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Abstract. Evolving secret-sharing schemes, introduced by Komargod-
ski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which
there is no a-priory upper bound on the number of parties that will par-
ticipate. The parties arrive one by one and when a party arrives the
dealer gives it a share; the dealer cannot update this share when other
parties arrive. Motivated by the fact that when the number of parties
is known, ramp secret-sharing schemes are more efficient than threshold
secret-sharing schemes, we study evolving ramp secret-sharing schemes.
Specifically, we study evolving (b(j), g(j))-ramp secret-sharing schemes,
where g, b : N → N are non-decreasing functions. In such schemes, any
set of parties that for some j contains g(j) parties from the first parties
that arrive can reconstruct the secret, and any set such that for every j
contains less than b(j) parties from the first j parties that arrive cannot
learn any information about the secret.

We focus on the case that the gap is small, namely g(j)− b(j) = jβ for
0 < β < 1. We show that there is an evolving ramp secret-sharing scheme

with gap tβ , in which the share size of the j-th party is Õ(j
4− 1

log2 1/β ).
Furthermore, we show that our construction results in much better share
size for fixed values of β, i.e., there is an evolving ramp secret-sharing
scheme with gap

√
j, in which the share size of the j-th party is Õ(j).

Our construction should be compared to the best known evolving g(j)-
threshold secret-sharing schemes (i.e., when b(j) = g(j) − 1) in which
the share size of the j-th party is Õ(j4). Thus, our construction offers
a significant improvement for every constant β, showing that allowing a
gap between the sizes of the authorized and unauthorized sets can reduce
the share size.

In addition, we present an evolving (k/2, k)-ramp secret-sharing scheme
for a constant k (which can be very big), where any set of parties of size
at least k can reconstruct the secret and any set of parties of size at most
k/2 cannot learn any information about the secret. The share size of the
j-th party in our construction is O(log k log j). This is an improvement
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over the best known evolving k-threshold secret-sharing schemes in which
the share size of the j-th party is O(k log j).

1 Introduction

In secret-sharing schemes (as in many cryptographic primitives) the number of
parties is known in advance. If the number of parties is not known in advance, the
dealer can assume an upper bound on this number. On one hand, if this upper
bound is too pessimistic (e.g., very few parties are active), then the shares are
unnecessarily large. On the other hand, if the upper bound is too optimistic and
the number of parties exceeds the upper bound, then either new parties cannot
join the system or the dealer needs to refresh the shares of all existing parties,
which is very costly. Komargodski, Naor, and Yogev [14] suggested evolving
secret-sharing schemes as a solution to this problem. In such schemes, there is
no upper bound on the number of parties and the parties arrive one after the
other. When a party arrives the dealer gives it a share; the dealer cannot update
this share when other parties arrive.

Continuing our previous work [1], we consider evolving ramp secret-sharing
schemes. In a traditional (b, g)-ramp secret-sharing schemes (with a fixed number
of parties n, where b < g ≤ n), sets of parties of size at least g should be able
to reconstruct the secret, while sets of parties of size at most b should get no
information on the secret.1 There are no requirements on sets with more than
b parties but less than g parties. Allowing a gap between b and g results in
schemes that are more efficient than threshold secret-sharing schemes. Ramp
secret-sharing schemes were first presented by Blakley and Meadows [4], and
were used to construct efficient secure multiparty computation (MPC) protocols,
starting in the work of Franklin and Yung [11]. In evolving (b, g)-ramp secret-
sharing schemes (without an upper bound on the number of parties), g and b are
non-decreasing functions g, b : N→ N such that b(j) < g(j) for every j ∈ N, sets
of parties that for some j contain at least g(j) parties from the first j parties that
arrive are authorized (i.e., should be able to reconstruct the secret), while sets of
parties that for every j contain at most b(j) parties from the first j parties that
arrive are unauthorized (i.e., should get no information on the secret). Again,
there are no requirements on sets that do not satisfy either of the requirements.
In this work we investigate evolving ramp secret-sharing schemes, where the gap
between g and b is small, e.g., g(j)−b(j) = jβ for some constant β or b(j) = k/2
and g(j) = k for some constant k.

Before presenting our results, we describe several results on evolving secret-
sharing schemes. Komargodski, Naor, and Yogev [14] showed that every evolv-
ing access structure (i.e., collection of authorized sets) can be realized by a
secret-sharing scheme, where the size of the share of the j-th party is 2j−1

(even if the dealer does not know the access structure in advance). They also

1 The letters b and g stand for “bad” parties (that should not learn information about
the secret) and “good” parties (that can reconstruct the secret).
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showed evolving k-threshold secret-sharing schemes (where any set of k par-
ties can reconstruct the secret), in which the share size of the j-th party is
(k−1) log j+O(log log j). Komargodski and Paskin-Cherniavsky [15] considered
evolving dynamic-threshold secret-sharing schemes in which the threshold is de-
fined by a function g : N→ N; in such a scheme a set of parties is authorized if for
some j the set contains at least g(j) parties from the first j parties that arrive; all
other parties are unauthorized. For every non-decreasing function 1 ≤ g(j) ≤ j,
they constructed an evolving g(j)-threshold secret-sharing scheme in which the
share size of the j-th party is O(j4 log j). As the number of parties is unbounded,
this share size can be quite large. Beimel and Othman [1] constructed for any
constants 0 < α < γ < 1 an evolving (b(j) = αj, g(j) = γj)-ramp secret-sharing
scheme (i.e., the gap is a constant fraction of the parties) where the size of the
share of the j-th party is O(1).

Evolving ramp secret-sharing schemes with small gap are motivated due two
reasons. First, they are step towards understanding the evolving dynamic thresh-
old schemes, i.e., when the gap is 1. Second, it is a very interesting theoretical
question to understand how the evolving ramp schemes behave as a function of
the size of the gap. Namely, we know that when the gap is a constant fraction
then the share size is O(1) and when the gap is 1 the best share size of the
j-th party is Õ(j4); understanding what the share size is in between these two
extremes is a natural question.

1.1 Our Results

In this work we continue the investigation of evolving ramp secret-sharing schemes.
We study the share size in ramp evolving secret-sharing schemes when the gap
between g(j) and b(j) is small, i.e., o(j). Can the share size be smaller than
j4 – the share size in the evolving threshold secret-sharing schemes of [15]? We
give positive results when g(j) − b(j) ≤ jβ for some constant β. We prove the
following theorem:

Theorem 1.1. For every constants 0 < β < 1 and 0 < γ < 1, there exists an
evolving (b(j) = γj−jβ , g(j) = γj)-ramp secret-sharing scheme, where the share
size of party pj, for j ∈ N, is

O
(
j
4−O( 1

log2(1/β)
)
log2 j

)
.

For β ≥ 1/2, we prove the following better result.

Theorem 1.2. Let β > 0 and 0 < γ ≤ 1. There exists an evolving (γt− tβ , γt)-
ramp secret-sharing scheme in which for every j ∈ N the share size of pj is
O(j(1−β)/β log j).

As instantiations of Theorem 1.2 we get:

– When g(j) − b(j) = j
polylog(j) , the share size in our scheme is polylog(j)

(Theorem 1.2 with β = 1−Θ( log log j
log j )).
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– When g(j) − b(j) =
√
j, the share size in our scheme is Õ(j) (Theorem 1.2

with β = 1/2).

Thus, our constructions offer a significant improvement for a constant β com-
pared to [15], showing that allowing a gap between g(j) and b(j) can reduce
the share size in known evolving secret-sharing schemes compared to schemes in
which there is no gap (i.e., g(j)− b(j) = 1).

In addition, we present a construction of evolving (k/2, k)-ramp secret-sharing
schemes for a constant k (where any set of parties of size at least k can recon-
struct the secret and any set of parties of size at most k/2 cannot learn any
information about the secret). The share size of the j-th party in our construc-
tion is O(log k log j). We prove the following theorem:

Theorem 1.3. For every constant k ∈ N, there exists an evolving (k, k/2)-
ramp secret-sharing scheme, where the share size of party pj, for j ∈ N, is
O(log k log j).

This is an improvement over the evolving k-threshold secret-sharing schemes
of [14] in which the share size of the j-th party is O(k log j). Our result can be
either seen as a first step in constructing improved evolving k-threshold secret-
sharing schemes or as showing that for constant k evolving (k/2, k)-ramp secret-
sharing schemes are more efficient.

1.2 Our Techniques

We next describe the ideas of our construction for an evolving (b(j) = j/2 −
jβ , g(j) = j/2)-ramp secret-sharing scheme. We start in Section 3 by reducing
the problem of realizing an evolving ramp secret-sharing scheme with an infinite
number of parties to a problem of constructing secret-sharing realizing access
structures with a finite number of parties. Specifically, for a given t ∈ N, we
define an access structure Γt containing the parties {ptβ , . . . , p2t}. A set A whose
maximal party is pk should be able to reconstruct the secret in Γt if k > t and
|A| ≥ k/2 − tβ/2. A set that should not learn any information on the secret
in the evolving (j/2 − jβ , j/2)-ramp secret-sharing scheme, should not get any
information on the secret in Γt. Given secret-sharing schemes realizing Γt, we
construct an evolving (j/2 − jβ , j/2)-ramp secret-sharing scheme by executing
a secret-sharing scheme realizing Γt for every t that is a power of 2. That is,
for every ` ∈ N, when party ptβ for t = 2` arrives, we share the secret by a
secret-sharing scheme realizing Γt with parties {ptβ , . . . , p2t}. When party pj for
tβ ≤ j ≤ 2t arrives, we give pj the share of pj in the scheme realizing Γt (notice
that pj gets shares in the scheme for Γt for many values of t). The correctness
of the scheme is explained by the fact that we “lose” at most tβ parties from
the beginning; since we allow a gap of at most tβ parties, we will not miss any
authorized set.

We present two constructions of secret-sharing schemes realizing the above
access structure Γt. The first construction, described in Section 4, uses the so-
called segments technique, where we have a sequence n0, n1, . . . , nr of integers,
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where t < n0 < n1 < · · · < nr ≤ 2t and we share the secret among the parties
{ptβ , . . . , pni} for every 0 ≤ i ≤ r using a threshold secret-sharing scheme,
with an appropriate threshold. We choose the sequence of number of parties and
thresholds so the correctness and security hold. This construction yields our best
result when β ≥ 1/2. For β = 1/2 we get an evolving secret-sharing scheme in
which the share size of the j-th party is O(j log j).

Our second construction, described in Section 6, uses the so called tree tech-
nique (which also uses the segments technique). The tree technique was intro-
duced in [15] (generalizing ideas of [14]). In the tree technique, we construct a
tree, where for every edge in the tree we assign a set of consecutive parties and
a weight. We define an access structure for this tree, where a set of parties A
should be able to reconstruct the secret if there is a path from the root to a leaf
such that for every edge in the path whose weight w the set A contains at least
w parties from the set of parties assigned to the edge. In [15], an infinite tree is
constructed with appropriate sets and weights such that the resulting scheme is
an evolving g(n)-threshold secret-sharing scheme; in this scheme the share size
of the j-th party is Õ(j4). Using the fact that we have a gap between b and g
and our reduction to finite access structures, we can construct finite trees result-
ing in more efficient evolving secret-sharing schemes. For example, we optimize
our construction for the evolving (j/2 − j1/8, j/2)-ramp secret-sharing scheme,
resulting in share size Õ(j2.32) for the j-th party. For every β < 1/2 the share
size of the j-th party in our evolving (t/2− tβ , t/2)-ramp secret-sharing scheme

is O(j
4− 1

log2 1/β log2 j).

The results in Section 4 proves Theorem 1.2 only for a constant γ ≤ 1/2.
In Section 7, we prove Theorem 1.2 for any constant γ > 0. This is done by
a reduction, where we use an evolving (j/d− ((j/dγ)β − 1), j/d)-ramp secret-
sharing scheme Π for any constant d to construct an evolving (γj−jβ , γj)-ramp
secret-sharing scheme Π ′. The reduction is simple, the share of the j-th party
in Π ′ is the share of the bγdtc-th party in Π. Verifying that the reduction is
correct is quite easy (see proof of Theorem 7.1).

In Section 8, we construct an evolving (k/2, k)-ramp secret-sharing scheme
in which the share size of the j-th party is O(log k log j). The idea of the con-
struction is as follows. We use the evolving k-threshold secret-sharing scheme
of [14] as a building box. The secret-sharing scheme of [14] is recursive and its
bottle-neck is a procedure that shares k secrets v1, . . . , vk among a set of parties
of size j, where each secret vi is independently shared using an i-out-of-j thresh-
old secret-sharing scheme. Since each sharing results in a share of size log j, the
total share of the j-th party is k log j. For the ramp scheme, we use a similar
procedure, however we use only log k threshold secret-sharing schemes, where
for every ` ∈ {0, . . . , log k} we share v2` , . . . , v2`+1−1 using a 2`-out-of-j thresh-
old secret-sharing scheme. For the security of the scheme we observe that a set
of size k/2 obtains less than k shares of the evolving k-threshold secret-sharing
scheme, thus learns nothing about the secret. Since sharing k short secrets in a
2`-out-of-j threshold secret-sharing scheme requires only shares of size log j, the
share size in our scheme is O(log k log j).
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In Section 9, we analyze the share size in the schemes Πseg and Πtree –
our schemes from Section 4 and Section 6 respectively. We prove that for β >
1/2 the share size in the scheme Πseg is better than the share size in every
implementation of Πtree, that is, for β > 1/2 the best share size achievable using
our schemes is j(1−β)/β . Furthermore, we prove a weak lower bound of Ω(j) on
the best share size in Πseg and Πtree for β ≤ 1/2.

1.3 Previous Works

Secret-sharing schemes were introduced by Shamir [17] and Blakley [3] for thresh-
old access structures, and by Ito, Saito, and Nishizeki for the general case [12].
Shamir’s [17] and Blakley’s [3] constructions are efficient both in the size of the
shares and in the computation required for sharing and reconstruction. The size
of the share in Shamir’s scheme for sharing an `-bit secret among n parties is
max{`, log n}. Kilian and Nisan [13] proved a log(n− k+ 2) lower bound on the
share size for sharing a 1-bit secret for the k-out-of-n threshold access structure
(see [7]). This lower bound implies that Ω(log n) bits are necessary when k is
not too close to n. Bogdanov, Guo, and Komargodski [5] proved that the lower
bound of Ω(log n) bits applies to any secret-sharing scheme realizing k-out-of-n
threshold access structures for every 1 < k < n. When k = 1 or k = n, schemes
with share size of 1 are known.

Ramp secret-sharing schemes. Ramp secret-sharing schemes were presented by
Blakley and Meadows [4]. For long enough secrets, they constructed a (b, g)-
ramp secret-sharing scheme with share size 1/(g− b) times the size of the secret.
Ramp schemes have found numerous applications in cryptography, including ef-
ficient secure multiparty computation (MPC) protocols (Franklin and Yung [11]
and many follow-up works), broadcast encryption (Stinson and Wei [18]) and
error decodable secret sharing (Martin, Paterson, and Stinson [16]). Cascudo,
Cramer, and Xing [7] proved lower bounds on the share size in ramp secret-
sharing schemes: If every set of size at least an can reconstruct the secret while
every set of size at most bn cannot learn any information on the secret, then the
length of the shares is at least log((1 − b)/(a − b)). Bogdanov et al. [5] showed
that for all 0 < b < a < 1, in any ramp secret sharing the size of the shares is at
least log(a/(a − b)). On the positive side, Chen et al. [8] proved that for every
ε > 0 there is a ramp secret-sharing scheme with share size O(1) in which every
set of size at least (1/2 + ε)n can reconstruct the secret while every set of size
at most (1/2− ε)n cannot learn any information on the secret.

Evolving and online secret-sharing schemes. D’Arco et al. [10] constructed evolv-
ing k-threshold secret-sharing schemes, where the secret is reconstructed only
with probability p < 1, however the share size is O(1). Komargodski and Paskin-
Cherniavsky [15] showed how to transform any evolving secret-sharing scheme
to a robust scheme, where a shared secret can be recovered even if some par-
ties hand-in incorrect shares. Cachin [6] and Csirmaz and Tardos [9] considered
online secret sharing, which is similar to evolving secret-sharing schemes. As in



Evolving Ramp Secret Sharing with a Small Gap 7

evolving secret-sharing scheme, in on-line secret-sharing, parties can enroll in
any time after the initialization, and the number of parties is unbounded. How-
ever, in the works on online secret-sharing, the number of authorized sets a party
can join is bounded.

2 Preliminaries

In this section we present formal definitions of secret-sharing schemes and evolv-
ing secret-sharing schemes.

Notations. We denote the logarithmic function with base 2 by log. We use the
notation [n] to denote the set {1, 2, . . . , n}. When we refer to a set of parties
A = {pi1 , pi2 , . . . , pit}, we assume that i1 < i2 < · · · < it.

2.1 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes. Our definition is of
non-perfect secret-sharing schemes, where some sets of parties can reconstruct
the secret, some sets should not get any information on the secret, and there are
no requirements on all other sets.

Definition 2.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties.
A collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ = (ΓYES, ΓNO) is a pair of collections of sets such that
ΓYES, ΓNO ⊆ 2{p1,...,pn}, the collections ΓYES and 2{p1,...,pn}\ΓNO are monotone,
and ΓYES ∩ ΓNO = ∅. Sets in ΓYES are called authorized, and sets in ΓNO are
called unauthorized. The access structure is called an incomplete access structure
if there is at least one subset of parties A ⊆ P such that A 6∈ ΓYES ∪ ΓNO.
Otherwise, it is called a complete access structure.

Definition 2.2 (Secret-sharing schemes). A secret-sharing Σ = 〈Π,µ〉
over a set of parties P = {p1, . . . , pn} with domain of secrets K is a pair, where µ
is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K × R to a set of n-tuples K1 ×K2 × · · · ×Kn (the
set Kj is called the domain of shares of pj). A dealer distributes a secret k ∈ K
according to Σ by first sampling a random string r ∈ R according to µ, com-
puting a vector of shares Π(k, r) = (s1, . . . , sn), and privately communicating
each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(k, r) as
the restriction of Π(k, r) to its A-entries (i.e., the shares of the parties in A).
The size of the secret is defined as log |K| and the size of the share of party pj
is defined as log |Kj |.

A secret-sharing scheme 〈Π,µ〉 with domain of secrets K realizes an access
structure Γ = (ΓYES, ΓNO) if the following two requirements hold:
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Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ ΓYES, there exists a reconstruc-
tion function ReconB : Ki1 × · · · ×Ki|B| → K such that for every secret k ∈ K
and every random string r ∈ R, ReconB

(
ΠB(k, r)

)
= k.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T ∈ ΓNO, every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉pj∈T ,

Pr[ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ΠT (b, r) = 〈sj〉pj∈T ],

where the probability is over the choice of r from R at random according to µ.

Remark 2.3. For sets of parties A ⊆ P such that A 6∈ ΓYES ∪ ΓNO there are no
requirements, i.e., they might be able to reconstruct the secret, they may have
some partial information on the secret, or they may have no information on the
secret.

Definition 2.4 (Threshold access structures). Let 1 ≤ k ≤ n. A k-out-
of-n threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the
complete access structure accepting all subsets of size at least k, that is, ΓYES =
{A ⊆ P : |A| ≥ k} and ΓNO = {A ⊆ P : |A| < k}.

The well known scheme of Shamir [17] for the k-out-of-n threshold access
structure (based on polynomial interpolation) is an efficient threshold secret-
sharing scheme, whose properties are summarized in the following claim.

Claim 2.5 (Shamir [17]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret-
sharing scheme for secrets of size m realizing the k-out-of-n threshold access
structure in which the share size is `, where ` = max{m, dlog(n+ 1)e}.

Definition 2.6 (Ramp secret-sharing schemes [4]). Let 0 ≤ b < g ≤ n.
The (b, g)-ramp access structure over a set of parties P = {p1, . . . , pn} is the
incomplete access structure Γb,g = (ΓYES, ΓNO), where ΓYES = {A ⊆ P : |A| ≥
g} and ΓNO = {A ⊆ P : |A| ≤ b}. A (b, g)-ramp scheme with n parties is a
secret-sharing scheme realizing Γb,g.

Chen et al. [8] showed the existence of ramp secret-sharing schemes with
share size O(1).

Claim 2.7 (Chen et al. [8]). For every constant 0 < ε < 1/2 there are integers
` and n0 such that for every n ≥ n0 there is a ((1/2−ε)n, (1/2+ε)n-ramp secret-
sharing scheme with n parties and share size `.

The next corollary, which can be found in [1], shows the existence of ramp
secret-sharing schemes for any gap of Θ(n).

Corollary 2.8. For every constants 0 < b < g < 1 there are integers ` and n0
such that for every n ≥ n0 there is a (b, g)-ramp secret-sharing scheme with n
parties and share size `.
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2.2 Secret Sharing for Evolving Access Structures

We proceed with the definition of an evolving access structure, introduced in [14].

Definition 2.9 (Evolving access structures). Let P = {pi}i∈N be an infi-
nite set of parties. An evolving access structure Γ = (ΓYES, ΓNO) is a pair of
collections of sets ΓYES, ΓNO ⊂ 2P , where each set in ΓYES ∪ ΓNO is finite and
for every t ∈ N the collections Γ t , (ΓYES ∩ 2{p1,...,pt}, ΓNO ∩ 2{p1,...,pt}) is an
access structure as defined in Definition 2.1.

Definition 2.10 (Evolving secret-sharing schemes). Let Γ be an evolving
access structure, K be a domain of secrets, where |K| ≥ 2, and {Rt}t∈N, {Kt}t∈N
be two sequences of finite sets. An evolving secret-sharing scheme with domain
of secrets K is a pair Σ = 〈{Πt}t∈N, {µt}t∈N〉, where, for every t ∈ N, µt is a
probability distribution on Rt and Πt is a mapping Πt : K×R1×· · ·×Rt → Kt

(this mapping returns the share of pj).
An evolving secret-sharing scheme Σ = 〈{Πt}t∈N, {µt}t∈N〉 realizes Γ if for

every t ∈ N the secret-sharing scheme 〈µ1×· · ·×µt, Πt〉, where Πt(k, (r1, . . . , rk))
= 〈Π1(k, r1), . . . , Πt(k, r1, . . . , rt)〉, is a secret-sharing scheme realizing Γ t ac-
cording to Definition 2.2.

Definition 2.11 (Evolving ramp access structures). For two non-decreasing
functions b, g : N→ N such that 0 ≤ b(t) < g(t) ≤ t for every t ∈ N, the evolving
(b(t), g(t))-ramp incomplete access structure is the evolving incomplete access
structure Γb(t),g(t), where for a set A whose maximum party is pt:

– A is authorized if |A ∩ {p1, . . . , pj}| ≥ g(j) for some 1 ≤ j ≤ t,
– A is unauthorized if |A ∩ {p1, . . . , pj}| ≤ b(j) for every 1 ≤ j ≤ t.

In other words, A is authorized in Γb(t),g(t) if it is authorized in the (b(j), g(j))-
ramp incomplete access structure for some j ≤ t and it is unauthorized in
Γb(t),g(t) if it is unauthorized in the (b(j), g(j))-ramp incomplete access struc-
ture for every j ≤ t. In the above definition, there are no requirements on sets
where |A ∩ {p1, . . . , pj}| < g(j) for every j and |A ∩ {p1, . . . , pj}| > b(j) for at
least one j. We abuse notation and consider g, b : N → R (e.g., g(t) = t/2); in
this case, we actually consider dg(t)e and bb(t)c.

In the rest of the paper, the secret is taken from {0, 1}.

3 Reduction to an Access Structure with a Finite
Number of parties

Our goal is to construct an evolving (γt − f(t), γt)-ramp secret-sharing scheme
for any constant 0 < γ < 1 and some function 0 < f(t) ≤ γt such that γt− f(t)
is non-decreasing. We show that to construct a ramp evolving secret-sharing
scheme (with an unbounded number of parties) it suffices to construct a secret-

sharing scheme for an access structure Γ ft,ρ,γ with a finite number of parties.
The ramp evolving secret-sharing schemes we construct will use many copies of



10 Amos Beimel and Hussien Othman

a scheme realizing Γ ft,ρ,γ (for every t that is a power of 2). In the definition of

Γ ft,ρ,γ , there is a parameter 0 < ρ ≤ 1. This parameter adds flexibility to our
reductions and we use different values of ρ in our two constructions.

Definition 3.1 (The access structure Γ ft,ρ,γ). Let 0 < γ < 1 be a constant
and f : N→ N be a function such that 0 < f(j) < γj for every j ∈ N and γt−f(t)
is non-decreasing, let t be an integer, and let 0 < ρ ≤ 1. The incomplete access
structure Γ ft,ρ,γ over the set of parties {pρ·f(t), pρ·f(t)+1, . . . , p2t} is the following
access structure, where for a set A = {pi1 , . . . , pik} ⊆ {pρ·f(t), . . . , p2t}:

– if ij > t and j ≥ γij − γρ · f(t) for some j ∈ [k], then A is authorized.
– If j ≤ γij − f(ij) for every j ∈ [k], then A is unauthorized.

Example 3.2. Consider the function f(t) =
√
t and the access structure Γ

√
j

t,1,1/2

whose parties are {p√t, . . . , p2t}. Next we show examples of authorized and unau-
thorized subsets. The subset A = {p(t+√t+3)/2, . . . , pt+1} is authorized since it

contains (t + 1)/2 −
√
t/2 parties. The subset B = {p3t/2+1, . . . , p2t} is unau-

thorized for t > 32 since for every pij in the set it holds that ij/2 −
√
ij >

3t/4 −
√

2t ≥ t/2 ≥ j. Notice that the unauthorized set B is bigger than the

authorized set A. Such sets imply that realizing Γ ft,ρ,γ is non-trivial.

Theorem 3.3. Let 0 < ρ ≤ 1. If for every t there is a secret-sharing scheme
Πf
t,ρ,γ realizing the access structure Γ ft,ρ,γ , where, for ρ · f(t) ≤ j ≤ t, the size of

the share of party pj is ct(j), then the scheme Πreduction, described in Figure 1,
realizes the evolving access structure Γγt−f(t),γt, where the size of the share of
pj is

∑
t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t ct(j).

The Scheme Πreduction

– For every ` ∈ N do:
• Let t = 2`

• When party pρ·f(t) arrives, prepare the shares of Πf
t,ρ,γ , denote these

shares by st,ρ·f(t), . . . , st,2t.
– The share of party pj is (st,j){ t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t }.

Fig. 1. The scheme Πreduction that realizes the evolving ramp access structure
Γγt−f(t),γt, assuming a scheme Πf

t,ρ,γ realizing Γ ft,ρ,γ .

Proof. We first prove the correctness of the scheme Πreduction. Consider a min-
imal authorized set A = {pi1 , . . . , pik} of Γγt−f(t),γt, thus, k ≥ γik. Let ` ∈ N
be the index such that 2` < ik ≤ 2`+1 and let t = 2`, thus, t < ik ≤ 2t. As
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A is a minimal authorized set, it contains less than γρ · f(t) parties among the
parties {p1, . . . , pρ·f(t)−1}, i.e., it contains at least γik − γρ · f(t) parties from

{pρ·f(t), . . . , p2t}. This implies that A is authorized in Γ ft,ρ,γ and the parties in

A can reconstruct the secret from their shares in Πf
t,ρ,γ .

We now prove the security of the scheme. Consider a set A that is unau-
thorized in Γγt−f(t),γt. By definition, it is unauthorized in all Γ ft,ρ,γ , thus, the
parties in A have no information on the secret.

The share of pj contains shares of Πf
t,ρ,γ for every value t such that t is a

power of 2 and ρ · f(t) ≤ j ≤ 2t, that is, the size of pj ’s share is∑
t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t

ct(j).

For the case that f(t) = tβ for some 0 < β < 1, the reduction in Theorem 3.3
yields the following result.

Corollary 3.4. Let 0 < β < 1 be a constant and c : N → N be a function. If

for every t there exists a scheme realizing Γ
f(t)=tβ

t,ρ,γ where the size of the share

of each party pj, for ρtβ < j ≤ 2t, is c(j), then there exists a scheme realizing
Γγt−tβ ,γt in which the size of the share of each party pj, for j ∈ N, is c(j) log j.

Our main challenge in Sections 4 to 6 is to construct efficient schemes realizing
the access structure Γ ft,ρ,γ for some parameter ρ.

Example 3.5. Consider the evolving (t/4, t/2)-ramp access structure, i.e., f(t) =

t/4. In this case, Γ
f(t)=t/4
t,1,1/2 is an access structure over the parties {pt/4, . . . , p2t}.

A first attempt to realize Γ
f(t)=t/4
t,1,1/2 is to use one threshold secret-sharing scheme.

This attempt fails since the set {p5t/8+1, . . . , pt+1} is an authorized set of size
≈ 3t/8, while {p3t/2, . . . , p2t} is an unauthorized set of size 2t/4 = t/2. To solve

this problem, we use 4 threshold schemes. That is, to realize Γ
f(t)=t/4
t,1,1/2 , for every

α = 1, 2, 3, 4, we share the secret s using a (2+α)t/8-out-of-(4+α−1)t/4 among
the parties {pt/4, . . . , pt+αt/4}. In the next two paragraphs we prove that this

scheme realizes Γ
f(t)=t/4
t,1,1/2 .

Consider a minimal authorized set A = {pi1 , . . . , pik} of Γ
f(t)=t/4
t,1,1/2 and let α

be such that t+(α−1)t/4 < ik ≤ t+αt/4. This set contains at least ik/2−t/8 ≥
(1 + (α − 1)/4)t/2 − t/8 = (2 + α)t/8 parties from the set {pt/4, . . . , pt+αt/4},
thus it can reconstruct the secret.

Consider an unauthorized set A of Γ
f(t)=t/4
t,1,1/2 . For every α = 1, 2, 3, 4, it con-

tains at most (1+α/4)t/4 parties among the parties {pt/4, . . . , pt+αt/4} (as such
set contains at most a quarter of the parties ending at party (1 + α/4)t). Since
(1 +α/4)t/4 < (2 +α)t/8, the parties in A cannot learn any information on the
secret from each of the 4 schemes, thus, cannot learn any information on the
secret.
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The size of the share of party pj in this scheme for Γ
f(t)=t/4
t,1,1/2 is O(log t) =

O(log j) (as this is the share size in Shamir’s scheme). If instead of sharing the
secret using a threshold secret-sharing scheme, we share the secret using a (non-
evolving) ((1 + α/4)t/4, (2 + α)t/8)-ramp secret-sharing scheme, the size of the
share will be reduced to O(1), by [8] (see Corollary 2.8). By Theorem 3.3, the
size of the share of pj in the evolving scheme realizing Γt/4,t/2 is the sum of the

shares in the schemes realizing Γ
f(t)=t/4
t,1,1/2 , where t is a power of two such that

t/4 < j < 2t. Thus, the share size of pj is O(1).

4 First Scheme Realizing Γ
f(t)
t,1,γ: The Segments Technique

In this section we construct a simple scheme Πseg realizing Γ ft,1,γ for 0 < γ ≤ 1/2,
proving Theorem 1.2 for 0 < γ ≤ 1/2. We analyze the share size of the evolving
ramp scheme resulting by using Πseg in Πreduction for a function f(t) = tβ for
some β < 1. For β ≥ 1/2 this is our best scheme. For smaller values of β, the
scheme presented in Section 6 is more efficient.

The scheme Πseg is a generalization of the scheme presented in Example 3.5;

we realize Γ ft,1,γ using several threshold secret-sharing schemes on increasing
segments of parties, where for larger segments we use larger thresholds. The
scheme is described in Figure 2.

The Scheme Πseg

– For α = 1 to dt/f(t)e,
• Share s using Shamir’s (bγ(t+ (α− 2)f(t))c+ 1)-out-of-

(t+ (α− 1)f(t)) secret-sharing scheme among the parties
{pf(t), . . . , pt+αf(t)}; let sα,f(t), sα,f(t)+1, . . . , sα,t+αf(t) be the
shares in this scheme.

– The share of pj is (sα,j){α:α≥max{1,(j−t)/f(t)}}.

Fig. 2. A scheme Πseg realizing the access structure Γ ft,1,γ .

Lemma 4.1. Let 0 < γ ≤ 1/2. The secret-sharing scheme Πseg, described in

Figure 2, realizes the access structure Γ ft,1,γ with share size O(t/f(t) log t).

Proof. We start by proving the correctness of the scheme Πseg. Consider a min-

imal authorized set A = {pi1 , pi2 , . . . , pik} of Γ ft,1,γ and let α be such that
t+ (α− 1)f(t) < ik ≤ t+ αf(t). Since A is a minimal authorized set,

|A| = k ≥ γik − γf(t) > γ(t+ (α− 1)f(t))− γf(t) = γ(t+ (α− 2)f(t)).
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Since |A| is an integer,

|A| ≥ bγ(t+ (α− 2)f(t))c+ 1.

By the construction, the parties in A can reconstruct the secret from the thresh-
old scheme for the parties {pf(t), . . . , pt+αf(t)}.

We continue by proving the security of the scheme. Consider an unauthorized
set A. We show that for every α, the parties in A cannot learn any information
about the secret from the threshold scheme for {pf(t), . . . , pt+αf(t)}. Note that
f(t+ αf(t)) ≥ f(t) ≥ 2γf(t). Since A is unauthorized, the number of parties in
A ∩ {pf(t), . . . , pt+αf(t)} is at most

γ(t+ αf(t))− f(t+ αf(t)) ≤ γ(t+ αf(t))− 2γf(t) = γ(t+ (α− 2)f(t)).

Thus, the parties in A cannot learn any information about the secret from the
shares of each threshold scheme. As these schemes are executed with independent
randomness, the parties in A cannot learn any information about the secret.

Finally, we analyze the share size of each party in the scheme. Each party gets
at most O(t/f(t)) shares of Shamir’s secret-sharing scheme with O(t) parties; the
size of each such share is O(log t). Thus, the total share size is O(t/f(t) log t).

We next present two conclusions of Lemma 4.1.

Theorem 4.2. For every constants 0 < δ < γ ≤ 1/2, the evolving (δt, γt)-ramp
access structure can be realized by an evolving secret-sharing scheme with share
size O(1) for every party.

Proof. Let b = γ − δ. In this case f(t) = bt and Γ
f(t)=bt
t,1,γ is an access structure

whose parties are {pbt, . . . , p2t}. By Lemma 4.1, Πseg realizes Γ
f(t)=bt
t,1,γ with share

size O(log t) (since b is constant). We next show how to reduce the share size to
O(1). By the construction, the secret is shared among the parties {pbt, . . . , pt+btα}
for every α = 1 to d1/be by a (bγt(1+bα−2b)c+1)-out-of-(t+(α−1)bt) thresh-
old secret-sharing scheme. However, in an unauthorized set there are at most
δ(t + btα) = (γ − b)(t + btα) = γt(1 + bα − b/γ − b2α/γ) < γt(1 + bα − 2b)
parties. Therefore, we can share the secret by a (γt(1+ bα− b/γ− b2α/γ), γt(1+

bα− 2b) + 1)-ramp secret-sharing scheme. By Corollary 2.8, we realize Γ
f(t)=bt
t,1,γ

with share size O(1) for every party. By Theorem 3.3, the size of the share of pj
in the evolving scheme realizing Γδt,γt is the sum of the shares in the schemes

realizing Γ
f(t)=bt
t,1,γ , where t is a power of two such that δt < j < 2t. There are

O(1) schemes. Thus, the share size of pj is O(1).

The same result was proved in [1]. However, the analysis of the new scheme
is much simpler than the one in [1]. We next prove Theorem 1.2 for γ ≤ 1/2 (the
case of 1/2 < γ ≤ 1 is obtained from the following lemma in Section 7).

Lemma 4.3. For every β > 0 and 0 < γ ≤ 1/2, there exists an evolving (γt −
tβ , γt)-ramp secret-sharing scheme in which for every j ∈ N the share size of pj
is O(j(1−β)/β log j).
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Proof. Consider the scheme Πreduction withΠseg as the scheme realizing Γ
f(t)=tβ

t,1,γ .

By Lemma 4.1, the scheme Πseg realizes Γ
f(t)=tβ

t,1,γ , where the share size of pj is

ct(j) = O(t1−β log t). Thus, by Theorem 3.3, Πreduction realizes the evolving
ramp access structure Γγt−tβ ,γt, where the share size of the party pj is∑

t : ∃i∈Nt=2i∧tβ≤j≤2t

ct(j) =
∑

t : ∃i∈Nt=2i∧j/2≤t≤j1/β
ct(j).

The largest value of t in the above sum is j1/β and cj1/β (j) = O(j(1−β)/β log j);

the second largest value of t in the above sum is j1/β/2 and cj1/β/2(j) =

O(j(1−β)/β/21−β log j) and so on. Thus, the share size of pj is a sum of a geo-
metric sequence and is O(j(1−β)/β log j).

5 Realizing Weighted Trees Access Structures

In this section, we review and generalize the tree technique introduced in [15]
(generalizing ideas of [14]) in order to construct a scheme for the evolving ma-
jority access structure.

Next we overview and generalize the tree technique. In Section 6, we construct
a specific tree that we use in our constructions.

5.1 A Secret Sharing Scheme Realizing Finite Trees

In this section, we define a complete access structure from a tree and show how
to realize it. This scheme is a special case of the scheme realizing the connectivity
access structure [2].

For a directed tree T = (V,E), we define the following access structure. The
edges in the tree represent the parties in the access structure. A set of edges
is authorized if it contains a path from the root to a leaf, otherwise it is an
unauthorized and should not learn any information on the secret.

We next describe a simple scheme ΠT realizing this tree. Let k ∈ {0, 1} be
the secret. The share of each edge (u, v) is a bit ru,v computed as follows: if v
is not a leaf, then it is a uniformly distributed random bit. Otherwise, if v is
a leaf and P = (v0, v1, . . . , vn−1 = u, vn = v) is the path from the root to v,
then ru,v = ⊕n−2i=0 rvi,vi+1 ⊕k. To see that this scheme is correct, observe that the
edges on a path can reconstruct the secret by computing the exclusive-or of the
shares given to the parties (edges) of the path.

To see that this scheme is secure consider an unauthorized set, that is, a set
of edges F not containing a path from s to a leaf. Define the set of nodes V1 such
that vi ∈ V1 if there exists a path from the root to vi in (V, F ). By definition,
s ∈ V1 and V1 does not contain leaves. Furthermore, for every (vi, vj) ∈ F either
both nodes vi, vj are in V1 or both of them are not in V1. Let {ri,j}(vi,vj)∈F be
a set of shares generated for the parties in F with a secret k ∈ {0, 1}, where ri,j
is the share given to party (vi, vj). We next show that the same set of shares
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can be used to share the secret k ⊕ 1. Complete the shares {ri,j}(vi,vj)∈F of the
parties in F to shares {ri,j}(vi,vj)∈E of all the parties in the tree for the secret
k. Consider the shares r′i,j such that r′i,j = ri,j ⊕ 1 if vi ∈ V1 and vj 6∈ V1 and
r′i,j = ri,j otherwise. Notice that r′i,j = ri,j for every (vi, vj) ∈ F . We claim that
the shares {r′i,j}(vi,vj)∈E are shares for the secret k ⊕ 1. This is true since for
any simple path s = v0, v1, . . . , vn−1, vn = v from the root to a leaf contains
exactly one edge (vi, vi+1) such that vi ∈ V1 and vi+1 /∈ V1 and the exclusive or
of the shares given to the parties (edges) on the path is k ⊕ 1. As we describe
a bijection between the shares of k and k⊕ 1, the probabilities of {ri,j}(vi,vj)∈F
given k and k ⊕ 1 are equal, thus the security holds.

5.2 Secret-Sharing Schemes Realizing Finite Weighted Trees

Following [15], we describe an access structure for a finite directed weighted tree
T = (V,E), where each edge (u, v) has weight wu,v. In addition, for each edge
we assign a set of parties; informally, any set of at least wu,v parties among the
parties assigned to an edge can reconstruct “the bit of the edge”.

We remark that the tree used in [15] is infinite. However, since we allow a
gap between the sizes of authorized and unauthorized sets, we can use a scheme
realizing a finite tree.

Terminology: We use the following notations in our constructions.

– The i-th layer of the tree contains nodes of distance exactly i from the root.
– A node in the i-th layer is identified by the sequence of weights assigned to

the edges along the path from the root to that node; the node is denoted
by uw1,w2,...,wi , where w1, . . . , wi are the weights of the edges from the root
to the node. That is, the root is uε and for every nodes uw1,w2,...,wi−1

and
uw1,w2,...,wi−1,wi in the (i−1)-th and i-th layers respectively there is an edge
with weight wi connecting them. We assume that for every node in the tree
the weights of its outgoing edges are distinct, thus, the notation uw1,...,wi

uniquely identifies a node.
– We assign parties to each edge of the tree. That is, we consider a func-

tion q : V → N such that q(uε) is the index of the first party in the
scheme and for every (u, v) ∈ E it holds that that q(v) > q(u), the par-
ties {pq(u)+1, . . . , pq(v)} are assigned to the edge (u, v).

Definition 5.1. Given a finite weighted tree T = (V,E) with a weight function
w : E → N and a function q : V → N, let umax = maxv∈V {q(v)}. We define the
complete access structure ΓT,w,q with parties {pq(uε), . . . , pq(umax)}, where a set
A is authorized in the access structure if and only if there exists a leaf uw1,...,wi

in the tree and a path

(uε, uw1
), (uw1

, uw1,w2
), . . . , (uw1,...,wi−1

, uw1,...,wi)

such that |A ∩ {pq(uw1,...,wj−1
)+1, . . . , pq(uw1,...,wj

)}| ≥ wj for every 1 ≤ j ≤ i.
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Given a finite weighted tree T , we construct a secret-sharing scheme, denoted by
Πwt, realizing ΓT,w,q. We next informally describe Πwt: we first share the secret
using the scheme of Section 5.1. Then for every edge (u, v) we share the bit given
to (u, v) by a threshold secret-sharing scheme among the parties assigned to the
edge; the threshold used is the weight of the edge. The formal description of Πwt

appears in Figure 3.

The Scheme Πwt

– Run ΠT on the tree T . Denote the share given to an edge (u, v) by ru,v,
where if w(e) = 0 then re = 0 (instead of a random bit).

– For every edge (vw1,w2,...,wi−1 , vw1,w2,...,wi−1,wi) such that wi > 0,
share the bit rvw1,w2,...,wi−1

,vw1,w2,...,wi−1,wi
among the par-

ties {pq(vw1,w2,...,wi−1
)+1, . . . , pq(vw1,w2,...,wi−1,wi

)} by a wi-out-of-(
q(vw1,w2,...,wi−1,wi)− q(vw1,w2,...,wi−1)

)
threshold secret-sharing scheme.

Fig. 3. The scheme Πwt that realizes the access structure ΓT,w,q.

Lemma 5.2. The scheme Πwt realizes ΓT,w,q.

Proof. Since we share the secret using ΠT, a set A can reconstruct the secret iff it
can reconstruct the bits rvε,v1 , rv1,v2 , . . . , rvc−1,vc for some path (vε, . . . , vc) from
the root to a leaf. Let w1, . . . , wc be the weights of the edges on this path. The
bit rvj−1,vj is shared by a wj-out-of-(q(vj)− q(vj−1)) threshold secret-sharing
scheme among the parties {pq(vj−1)+1, . . . , pq(vj)} and A can learn the bit rvj−1,vj

if and only if |A ∩ {pq(vj−1)+1, . . . , pq(vj)}| ≥ wj .

6 The Second Scheme Realizing Γ ft,1/2,γ: The Tree
Technique

In this section, we prove Theorem 1.1. We show how to use the secret sharing
for weighted trees described in Section 5 to realize Γ ft,1/2,γ , thus, to construct

evolving ramp secret-sharing schemes. Our scheme Πtree can be used for arbi-
trary functions f(t), however to simplify the analysis of the share size, we only
consider functions f(t) = tβ for some constant 0 < β < 1. In Figure 4, we define
a weighted tree Tramp. The tree contains n+ 1 layers for some constant n. The
first n layers partition the parties pf(t)/2, . . . , ptα (for some α ≤ 1 as will be
defined later) to n sets of consecutive parties, and the parties corresponding to
edges from the (i− 1)-th layer to the i-th layer are the parties from the i-th set.
The (n + 1)-th layer adds, for every node of layer n, edges as in the segment
construction in Section 4 for the set of parties ptα+1, . . . , p2t. We construct a
scheme Πtree:
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– Execute Πwt on Tramp.

1. Parameters:
– n: the number of layers in the tree (to be fixed later).

– q0, q1, q2, . . . , qn: q0 = f(t)
2

, qn ≤ t, qn+1 = 2t, where q1, q2, . . . , qn will
be chosen later.

– Let di = t+ if(t) for 0 ≤ i < t
f(t)

; m = d t
f(t)
e and dm = 2t.

– Let Wi = {0, γf(t)
2n

, 2γf(t)
2n

, . . . , b 2nqi
γf(t)
c · γf(t)

2n
} for 0 ≤ i ≤ n.

2. Layer V0 contains the root uε with q(uε) = q0.
3. For every 1 ≤ i ≤ n, for each uw1,w2,...,wi−1 ∈ Vi−1

and wi ∈ Wi ∪ {
∑i−1
j=1 wj} such that wi ≥

∑i−1
j=1 wj , add

the node u
w1,w2,...,wi−1,wi−

∑i−1
j=1 wj

in layer Vi, add the edge

(uw1,w2,...,wi−1 , uw1,w2,...,wi−1,wi−
∑i−1
j=1 wj

) (with weight wi −
∑i−1
j=1 wj),

and define q(uw1,...,wi−1,wi) = qi.
4. Add an additional layer Vn+1: For every 0 ≤ i ≤ t

f(t)
, for every

uw1,w2,...,wn ∈ Vn, add the node uw1,w2,...,wn,w to Vn+1, where w =
dγdi −

∑n
i=1 wi − γf(t)e, add the edge (uw1,w2,...,wn , uw1,w2,...,wn,w), and

define q(uw1,w2,...,wn,w) = di+1.

Fig. 4. The weighted tree Tramp used for realizing Γ ft,1/2,γ .

Lemma 6.1. Let f be a function such that f(t+f(t)) > f(t). The scheme Πtree

realizes the access structure Γ ft,1/2,γ .

Proof. We start by proving the correctness of the scheme, that is, if A =

{pi1 , pi2 , . . . , pik} such that t < ik ≤ 2t and k ≥ γik − γf(t)
2 , then A can re-

construct the secret. By Lemma 5.2, we need to prove that there is a path from
the root to a leaf uw1,...,wn+1

such that

|A ∩ {pq(uw1,...,wi−1
)+1, . . . , pq(uw1,...,wi

)}| ≥ wi (1)

for every 1 ≤ i ≤ n + 1. Let zi = |A ∩ {pqi−1+1, . . . , pqi}| for 1 ≤ i ≤ n. We
define the weights inductively. Assume that we defined w1, . . . , wi−1 such that
(1) holds for them. Let wi = max{w −

∑i−1
j=1 wj : w ∈ Wi, w ≤

∑i−1
j=1 wj + zi}.

By the construction of Wi, wi ≥ zi− γ
2nf(t). The path from the root to uw1,...,wn

satisfies (1) for every 1 ≤ i ≤ n and

n∑
i=1

wi ≥ |A ∩ {pf(t)/2, . . . , ptαn }| −
γf(t)

2
. (2)
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Let j be the index such that dj < ik ≤ dj+f(t) and let wn+1 = dγdj−
∑n
i=1 wi−

γf(t)e. By the construction of Tramp there is an edge between uw1,...,wn and
uw1,...,wn,wn+1 . To complete the proof of the correctness, we need to show that
|A ∩ {ptαn+1, . . . , pdj+f(t)}| ≥ wn+1:

|A ∩ {ptαn+1, . . . , pdj+f(t)}| = |A| − |A ∩ {pf(t)/2, . . . , ptαn }|

≥ γik −
γf(t)

2
−

(
n∑
i=1

wi +
γf(t)

2

)

≥ γdj −
n∑
i=1

wi − γf(t).

Since |A ∩ {ptαn+1, . . . , pdj+f(t)}| is an integer, |A ∩ {ptαn+1, . . . , pdj+f(t)}| ≥
dγdj −

∑n
i=1 wi − γf(t)e = wn+1.

We next prove the security of the scheme. Let A be an unauthorized set of
Γ ft,1/2,γ . By Lemma 5.2, we need to prove that there is no path from the root to

a leaf uw1,...,wn+1 such that

|A ∩ {pqw1,...,wi−1+1 , . . . , pqw1,...,wi
}| ≥ wi

for every i = 1, . . . , n + 1. Fix such a leaf uw1,...,wn+1 and let j be the index
such that wn+1 = dγdj −

∑n
i=1 wi − γf(t)e and q(uw1,...,wn+1) = dj+1. Since A

is unauthorized,

|A ∩ {pf(t)/2, . . . , pdj+1}| ≤ γdj+1 − f(dj+1) < γdj+1 − f(t), (3)

where the last inequality is implied by the assumption that f(t+ (j + 1)f(t)) ≥
f(t + f(t)) > f(t) for every t. If |A ∩ {pqw1,...,wi−1

+1, . . . , pqw1,...,wi
}| < wi for

some i = 1, . . . , n, then we are done. Otherwise,

|A ∩ {ptαn+1, . . . , pdj+1
}| = |A ∩ {pf(t)/2, . . . , pdj+1

}| − |A ∩ {pf(t)/2, . . . , ptαn }|

< (γdj+1 − f(t))−
n∑
i=1

wi ≤ wn+1.

6.1 Analysis of the Share Size

We next analyze the share size of the scheme Πtree for a function f(t) = tβ for
some 0 < β < 1. In this case, it would be convenient to write q0 = tα0 , q1 =
tα1 , . . . , qn = tαn , qn+1 = 2tαn+1 = 2t (where αn+1 = 1) and express the share
size as a function of α0, . . . , αn, αn+1.

Lemma 6.2. Let q0 = tβ/2, α0 = β, αn+1 = 1, qn+1 = 2t, and let n and
α1, α2, . . . , αn, αn be constants such that β < α1 < α2 < · · · < αn ≤ αn+1 = 1.
Denote qi = tαi for i = 1, . . . , n. For every 1 ≤ i ≤ n+ 1 and qi−1 < j ≤ qi, the

share size of the party pj in Πtree is O

(
j

∑i
`=1 α`−iβ
αi−1 log j

)
.
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Proof. The share of party pj is composed of many shares of Shamir’s threshold
secret-sharing scheme with O(t) parties; the size of each such share is O(log t).
The number of shares of a threshold secret-sharing that party pj gets is the
number of edges between layer i − 1 and layer i in Tramp, i.e., the number of
nodes in layer i in Tramp; this number is bounded from above by

i∏
`=1

|W`| =
i∏

`=1

2nq`
γf(t)

=
i∏

`=1

2n

γ
tα`−β =

(
2n

γ

)i
· t(

∑i
`=1 α`)−iβ .

This holds also for parties ptαn+1, . . . , p2t by taking αn+1 = 1 and |Wn+1| = t1−β .

As n, i, αi = O(1), the total share size of pj is O

(
j

∑i
`=1 α`−iβ
αi−1 log j

)
.

By Theorem 3.3 and Lemma 6.2 we get the following lemma.

Lemma 6.3. Let n and α0, α1, . . . , αn, αn+1 be constants such that β = α0 <
α1 < α2 < · · · < αn ≤ αn+1 = 1. Define

C = max

{∑i
`=1 α` − iβ
αi−1

: 1 ≤ i ≤ n+ 1

}
.

Then, there is a secret-sharing scheme realizing Γ
f(t)=tβ

t,1/2,γ , where the size of the

share of pj, for tβ/2 < j ≤ 2t, is O(jC log j) and there is an evolving secret-
sharing scheme realizing Γγt−tβ ,γt, where the size of the share of pj, for j ∈ N,

is O(jC log2 j) .

In order to find the best share size, we should find the number of layers n
and the values of α1, . . . , αn that minimize the above value C.

Example 6.4. Take α0 = β and αi = 2αi−1 for 0 ≤ i ≤ log 1/β and let i, j be
such that tαi−1 < j ≤ tαi . In this case n = log(1/β). The share size of party pj

in the scheme realizing Γ
f(t)=tβ

t,1/2,γ is O(jC log j), where

C =

∑i
`=1 α` − iβ
αi−1

=

∑i
`=1 2`β − iβ

2i−1β
=

2i+1 − 1− i
2i−1

≤ 4− 2β log(1/β),

where the last inequality is implied by the fact that i ≤ log(1/β). By Corol-
lary 3.4, this implies a scheme realizing the evolving access structure Γγt−tβ ,γt
with share size O(j4−β log(1/β) log2 j). This should be compared to the secret-
sharing scheme of [15], which realizes the dynamic majority access structure
(i.e., Γt/2−1,t/2) with share size Õ(j4). Thus, our scheme improves on the scheme
of [15] for every constant β > 0, showing that allowing a gap between the sizes of
the authorized and unauthorized sets reduces the share size, in the best known
schemes.
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Our goal in the rest of the section is to find better choices of α1, . . . , αn, αn
that will reduce the share size. For β = 1/8 this is done in Example 6.6; similar
optimization can be done for every fixed β. For general values of β this is done
in Claim 6.8, where we care about the asymptotic dependency of the exponent
in the share size on β.

Example 6.5. We next analyze the optimal share size that we can get by our
scheme using one layer. We need to choose β < α1 ≤ 1. By Lemma 6.2, the

share size of the parties pj where tβ/2 ≤ j ≤ tα1 is O(j
α1−β
β log j), and the share

size of the parties pj where tα1 < j ≤ 2t is O(j
α1+1−2β

α1 log j). We need to find

α such that max{α1−β
β , α1+1−2β

α1
} is minimized. The solution of this problem

is when α1−β
β = α1+1−2β

α1
(since increasing α1 will increase α1−β

β and decrease
α1+1−2β

α1
), therefore, α1 = β +

√
β − β2 and the exponent in the share size is√

1/β − 1. Note that by using zero layers, the exponent in share size is 1/β− 1.

When β > 1/2 it holds that 1/β − 1 <
√

1/β − 1, and zero layers are better in
this case than one layer. When β < 1/2, one layer is better than zero layers.

Example 6.6. We present an upper bound for the share size that can be achieved
by our construction for β = 1

8 . We get this upper bound for n = 2, that is, when

q0 = t1/8

2 , q1 = tα1 , q2 = tα2 , q3 = 2t. We need to find α1 and α2. By Lemma 6.2,

the share size of the parties pj , where t1/8/2 ≤ j ≤ tα1 , is O(j
α1−1/8

1/8 log j), the

share size of the parties pj , where tα1 < j ≤ tα2 , is O(j
α1+α2−2/8

α1 log j), and the

share size of the parties pj , where tα2 < j ≤ 2t, is O(j
α1+α2+1−3/8

α2 log j). In order
to find the an upper bound, we solve the following non-linear program.

Minimize C subject to:

α1 − 1/8 ≤ C/8
α2 + α1 − 2/8 ≤ Cα1

1 + α1 + α2 − 3/8 ≤ Cα2

1/8 < α1 < α2 ≤ 1

A possible solution for this problem is α1 = 0.413857, α2 = 0.792505. In this
case, C = 2.310852. However, we do not know if this solution is optimal.

Theorem 6.7. There is an evolving secret-sharing scheme realizing the evolving
access structure Γγt−t1/8,γt, where the share size of party pj is O(j2.32 log2 j).

Choosing the Parameters for the General case. In this subsection, we
show how to choose good parameters for a general 0 < β < 1/2. To minimize
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the share size, we need to minimize
∑i
`=1 α`−iβ
αi−1

. As the saving we aim to is bigger

than iβ, we will ignore this term and minimize
∑i
`=1 α`
αi−1

=
∑i−2
`=1 α`
αi−1

+ 1 + αi
αi−1

.

In Example 6.4, we saw that if we take the values of αi as a geometric sequence
with common ratio 2, then we get an exponent slightly smaller than 4. If α` is
much smaller than 2α`−1 for many values on `, then

∑i−2
`=1 α` will be greater

than αi−1 and the exponent in the share size will be larger than 4. On the other
hand, if αi is bigger than 2αi−1, then αi−1

αi
> 2 and, also in this case, the share

size will be larger than 4. Thus, we take a sequence that is close to geometric
sequence with common ratio 2.

Claim 6.8. Let α0 = β and αi = (2+ 1
2i )·αi−1 until the first n such that αn ≥ 1

(and define αn = 1). Then, for every i∑i
i=1 α` − iβ
αi−1

≤
(

4−O
(

1

log2(1/β)

))
.

Proof. Note that αi > 2αi−1, so n ≤ log(1/β). Furthermore, for every ` ≤ i

α` =
αi(

2 + 1
2(`+1)

)
· . . . ·

(
2 + 1

2i

) ≤ αi

(2 + 1
2i )

i−` .

Thus,

i∑
`=1

αj ≤
i∑

`=1

αi(
2 + 1

2i

)i−`
=

αi(
2 + 1

2i

)i
(
2 + 1

2i

)i+1 −
(
2 + 1

2i

)(
1 + 1

2i

)
≤ αi

(
2 +

1

2i

)(
1− 1

2i+ 1

)
.

For every 2 ≤ i ≤ n,∑i
`=1 α` − iβ
αi−1

≤
∑i−1
`=1 α` + αi
αi−1

≤
(

2 +
1

2(i− 1)

)(
1− 1

2(i− 1) + 1

)
+

αi
αi−1

≤ 4− 1

2i(2i− 1)

≤ 4−O
(

1

log2(1/β)

)
,

where the last inequality is implied by the fact that i ≤ n ≤ log(1/β). Note that
for i = n+ 1 it holds that αn

αn−1
= 1 and therefore the inequality holds.
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For example, for β = 2−20 the exponent is less than 4− 1/(40 · 39) < 3.9994.
This should be compared to the simpler solution given in Example 6.4, where
the exponent is 4− 40/220 > 3.99996.

By Lemma 6.3 and Claim 6.8, we obtain our evolving ramp secret-sharing
scheme, proving Theorem 1.1.

Remark 6.9. In our analysis in Section 6.1 we ignore the factor of iβ in the
exponent in the share size. This implies that in our construction of Tramp we
can take Wi = {0, 1, . . . , qi}. The saving in this case, compared to the scheme of
[15], stems from the fact that we take a collection of finite trees, where in each
tree we ignore the first f(t)/2 parties.

7 Reduction between Evolving Ramp Secret-Sharing
Schemes

In this section we show how to construct an evolving secret-sharing scheme re-
alizing Γγt−tβ ,γt for some constants γ, β from an evolving secret-sharing scheme
realizing Γt/d−((t/dγ)β−1),t/d for a constant d such that γ > 1/d. This construc-
tion is used to prove Theorem 1.2 from Lemma 4.3.

Theorem 7.1. Let 0 < β < 1, d ∈ N, and 1/d < γ < 1 be constants, and let
Π be a scheme that realizes the evolving ramp access structure Γt/d−(( t

γd )
β−1),t/d

such that the length of the share of party pj is c(j). Then there is a scheme
realizing the evolving ramp access structure Γγt−tβ ,γt such that the size of the
share of party pj is c(bγdjc).

Proof. In Figure 5 we describe the scheme Π ′ that realizes the evolving access
structure Γγt−tβ ,γt. Next we prove the correctness and security of this scheme
as well as analyzing its share size.

The Scheme Π ′

For every j ∈ N:

1. Give party pj the share of party pbγdjc in Π.

Fig. 5. The scheme Π ′ that realizes the evolving access structure Γγt−tβ ,γt.

First we observe that, as γd > 1, for every j > j′, parties pj and pj′ in
Π ′ get shares of parties pbγdjc and pbγdj′c in Π, respectively, such that bγdjc ≥
bγd(j′+1)c ≥ b(γdj′)+1c > bγdj′c, thus, the parties in Π ′ get shares of different
parties in Π.
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Correctness: Let A = {pi1 , . . . , pik} be a minimal authorized set, i.e., |A| =
k ≥ γik. The parties in A get shares of parties in the set {p1, . . . , pbγdikc} in Π
and |A| ≥ bγdikc/d, thus they can reconstruct the secret.

Security: Let A = {pi1 , . . . , pik} be an unauthorized set. Thus, for every 1 ≤
j ≤ k, parties pi1 , . . . , pij in Π ′ get shares of parties in the set {p1, . . . , pbγdijc},
and

j ≤ γij − (ij)
β ≤ bγdijc+ 1

d
−
(
bγdijc
γd

)β
≤ bγdijc

d
−

((
bγdijc
γd

)β
− 1

)
.

Thus, for every 1 ≤ j ≤ k, parties pi1 , . . . , pij in Π ′ get shares of an unauthorized
set in Γt/d−(( t

γd )
β−1),t/d, and the parties pi1 , . . . , pik get no information about

the secret.
Share size: Party pj gets the share of party pbγdjc in Π. Therefore, the share

size of party pj is c(bγdjc).

By applying the reduction of Theorem 7.1 to the scheme of Lemma 4.3, we
obtain Theorem 1.2.

8 An evolving (k/2, k)-ramp secret-sharing scheme

Komargodski et al. [14] presented an evolving secret-sharing scheme for the
evolving k-threshold access structure for a constant k (i.e., the complete ac-
cess structure containing all sets of size at least k). In their construction, the
j-th party’s share size is O(k log j), we denote this construction by Π0. An in-
teresting open question is whether the dependency on k can be improved. We
study a relaxtion of the problem, namely evolving (k/2, k)-ramp secret-sharing
for constant k; where every set that contains at least k parties can reconstruct
the secret, and any set of size at most k/2 cannot learn any information about
the secret. We require nothing regarding the sets of size greater than k/2 but
smaller than k. We construct an evolving (k/2, k)-ramp secret-sharing scheme
with share size O(log k log j). In our construction, we use the scheme Π0 of [14]
as a building box.

In Figure 6 we describe the scheme Πk/2,k that realizes the evolving (k/2, k)-
threshold access structure. As in [14], we first partition the parties into sets,
called generations, according to the order they arrive, where the i-th generation
contains the parties p2ki , . . . , p2k(i+1)−1.

We use the following observation in order to analyze the share size in Πk/2,k.

Observation 8.1. Shamir’s t-out-of-n secret-sharing scheme shares m differ-
ent secrets s1, s2, . . . , sm with sizes `1, . . . , `m among n parties using share size
max{dlog(n+ 1)e, `1 + `2 + · · ·+ `m}.

Proof. We simply share the secret s = s0◦s1◦· · ·◦sm by Shamir’s secret-sharing
scheme (where ◦ is the concatenation of string).
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The Scheme Πk/2,k

Let Π0 be the evolving k-threshold scheme of [14].
When party p2ki arrives, the dealer prepares shares for all the parties
{p2ki , . . . , p2k(i+1)−1}.

1. Generate the next k shares from the scheme Π0. Denote these shares by
vi1, v

i
2, . . . , v

i
k.

2. For ` ∈ {0, 1, . . . , log k}, share vi2` , . . . , v
i
2`+1−1 by a 2`-out-of-(2k(i+1)−2ki)

secret-sharing scheme among the parties {p2ki , . . . , p2k(i+1)−1}. Denote

this scheme by Πi
` . That is, the share vi1 is shared with threshold 1 using

Πi
1, the shares vi2, v

i
3 are shared with threshold 2 using Πi

2, the shares
vi4, . . . , v

i
7 are shared with threshold 4 using Πi

3, etc.

Fig. 6. The scheme Πk/2,k realizing the evolving (k/2, k)-access structure.

Theorem 8.2. The scheme Πk/2,k realizes the evolving ramp access structure
Γk/2,k with share size O(log k log j) for party pj.

Proof. Correcntess: we show that any set of size at least k can reconstruct the
secret. Let A = {pi1 , pi2 , . . . , pik} be a minimal authorized set such that pik is
in the g-th generation, that is, 2kg ≤ ik ≤ 2k(g+1) − 1. For 1 ≤ j ≤ g, let cj be
the number of of parties in A from the j-th generation. By the construction, cj
parties in generation j can reconstruct at least cj shares from generation j (this

is true since every vj` is shared by threshold of at most `). Therefore, the set A

can reconstruct at least
∑k
j=1 cj = k shares of Π0, thus, by the correctness of

Π0, the set A can reconstruct the secret.

Security: Let A be an unauthorized set of size at most k/2 ending in gen-
eration g. By the construction, cj parties from the j-th generation can recon-

struct at most 2cj − 1 shares from generation j (this is true since every vj` is
shared by threshold of at least d`/2e), thus the set A can reconstruct at most∑g
j=1(2cj − 1) < k shares of Π0. By the security of Π0, the set A cannot learn

any information about the secret.

Share size analysis: the share of party pj in generation g is composed of the
shares from the schemes Πi

` for every ` ∈ {0, 1, . . . , log k}. The size of generation

g is 2k(g+1) − 2kg ≤ 2kg · 2k. Party pj is in the b log jk c-th generation. The log of

the generation size of the generation of pj is less than kg + k ≤ k log j
k + k =

log j + k. The scheme Πi
` for every 0 ≤ ` ≤ log k requires share size max{log j +

k, |vg
2`
|+· · ·+|vg

2`+1−1|} (by Observation 8.1). The shares vg1 , . . . , v
g
k are generated

from Π0; recall that the share size of the n-th party in Π0 is k log n. By the
construction, k(g−1) shares fromΠ0 were generated for the previous generations.
Therefore,

|vg` | ≤ |v
g
k| ≤ k log kg ≤ k log k

log j

k
= k log log j.
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Thus, the share size in Πg
` is at most

max{log j + k, 2` · k log log j}.
The total share size is:

log k∑
`=0

max{log j + k, 2` · k log log j} ≤ (log k + 1)(log j + k) + 2k2 log log j.

When j > 22k
2

, the share size of pj is O(log k log j).

9 Properties of Optimal Choices of Parameters for the
Tree Technique

In this section we show the limitations of the tree technique for β ≥ 1/2. We
also give an upper bound on the number of layers minimizing the share size in
our scheme for general β.

9.1 The Share Size in Πtree

In this subsection, we analyze the share size in Πtree and prove that for 1/2 ≤
β < 1 the optimal share size is obtained when n = 0, i.e., it is Θ(j

1−β
β ).

Claim 9.1. For every β ≥ 1/2, the share size in Πtree is Ω(j
1−β
β ) for at least

one party pj.

Proof. Let j = tαn + 1. By Lemma 6.2, the share size of the party pj is Ω(jC),

where C =
1+

∑n−1
`=1 α`+αn−β(n+1)

αn
. It holds that,

n−1∑
`=1

α` = αn(C − 1− β
β

) + (n+ 1)β − 2β − 1

β
αn − 1

≤ αn(C − 1− β
β

) + (n+ 1)β − (2β − 1)− n− 1

= αn(C − 1− β
β

) + (n− 1)β,

where the inequality follows from the fact that αn > β and 2β−1 ≥ 0. As α` > β
for every 1 ≤ ` ≤ n − 1, we get that αn(C − 1−β

β ) ≥
∑n−1
`=1 α` − (n − 1)β ≥ 0,

i.e., C ≥ 1−β
β .

Remark 9.2. For every n > 0 and β > 1/2, Πtree with n layers has shares greater
than Πseg (since, 2β−1

β αn > 2β − 1 as αn > β).

Claim 9.3. For every β < 1/2 there is at least one party pj such that the share
size of pj in Πtree is Ω(j).

Proof. Let j = tαn + 1. The share size of party pj is Ω(jC
′
) where C ′ =

1+
∑n−1
`=1 α`+αn−β(n+1)

αn
≥ αn

αn
= 1 (since α` ≥ β for every 1 ≤ ` ≤ n− 1).
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9.2 Upper Bound on the Number of Layers in the Optimal Solution
for Πtree

In this section, we show that, for every β < 1/2, there exists a choice of the
parameters n, α1, . . . , αn that minimizes the share size of Πtree and the number
of layers n is at most O(log(1/β)).

Claim 9.4. Let n, α1, . . . , αn be parameters for Πtree. If the share size of party
pj, for every j ∈ N, in Πtree is less than j4 and there exist indices 1 ≤ i1 < i2 ≤
n− 2 such that αi2 < 2αi1 and αi1 ≥ 2β, then i2 ≤ i1 + 15.

Proof. By the assumption of the lemma, αi1 − β ≥ αi1 − 0.5αi1 = 0.5αi1 . Recall
that the the share size of party pj where j = tαi2 + 1 is greater than jC , where

C =
∑i2+1

`=1 α`−(i2+1)β

αi2
. We next analyze this expression, using the fact that α` >

β for 1 ≤ ` ≤ i1 − 1 and α` ≥ αi1 for ` ≥ i1.∑i2+1
`=1 α` − (i2 + 1)β

αi2
≥
∑i2+1
`=i1

(αi1 − β)

αi2

≥
∑i2+1
`=i1

0.5αi1
2αii

≥ i2 + 1− i1
4

.

Since we assume that the exponent is at most 4, we obtain that i2 ≤ i1 +15.

Lemma 9.5. For every β < 1/2, there exists a choice of the parameters n, β <
α1 < · · · < αn ≤ 1 that minimizes the share size in Πtree and the number of
layers n is at most 15 log(1/β) + 2.

Proof. First, let i be the largest index such that αi ≤ 2β. If i ≥ 2, we consider the
parameters n−i+1, αi, . . . , αn with n−i+1 layers. This choice of parameters can
only decrease the share size of parties ptαi+1, . . . , p2t (since α1, . . . , αi−1 > β).
The share size of party pj , where tβ/2 ≤ j ≤ tαi , is Õ(jC) where C = (αi −
β)/β ≤ 1. By Claim 9.3, for every β ≤ 1/2, the exponent of the share size is at
least 1. Thus, n− i+ 1, αi, . . . , αn is also optimal.2

Second, the optimal solution has exponent less than 4 (by our construction
in Section 6.1). Thus, by Claim 9.4, for every 1 ≤ log(1/β), in the interval
2dβ + 1, . . . , 2d+1β there are at most 15 layers. Thus, the total number of layers
is as most 15 log(1/β) + 2.
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