupancy numbers for particle ensembles. Con-
sider the so-called Fermi-Dirac model, in which m balls are thrown into ¢ bins with the restriction that each
bin contains at most one ball. Let X; denote the random variable that counts the number of balls in the i-th
bin. The following fact asserts that the X; are negatively associated.

Fact C.2 ([25, Theorem 10]). Let X := (X1,...,Xy) be random variables that take values in {0,1} and
are distributed uniformly over m-weight vectors where m < (. That is, for every x = (z1,...,x4) € {0, 1}(

of Hamming weight m it holds that
N\ !
PriX =z = ( ) ,
m

and Pr[X = x| = 0 for every x of Hamming weight wt(x) # m. Then, the random variables (X1, ..., Xy)
are negatively associated.

Fact C.3 ([37, Property 7]). If two vectors of negatively associated random variables X and'Y are mutually
independent, then the random variables (X,Y") are negatively associated.

Fact C.4 ([37, Property 6]). Let X := (Xy,...,Xy) be negatively associated random variables, and
L,..., Iy C [f] disjoint index sets, for some positive integer k. For j € [k, let hj : R — R be
functions that are all non-decreasing or all non-increasing. Then the random variables Y1, ...Y}, defined as
Y; = h;j(X;,i € I;) are also negatively associated. That is, non-decreasing (or non-increasing) functions
of disjoint subsets of negatively associated variables are also negatively associated.

Now we turn to prove that the random variables 1, ..., %, defined in the proof of Section 6.3 are
negatively associated. Recall that these random variables are defined via the following experiment. Given
N1 rows and a list of ¢ inputs, each input w is placed in a random SN; subset of the rows. We call a row j
bad if it has more than 23¢q inputs mapped into it, and let x; be an indicator random variable that takes the
value 1 if the j-th row is bad. For ease of notation we use N to denote /V;.

Claim C.5. The random variables x1, . . ., XN are negatively associated.

Proof. We call X; , the indicator random variable that takes the value 1 if the input u was mapped to the
i-th row. We notice that when we observe a specific ' that is mapped uniformly to SN out of N rows,
the variables X; ,»s with ¢ € [IN] behave like the random variables described in Fact C.2 with £ = N and
m = BN. Therefore they are negatively associated.

Since every input is mapped independently, the ¢ vectors X ,, ... X, each defined by different inputs
u are mutually independent, and therefore due to Fact C.3, for every input w in the list and i € [N], the
random variables X; ,, are negatively associated.
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For the last step we use Fact C.4. We take the random variables X; ,, and look at disjoint sets I; =
KXiugs-- s Xiw, forall i € N. We define a non-decreasing mapping

ity = {1 S X, 2 260
Y100 otherwise,

and get that the random variables Y; = h;([;) are negatively associated. We finish the proof by noticing that
each Y; is distributed like an indicator random variable that takes the value 1 if the i-th row is bad. L]

Next we prove a probabilistic statement from the proof of Lemma 5.7.

Claim C.6. Given a fixed n-bit string x and a uniformly chosen partitions 11 of [n| to \/n subsets of size
\/n each, denote by Y; . the random variable that takes the value 1 when the j-th bit in the i-th block is 1.
Then for every index i € [\/n], the \/n variables {Y; p, }1< j<./m are negatively associated.

Proof. The \/n - y/n random variables Y; g, for 1 < 4,5 < y/n satisfy the conditions for Fact C.2 for
¢ = n, m = wt(z), and they are therefore negatively associated. It is easy to see that any subset of
negatively associated variables are also negatively associated [37, Property 4], and with that the proof is
completed. O

C.2 Family of log ¢t-Collision Free Hash Functions

We next prove a strong version of Lemma 4.8, i.e., show the existence of a family of log t-collision free hash
functions H,, ¢ 1og¢,2¢ Of size £ = 16t Inu, as in the lemma, with some additional properties (we need this
stronger version for our RCDS protocols in Appendix D.2).

Lemma C.7. Let n be an integer, t € {15,...,n/2}, T C (@), and u be the number of maximal sets in
T. Then, there exists a family of of log t-collision free hash functions Hytiogt2t = {h1,..., he} of size
¢ = 161nw, such that for every i € [{] and every b € [2t] it holds that |{a € [n] : hij(a) = b}| < [n/2t],
and for every subset T' € T there are at least {/4 functions h € Hy, 1 o¢ such that for every b € [2t] it holds
that |{a € T : h(a) = b}| < logt.

Proof. Without loss of generality, we assume that ¢ divides n (this can be achieved by increasing n by at
most ¢ — 1), and let ' = logt. We show that there exists a family of hash function Hy, 11 24 as above with
£ = 16 Inu functions using the probabilistic method. As a first step in the proof, we choose at random a
function h : [n] — [2t] such that for every b € [2¢] it holds that [{a € [n] : h(a) = b}| < [n/2t], and
fix a subset 7' € max(7 ), where max(7) is the set of maximal sets in 7 (recall that | max(7)| = w). The
probability that for some b € [2t] it holds that |[{a € T : h(a) = b}| > logt is

Pr[ﬂbe[gtﬂ{a €T :h(a) =b}| >logt]
= Pr[ﬂjl 7é Tt 7& jlogt eT: h(]l) == h(jlogt)]

S Peh() = = ()] < <10;t) | (;t>1ogt_1

jl#'“#jlogteT

_ et logt 1 B e logt of < 1
=~ \logt (2t)logt=1 — \ 2logt 2

(where the last inequality holds since ¢ > 15).

IN
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Next, we claim that if we choose at random ¢ = 16 In « functions as above, we get the desired family
Hy 19t = {h1,...,he}. We bound the probability that for a given subset 7' € max(7) of size at most ¢,
there exist at most £/4 functions h € H,, ; o that we choose at random, such that for every b € [2¢] it holds
that [{a € T : h(a) = b}| < t'.

For every i € [/], let X; be a Boolean random variable such that X; = 1 if for every b € [2¢] it holds that
{a € T : hi(a) = b}| < logtand X; = 0 otherwise. Additionally, let X = Zle X, i.e., X is the number
of hash functions h;, for i € [¢], such that for every b € [2¢t] it holds that |[{a € T : h;(a) = b}| < logt. As
we have shown above, Pr[X; = 0] = Pr[3b € [2¢] : [{a € T : h(a) = b}| > logt] < 3, so by linearity of

expectation, E(X) = Zle E(X;) = Zle PriX;=1]>¢-1 =1L
Using a Chernoff bound [44] (Pr[ X < (1 —§) - E(X)] < e B(X)%*/2 forall 0 < § < 1) we get that
_EBEX)(1/2)* _t 1 1
Pr[X <//4] <Pr[X <E(X)/2]<e T < = =

By the union bound, the probability that there exists a subset 7' € max(7 ) with at most ¢/4 functions
hi, for i € [¢], such that 3b € [2t] : [{a € T : h(a) = b}| > logt, is less than 1. Thus, there exists a family
Hy, ¢ v.9¢ with £ = 16 In u hash functions as required. ]

Moreover, using similar arguments we can prove the following strong version of Lemmas 4.7 and A.2.

Lemma C.8. Let n be an integer and t € [\/n], and T C (@) Then, there exists a family of hash functions
H, ;.2 ={h;:[n] = [t*] : i € [(]}, where { = 161n T, such that for every i € [{] and every b € [t?] it
holds that |{a € [n] : hi(a) = b}| < [n/t?], and for every subset T € T there are at least {/4 functions
h € H,, ;2 for which |h(T)| = |T.

D Linear Robust CDS Protocols

D.1 A k-Server CDS Protocol

We show that for an odd k£ a (non-optimized) variant of the linear CDS protocol of [12] is robust when half
of the servers can send an unbounded number of messages (a variant of this protocol has similar properties
when k is even). We assume without loss of generality that for the k-input function f, for every j €
{(k+3)/2,...,k} there exists an input a; € X such that f(i1,...%j-1,a;,%j41,...,4) = 0 for every
11 € Xq,...,%05-1 € Xj_1,%541 € Xj41,...,19 € X} (this can be done by adding a dummy element to the
input domain of server Q).

LemmaD.1. Let f : X1 x --- x Xp — {0, 1} be a function, where | X;| < 2%, for some odd integer k > 2.
Then, for every finite field F, protocol Py, described in Figure 4, is a linear k-server (2X1, e 2X(k+1>/2)-

RCDS protocol for f with domain of secrets F, in which the message size is ot(k—1)/2 log |IF|.

Proof. For proving the correctness of the protocol Py, let z1, . . ., xj be inputs such that f(z1,...,z;) = 1.
In this case, server ()1 sends s, .. ;, to the referee (in addition to other elements), server @, for2 < j < K,
sends q%l,,,,,xk, to the referee, and for every (ix/41,...,0;) # (Tg/+1, . .., ) at least one server ); (Where
k' +1 < j < k)sends T i 1reemsie Sincef(x1,...,xx) = 1, the random element (I does not appear
in sz, .. z,. Thus, the referee can compute the expression in step 5 of Py, which equals s.

For the robustness of the protocol, recall that £ = (k + 1)/2. Assume that servers Qp/41,. .., Qk
send messages of inputs zp41 € Xpi1,...,28 € Xg, respectively,13 and servers Q1,...,Qu

If such server does not send any message, we will assume that it sends the message of the dummy input a;.
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Protocol Py,

The secret: An element s € F.

Inputs: Servers 1, . .., Qf hold the inputs 1 € X1,...,x, € X, respectively.

Common randomness: Let k' = (k + 1)/2. The k servers hold the following uniformly distributed and
independent random elements.

o qul,...,z‘k/ € Fforevery j € {2,..., k' }andeveryi; € Xy,..., i € Xp.

O Ty sein € FF for every igr+1 € Xk:’+1; cey i € X
The protocol:
K ) .
1. Define g;,,..i,, =2 ; 54}, ., foreveryir € Xi,... ip € Xy

2. Server (1 sends to the referee the elements

Sz in,.iy = S T Quyin,... i T E

. . . . i ik
lk/+1€Xk/+1,...,ZkGXk,f(:l)l,Zg...,zk)zo k1o

for every is € Xo, ..., 15 € X
. / ]
3. For every j € {2,. % k'}, server Qj sends to the ref'eree the elements q;, ;. ;. oo, for
every 11 € Xq,... y5—-1 € Xj,172j+1 € Xj+17 cey g € Xpr.
4. Forevery j € {k' +1,...,k}, server Q; sends to the referee the elements Tt oo for every
tgr41 € Xprg1, .-, 0, € Xi such that 4 #+ Tj.
5. If f(z1,...,x,) = 1, the referee computes

Sz1,x0,. oz G,

Figure 4: A linear k-server CDS protocol Py, for a function f : X7 x -+ x X — {0, 1}.
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send multiple messages for subsets of inputs Z; C Xi,...,Zy C Xy, respectively, such that
flz1, ..., 2k, g1, ..., xx) = 0 for every (x1,...,21) € Z1 X -+ X Z. We prove below that these
messages are statistically independent from the secret.

The referee gets the following messages:

The messages of ();. The elements

Sy i i =5+ Qo i o § r .
15225045031 L1,22,..45011 . . . . . . (3N} eyl
TEk TEk Gt 1 €EXpt 150tk EX b f (B1482,00 g Tt 4 1 5enri)=0 B FL77

for every (ia,...,ix) € Xo X -+- X Xy and every x1 € Z.

The messages of ()5, ..., Q. The elements qu%._"ik/ for every j € {2,...,k'} and every iy €
Xi,...,iy € X} such that i; € Z;. In particular, for every (z1,...,2p) € Z1 X -+ X Zy, the
referee gets the elements qglmxk, , q;j’,,l,m@k,, . q’;;xk, , thus it can compute gz, ., -

The messages of Qi/41, ..., Q. The elements Tips 1y 1OT @VETY Gy i1 € Xprv1,...,0p € Xj except
for Ty g seresl

Intuitively, for every (z1,...,z) € Z1 X -++ X Zys, the element Ty sy ACTS @S @ one-time-pad
protecting s in Sy w9,y > and for every 1 € Zj and every (ig,...,ix) & Zo X -+ X Zjs, the element

a1 is,...,i, CtS as a one-time-pad protecting s in Sz, iy, i, -

Formally, for every two secrets s, s' € IF we show a bijection ¢ from the randomness of P}, to itself such
that the messages in Py with secret s and randomness r are the same as the messages in P, with secret s’
and randomness 7’ = ¢(r). Consider the random elements

—((/ A A . . Y .
r= <(qi17~~~7ik/ )]6{2,...,k}’},’LlEXl,...,Zk/EXk/7 (T’Lk/+1,...,lk)Zk/+1€Xk/+1,...,ZkEXk>

and the messages generated from them for the secret s. The bijection is as follows:

, . . . , B

1. Define Pigs i = Tigs g1 for every (ig/41,...,%k) # (Tiy1,...,x%) and T oty =
T2y sy T8 = s'. Since no server sends Ty i these values and the secret s’ generate the
same messages of Q/11, - .., Qk as the messages in Pj, with the secret s and randomness 7.

2. Forevery x1 € Z; and every is € Xo,...,ip € Xy such that f(z1,49,..., 0, Tpry1,...,2) =0

. . , . . / -
(in particular, for every (71,i2,...,ix) € Z1 X -+ X Zp): Define ¢, ;) ;= Guyiy,...i,, @nd for

k

. / ] _J
every j € {27 M) k } let q;vhig,...,ik/ _ qx1,i2,...,ik/'
Since f(x1,49, ... 0k, Tpr41, ..., 2T) = 0, the element T2y o1 yms APPEALS in the sum in sz, i, i,
and

Sy ig,ipy = 8 F Quyin,.ipy T E

ik/+1€Xk/+1,...,ikEXk,f(xl,ig,...,ik/,ik/+1,...,ik):0

o / E /
=5 + Qxl,iz,...,ik/ + r

’Lk/+1GXk/+1,...,lk€Xk,f(1‘1,’LQ,...,lk/,’Lk/+1,...,lk)=0 K/ 1500k

Thus, the same message s, ;,... 4, is generated for s and s’ with  and r’ = ¢(r), respectively.

gt
3. Forevery x1 € Zj and every is € Xo,...,i) € Xp such that f(x1,42,... 0, Ty, ..., 2k) = 1,
; ini i P . 130 _ Jo /
let let jo be the minimal index such that i;, ¢ Z;, and define Doy sin,iiy = To1singiyy T 578 and

/3 _ ] . .
Darig,onsins = Torin,enniy) for every j # jg, thus,

% K’
/ _ ] _ J o = . . N
U1 jinyeips — E :qccl,ig,...,ik/ = E :qaz1,i2,...,ik/ 18— 8 =dquyig,..ipy TS5 5.
Jj=2 Jj=2

37



Since f(z1,i2,... 1%/, Tpr41,...,2) = 1, the element T2y s 1oeensTh does not appear in the sum in
Sxy ig,....i,y and

Sy sigyiy = S T Quyjig,iy T g

ik/+1EXk/+1,...,ikEX}wf(aJl,i2,...,ik/,ikl+1,...7ik):0
/ /
=8 + 4 .. i, T E T -
T1,0250eslpy ' X ) o N AR
3025050 ’Lk/+1EXk/+17~~~vlk€Xk:f(xl7127~~-77fk/71k/+17~--,lk)—0 K/ 410tk

Thus, the same message sz, i, .. ;,, is generated for s and s" with r and ' = ¢(r), respectively.

Notice that q;jo ., isnotsent by @, these values and the secret s’ generate the same messages of
1522552/
Qo, . ..,Q as the messages in P, with the secret s and randomness 7.

4. Forevery iy ¢ Zy,ip € Xo,...,ip € X and every j € {2,..., K}, let qg iy

! 21502500050t

To conclude, the messages have the same probability for s and s’. which implies the robustness. O

D.2 A Linear 2-Server CDS Protocol

In this section, we present a linear 2-server RCDS protocol that is robust for every zero-set Z; X Zo, where
Zj can be an arbitrary subset of the inputs of (J; and Z, can be an arbitrary subset of size at most ¢ of the
inputs of Qy, in which the message size is O((t + 2¢/?)log |Z5]). This protocol can be used to construct
an alternative linear secret-sharing scheme for arbitrary n-party access structures with the same share size
as the linear secret-sharing scheme of Theorem 2.1. Furthermore, when the secret contains log | 22| field
elements, the share size remains O((t 4 2/2) log | Z»]), i.e, the normalized share size (the share size divided
by the secret size) is only O(t + 2¢/2).

We start with the protocol Pa, as described in Figure 5. Similarly to Lemma D.1, the protocol P is
(2X)-RCDS protocol, that is it robust when @1 sends an unbounded number of messages and Q2 sends one
message. This protocol is a simple generalization of the protocol described in Figure 1 to an arbitrary field;
its properties, as described in Lemma D.2, follow from the same arguments as in the proof of Lemma A.1.

Protocol P,

The secret: An element s € F.

Inputs: @); and ()2 hold the inputs € X and y € Y, respectively.

Common randomness: The two servers hold |Y| uniformly distributed and independent random elements
T0,71,---,T)y| € F.

The protocol:

1. @1 sends to the referee the element my4 = s + rg + Zieyﬂm)zo T
2. Q) sends to the referee the elements mp = (70,71, ..., Ty—1,Ty41,- -, T|y|)-

3. If f(z,y) = 1, the referee computes ma — 1o — >y, f(zi)—0 -

Figure 5: A linear 2-server CDS protocol P for a function f : X x Y — {0,1}.

Lemma D.2. Let f : X x Y — {0, 1} be a function. Then, for every finite field F, protocol P, described
in Figure 5, is a linear 2-server (2X ) -RCDS protocol for f with domain of secrets F secrets, in which the
message size of Q1 is log |F| and the message size of Q2 is |Y |log |F|.
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The next protocol, originally appearing in [10], balances the sizes of messages of ()1 and (5. Its idea is
to partition the set of inputs of ()2 to disjoint sets and execute the protocol P, independently for every set of
inputs.

Claim D.3 ([10]). Let f : X x Y — {0,1} be a function. Then, for every finite field F and every d < |Y|
there is a linear 2-server (2X)-RCDS protocol PY*°d for f with one-element secrets in which the message
size of Q1 is O(dlog |F|) and the message size of Q2 is O((|Y'|/d) log |F|).

Proof. The description of the protocol Pha!anced g ag follows: Let s be the secret, and partition the set Y
to d disjoint sets Y7, ..., Yy of size at most [|Y|/d], that is, every input y € Y is in exactly one set Y;. For
every i € [d], we execute the linear CDS protocol Ps independently for the restriction of f to the inputs of
X xY; with the secret s. Server ()1, when holding the input x € X, sends the messages in all the above
independent protocols. Server ()2, when holding the input y € Y, only sends the message in the protocol
for the restriction of f to the inputs of X x Y; for which y € Y;.

For the correctness of the protocol, if f(z,y) = 1 then the referee can reconstruct the secret from the
messages of the CDS protocol for the restriction of f to the inputs of X x Y; for which y € Y;. For the
robustness of the protocol, let Z; C X and y € Y such that f(z,y) = 0 for every x € Z;. The referee
cannot learn any information on the secret from the messages on y and the inputs of Z; from each of the
above independent protocols, which follows by the robustness of each of these protocols. Thus, the resulting
protocol Phalanced j5 (2X)_RCDS protocol.

The message of ()1 contains d field elements and the message of (Q2 contains at most [|Y'|/d] field
elements (since it sends a message in one execution of Ps in which the input domain size of ()5 is at most

[1Y[/dD. O

Next, we show how to transform the above CDS protocol to a (2% (zt))—RCDS protocol. This is done
by immunizing )2 as in Theorem 4.4, that is, we use two levels of hashing. However, in this case we
optimize the share size by using the fact that each copy of the CDS protocol is applied to a function with a
smaller domain of ().

LemmaDd4. Let f : X XY — {0, 1} be a function, andt < /|Y | be an integer. Then, for every finite field

IF, there is a linear 2-server (2X , (zt))-RCDS protocol for f with one-element secrets in which the message

size of Q1 is O((3 + ]Y|t/\/W)_log |Y'| log |F|) and the message size of Q2 is O(+/| X |tlog |Y|log |F|) .
Furthermore, there is py such that for every prime-power q > po, there is a multi-linear 2-server (2%, (zt) )-
RCDS protocol for f over F, with secrets of size ©(qt log |Y|) in which the normalized message size of Q1

is O(t?> + |Y'|/\/|X|) and the normalized message size of Q2 is O(\/|X]|) .

Proof. The desired protocol P%, described in Figure 6, is a special case of the protocol of Lemma 4.9,
when k = k' = 2,¢ = 1, and P is the protocol of Claim D.3 with d = max{1,|Y|/(\/|X][t?)}. Let
Hy 12 = {hi : Y — [t?] : i € [(]}, where { = ©(tlog|Y]), be the family of perfect hash functions
promised by Lemma C.8.

The correctness and privacy of P4 follow by Lemma 4.9. We next provide a refined analyzing of its mes-
sage size. Consider the execution of step 2 of P§. By Lemma C.8, |Y;| = O(|Y'|/t?) for every j € [t?]. The
message of (1 contains > messages of Q1 in Pbaanced j e it contains t2d = t>-max{1,|Y|/(\/|X[t?)} =
O(t? +1Y|/+/]X|) field elements, The message of Q> contains one message of Q1 in Pya2need je_ it con-

2
tains O(|Yy,,(y)l/d) = O <max{1,g|//(t\/7|t2)}> = O(min{|Y|/?,1/|X[}) < O(y/|X]) field elements.

Since there are ¢ = O(¢log |Y|) hash functions, the sizes of the messages is as in the lemma.
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Protocol P

The secret: An element s € F.
The protocol:

1. Choose ¢ random elements s1,...,Sy € Fsuchthat s = s; 4+ -- - + sp.
2. For every ¢ € [{] do:
o LetY; ={yeY:hi(y) =j}, forevery j € [t?].
e For every j € [t?], independently execute the CDS protocol Phalanced of Claim D.3 for the
restriction of f to X x Y; with the secret s; and d = max{1, |Y|/(\/]X[t?)}. Thatis, Q;

with input z sends a message for the restriction of f to X x Y;, for every j € [t?], and Q>
with input y sends a message only for the restriction of f to X X Y3, ().

Figure 6: A linear 2-server (2%, (zt))—RCDS protocol P4 for a function f : X x Y — {0,1}.

To construct the desired protocol for long secrets, let s = (s7, ..., / 1) € Fg/ % be the secret. We change
step 1 in the protocol P4 (described in Figure 6) such that s1, ..., s, € [, are the shares of a (3(/4, ¢, ()-
ramp secret-sharing scheme of the secret s = (s, ..., s, / 1) € Fg/ *, where po s the constant from Claim B.4
and g > po.

As before, for every inputs z € X,y € Y such that f(x,y) = 1, the referee can learn all the secrets in
those ¢ protocols from the messages on the inputs x, ¥, so it can reconstruct the secret s using the reconstruc-
tion function of the ramp scheme. Moreover, for every (27, Z2) that is a zero set of f such that |Z3| < ¢,
by Lemma 4.7, there are at least /4 values of ¢ € [¢] for which |h;(Z2)| = |Z3|. Thus, the referee cannot

learn any information on at least £/4 of the shares s1, . .., sy in the above ¢ protocols from the messages on
the inputs of 71, Z>. By the security of the ramp scheme, the referee cannot learn any information on the
secret s. O

We improve our linear robust 2-server CDS protocol using the family of hash functions of Lemma 4.8.

Theorem D.5. Let f : X x Y — {0,1} be a function, where |X| = |Y| = 2. Then, for ev-
ery finite field F, every integer t < |X|/(2log?|X|) < 2071/¢% and every Zo C (@), there is
a linear 2-server (2X , Z29)-RCDS protocol for f with one-element secrets in which the l;wssage size
is O((tlog?t + 2Y/2)0logtlog |Zs|log |F|). Furthermore, there is py such that for every prime-power
q > po, there is a multi-linear 2-server ((<§(‘),Zg)-RCDS protocol for f over F, with secrets of size

O(qllogtlog |Zs|) in which the normalized message size is O(t log® t 4 2¢/2).

Proof. As the protocol of Lemma D.4, the desired protocol Prorcps is a special case of the proto-
col of Lemma 4.9, when k£ = k' = 2,¢ = logt, and P is the protocol 775 of Lemma D.4. Let
Hyy|ogte = {hi + Y — [2t] : i € [{]}, where { = O(log|Zs]), be the family of hash functions
promised by Lemma C.7 for Z5 (that is, for every Zs € Z,, at least £/4 hash functions prevent a collision
of log t elements of Z5).

The protocol Prarcps is described explicitly in Figure 7. It contains 2¢¢ = O(tlog|Z2|) executions
of the protocol P} with # = logt and |Y'| = |Y|/(2t) (since t < |X|/(2log?|X]|), we have that logt <
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Protocol ProrcDs

The secret: An element s € F.
The protocol:

1. Choose ¢ random elements s1,...,Sp € Fsuchthat s = s; 4+ --- + sp.
2. For every ¢ € [{] do:
o LetY; ={yeYY :h(y)=j} forevery j € [2t].
e For every j € [2t], independently execute the linear 2-server (2, ( ngg .))-RCDS protocol
P38 of Lemma D.4 for the restriction of f to X x Y; with the secret s;. That is, Q; with

input = sends a message for the restriction of f to X x Y; for every j € [2t], and Q2 with
input y sends a message only for the restriction of f to X X Y}, ().

Figure 7: A linear 2-server (2%, Z5)-RCDS protocol Prorcps for a function f : X x Y — {0,1}.

X|/(2t) as required). Since Q1 sends 2¢ messages of PL for every h; € H, v|.t.2t» her message contains
q g 2 y Y, g

¢
O <(log3t + 2102%%(%))6 - 2tlog \Zg\) = O((tlog?t + 2“?)01og tlog | Z2)

field elements. Since ()2 sends only one message of 735/ for every hij € Hjy|; 24, his message contains
O(2'/%¢1og tlog | 2,|) field elements.

To construct the desired protocol for long secrets, let s = (s7,..., s/ / 4) € (F¥)t/* be the secret, where
¢ = O(llogt). Similarly to the multi-linear protocol of Lemma D.4, we change step 1 in the protocol
Prorcps such that sq,...,s¢ € F are the shares of a (34/4, ¢, £)-ramp secret-sharing scheme of the secret
s =(51,--,5y) € (F)¢/*, but now in step 2 we execute the multi-linear 2-server (2%, (nggt))—RCDS
protocol of Lemma D.4, instead of the linear protocol.

Overall, we results in a 2-server (2%, Z5)-RCDS protocol for f with secrets of size ©(¢'¢log |F|)
O(¢log tlog|Z,|log |F|) in which the normalized message size is O (tlog? t + 2¢/2).

o
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