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Abstract

We present a private agnostic learner for halfspaces over an arbitrary finite domain X C R? with
sample complexity poly(d,2'°¢" IX1). The building block for this learner is a differentially pri-
vate algorithm for locating an approximate center point of m > poly(d, 2log™ [X Y points — a high
dimensional generalization of the median function. Our construction establishes a relationship
between these two problems that is reminiscent of the relation between the median and learning
one-dimensional thresholds [Bun et al. FOCS *15]. This relationship suggests that the problem of
privately locating a center point may have further applications in the design of differentially private
algorithms.

We also provide a lower bound on the sample complexity for privately finding a point in the
convex hull. For approximate differential privacy, we show a lower bound of m = Q(d+log* | X|),
whereas for pure differential privacy m = §(dlog | X]).

Keywords: Differential privacy, Private PAC learning, Halfspaces, Quasi-concave functions.

1. Introduction

Machine learning models are often trained on sensitive personal information, e.g., when analyzing
healthcare records or social media data. There is hence an increasing awareness and demand for pri-
vacy preserving machine learning technology. This motivated the line of works on private learning,
initiated by Kasiviswanathan et al. (2011), which provides strong (mathematically proven) privacy
protections for the training data. Specifically, these works aim at achieving differential privacy, a
strong notion of privacy that is now increasingly being adopted by both academic researchers and
industrial companies. Intuitively, a private learner is a PAC learner that guarantees that every single
example has almost no effect on the resulting classifier. Formally, a private learner is a PAC learner
that satisfies differential privacy w.r.t. its training data. The definition of differential privacy is,

Definition 1 (Dwork et al. (2006)) Let A be a randomized algorithm. Algorithm A is (,0)-
differentially private if for any two databases S, S’ that differ on one row, and any event T, we
have Pr[A(S) € T| < € - Pr[A(S’) € T] + 6. The notion is referred to as pure differential privacy
when 0 = 0, and approximate differential privacy when § > 0.

(© 2019 A. Beimel, S. Moran, K. Nissim & U. Stemmer.
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The initial work of Kasiviswanathan et al. (2011) showed that any finite concept class C' is pri-
vately learnable with sample complexity O(log |C|) (we omit in the introduction the dependencies
on accuracy and privacy parameters). Non-privately, ©(V C(C)) samples are necessary and suffi-
cient to PAC learn C, and much research has been devoted to understanding how large the gap is
between the sample complexity of private and non-private PAC learners. For pure differential pri-
vacy, it is known that a sample complexity of ©(log |C'|) is required even for learning some simple
concept classes such as one-dimensional thresholds, axis-aligned rectangles, balls, and halfspaces
(Beimel et al., 2014, 2013a; Feldman and Xiao, 2015). That is, generally speaking, learning with
pure differential privacy requires sample complexity proportional to log the size of the hypothesis
class. For example, in order to learn halfspaces in R, one must consider some finite discretization of
the problem, e.g. by assuming that input examples come from a finite set X C R?. A halfspace over
X is represented using d point from X, and hence, learning halfspaces over X with pure differential
privacy requires sample complexity O (log (lg‘)) = O(dlog|X]|). In contrast, learning halfspaces
non-privately requires sample complexity O(d). In particular, when the dimension d is constant,
learning halfspaces non-privately is achieved with constant sample complexity, while learning with
pure differential privacy requires sample complexity that is proportional to the representation length
of domain elements.

For approximate differential privacy, the current understanding is more limited. Recent results
established that the class of one-dimensional thresholds over a domain X C R requires sample
complexity between Q(log* | X|) and 200°¢" [X]) (Beimel et al. (2013b); Bun et al. (2015); Bun
(2016); Alon et al. (2018)). On the one hand, these results establish a separation between what can
be learned with or without privacy, as they imply that privately learning one-dimensional thresholds
over an infinite domain is impossible. On the other hand, these results show that, unlike with pure
differential privacy, the sample complexity of learning one-dimensional thresholds can be much
smaller than log |C| = log | X|. Beimel et al. (2013b) also established an upper bound of poly(d -
olog™ [X ‘) for privately learning the class of axis-aligned rectangles over X C R?. In a nutshell, this
concludes our current understanding of the sample complexity of approximate private learning. In
particular, before this work, it was not known whether similar upper bounds (that grow slower than
log |C|) can be established for “richer” concept classes, such as halfspaces, balls, and polynomials.

We answer this question positively, focusing on privately learning halfspaces. The class of
halfspaces forms an important primitive in machine learning as learning halfspaces implies learning
many other concept classes (Ben-David and Litman (1998)). In particular, it is the basis of popular
algorithms such as neural nets and kernel machines, as well as various geometric classes (e.g.,
polynomial threshold functions, polytopes, and d-dimensional balls).

Our Results. Our approach for privately learning halfspaces is based on a reduction to the task
of privately finding a point in the convex hull of a given input dataset. That is, towards privately
learning halfspaces we first design a sample-efficient differentially private algorithm for identifying
a point in the convex hull of the given data, and then we show how to use such an algorithm for
privately learning halfspaces.

Privately finding a point in the convex hull. We initiate the study of privately finding a point
in the convex hull of a dataset S C X C R?. Even though this is a very natural problem (with
important applications, in particular to learning halfspaces), it has not been considered before in
the literature of differential privacy. One might try to solve this problem using the exponential
mechanism of McSherry and Talwar (2007), which, given a dataset and a quality function, privately
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identifies a point with approximately maximum quality. To that end, one must first settle on a
suitable quality function such that if a point x € X has a high quality then this point is guaranteed
to be in the convex hull of S. Note that the indicator function g(x) = 1 if and only if x is in
the convex hull of S is not a good option, as every point x € X has quality either 0 or 1, and
the exponential mechanism only guarantees a solution with approximately maximum quality (with
additive error larger than 1).

Our approach is based on the concept of Tukey depth (Tukey, 1975). Given a dataset S C
R?, a point x € R¢ has the Tukey depth at most ¢ if there exists a set A C S of size ¢ such
that x is not in the convex hull of S\ A. See Section 2 for an equivalent definition that has a
geometric flavor. Instantiating the exponential mechanism with the Tukey depth as the quality
function results in a private algorithm for identifying a point in the convex hull of a dataset S C X C
R with sample complexity poly(d, log|X|).! We show that this upper bound can be improved to
poly(d, 218" IX | ). Our construction utilizes an algorithm by Beimel et al. (2013b) for approximately
maximizing (one-dimensional) quasi-concave functions with differential privacy (see Definition 4
for quasi-concavity). To that end, we show that it is possible to find a point with high Tukey depth
in iterations over the axes, and show that the appropriate functions are indeed quasi-concave. This
allows us to instantiate the algorithm of Beimel et al. (2013b) to identify a point in the convex hull
of the dataset one coordinate at a time. We obtain the following theorem.

Theorem 2 (Informal) Let X C R% Then, there exists an (&, 0)-differentially private algorithm
that given a dataset S € X™ identifies (w.h.p.) a point in the convex hull of S, provided that
m = |S| = poly (d, olog™ | X %, log %)

In fact, our algorithm returns a point with a large Tukey-depth (i.e., an approximate center
point), which is in particular a point in the convex hull of the dataset.

A privacy preserving reduction from halfspaces to convex hull. We present a reduction from
private learning halfspaces to privately finding a point in the convex hull of a set of points, that is, we
show how to construct a private algorithm for learning halfsapces given a black-box that privately
finds a point in the convex hull. Furthermore, we present a better analysis of our reduction for the
case that the black-box returns a point with high Tukey depth (e.g., an approximate center point).
Thus, using our private algorithm that finds an approximate center point results in a private learning
algorithm with better sample complexity.

Our reduction can be thought of as a generalization of the results by Bun et al. (2015), who
showed that the task of privately learning one-dimensional thresholds is equivalent to the task of
privately solving the interior point problem. In this problem, given a set of input numbers, the task
is to identify a number between the minimal and the maximal input numbers. Indeed, this is exactly
the one dimensional version of the convex hull problem we consider. However, the reduction of
Bun et al. (2015) does not apply for halfspaces, and we needed to design a different reduction.

Our reduction is based on the sample and aggregate paradigm: assume a differentially private
algorithm A which gets a (sufficiently large) dataset D C R¢ and returns a point in the convex

1. We remark that the domain X does not necessarily contain a point with a high Tukey depth, even when the input
points come from X C R®. Hence, one must first extend the domain X to make sure that a good solution exists.
We show how to construct a domain X of size | X| = | X |d2 that contains a point with Tukey depth > m/d, where
m is the number of input points. Applying the exponential mechanism to select a point from X results in a private
algorithm with sample complexity O(d* log | X|).
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hull of D. This can be used to privately learn halfspaces as follows. Given an input sample S,
partition it to sufficiently many subsamples 51, . . ., Sk, and pick for each S; an arbitrary halfspace
h; which is consistent with .S;. Next, apply A to privately find a point in the convex hull of the
h;’s (to this end represent each h; as a point in R4 via its normal vector and bias), and output
the halfspace h corresponding to the returned point. It can be shown that if each of the h;’s has a
sufficiently low generalization error, which is true if the sample is big enough, then the resulting
(privately computed) halfspace also has a low generalization error. Instantiating this reduction with
our algorithm for the convex hull we get the following theorem.

Theorem 3 (Informal) Let X C RY. Then, there exists an (e, §)-differentially private (e, 3)-PAC
learner for halfspaces over X with sample complexity poly (d, log” [X| L o0 %)

’ e

In particular, for any constant d, Theorem 3 gives a private learner for halfspaces over X C R
with sample complexity 29U°g" [X]) Before our work, this was known only for d = 1.

Our construction also results in a private agnostic learner for halfspaces, where for a distribution
on labeled examples (that might not be consistent with a halfspace) the goal is to privately find a half-
space whose error is close to the error of the best halfspace for this distribution. To get our agnostic
learner we use a generic transformation of Beimel et al. (2015), who showed that if there exists a
private learner for a class of functions, then there exists a private agnostic learner for the class with
similar sample complexity. Using this transformation with our learner from Theorem 3, we get a

private agnostic learner for halfspaces with sample complexity m = poly (d, log™ | X] aie, log %) .

A lower bound for finding a point in the convex hull. Without privacy considerations, finding
a point in the convex hull of the data is trivial. Nevertheless, we show that any (¢, §)-differentially
private algorithm for this task (in d dimensions) must have sample complexity m = Q(g log% +
log* | X|). In comparison, our algorithm requires sample of size at least O(d>5290°g" IXD) /¢) (ig-
noring the dependency on ¢ and ().

Recall that the sample complexity of privately learning a class C' is always at most O(log |C]).
Hence, it might be tempting to guess that a sample complexity of m = O(log|X]|) should suffice
for privately finding a point in the convex hull of a dataset S C X C R¢, even with pure (e, 0)-
differential privacy. We show that this is not the case, and that any pure (e, 0)-differentially private
algorithm for this task must have sample complexity m = Q(g log | X|).

Related Work. Most related to our work is the work on private learning and its sample and time
complexity by Blum et al. (2005); Kasiviswanathan et al. (2011); Beimel et al. (2014); Chaud-
huri and Hsu (2011); Beimel et al. (2013a); Feldman and Xiao (2015); Beimel et al. (2013b); Bun
et al. (2015); Bun and Zhandry (2016); Kaplan et al. (2019). As some of these works demonstrate
efficiency gaps between private and non-private learning, alternative models have been explored
including semi-supervised learning (Beimel et al. (2015)), learning multiple concepts (Bun et al.
(2016)), and prediction (Dwork and Feldman (2018), Bassily et al. (2018)).

Dunagan and Vempala (2008) showed an efficient (non-private) learner for halfspaces that works
in (a variant of) the statistical query (SQ) model of Kearns (1998). It is known that SQ learners can
be transformed to preserve differential privacy (Blum et al., 2005), and the algorithm of Dunagan
and Vempala (2008) yields a differentially private efficient learner for halfspaces over examples
from X C R with sample complexity poly(d,log|X|). Another related work is that of Hsu et al.
(2014) who constructed an algorithm for approximately solving linear programs with differential
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privacy. While learning halfspaces non-privately easily reduces to solving linear programs, it is not
clear whether the results of Hsu et al. (2014) imply a private learner for halfspaces (due to the types
of errors they incur).

Blum et al. (2005) and Nguyen et al. (2019) studied the related problem of privately learning
large-margin halfspaces, i.e., learning halfspaces under the assumption that no example lies too
close to the separating hyperplane. Specifically, Nguyen et al. (2019) presented an algorithm with
sample complexity O(ﬁ), where v quantifies the margin. In addition, several other works devel-
oped tools that implicitly imply private learning of large-margin halfspaces. These include the work
of Blum et al. (2008) who presented an algorithm for the task of private sanitization of large-margin
halfspaces, and the works of Chaudhuri et al. (2011) and Bassily et al. (2014) who studied private
ERM. We remark that in this work we do not make any margin assumptions.

2. Preliminaries

In this section we introduce a tool that enables our constructions, describe the geometric object we
use throughout the paper, and present some of their properties. See the full version of this paper for
additional preliminaries.

Notations. The input of our algorithm is a multiset .S whose elements are taken (possibly with
repetition) from a set X. We will abuse notation and write that S C X. Databases S; and S, are
called neighboring if they differ in exactly one entry. Throughout this paper we use € and ¢ for the
privacy parameters, « for the error parameter, and [ for the confidence parameter, and m for the
sample size.

A Private Algorithm for Optimizing Quasi-concave Functions — ARecConcave: We next de-
scribe properties of an algorithm ARecconcave Of Beimel et al. (2013b). This algorithm is given a
quasi-concave function ) (defined below) and privately finds a point x such that Q(z) is close to
its maximum provided that the maximum of @Q(z) is large enough (see (1)).

Definition 4 A function Q(-) is quasi-concave if Q(¢) > min{Q(i), Q(j)} for everyi < £ < j.

Definition 5 (Sensitivity) The sensitivity of a function f : X™ — R is the smallest k such that for
every neighboring D, D" € X™, we have |f(D) — f(D")] < k.

Proposition 6 (Properties of Algorithm AReccconcave (Beimel et al., 2013b)) LerQ : X* xX —
R be a sensitivity-1 function (that is, for every x € X, the Sfunction Q(-, z) has sensitivity 1). Denote
T = |X|andlet o < % and f3, €, 0, r be parameters. There exits an (e, §)-differentially private algo-
rithm, called ARecConcave, SUch that the following holds. If ARecConcave i executed on a database
S € X* such that Q(S, -) is quasi-concave and in addition

= 12log* T 192(log* T2

max{Q(S, i)} > r > 89T *

ieX ae
then with probability at least 1 — [3 the algorithm outputs an index j s.t. Q(S,j) > (1 — a)r.

Claim 7 Let {fi}icT be a finite family of quasi-concave functions. Then, f(x) = mineT fi(z) is
also quasi-concave.

The proof of Claim 7 appears in the full version of this work.
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Private Agnostic-PAC Learning. In agnostic PAC learning, there is a distribution over labeled
examples and the goal is to find a hypothesis whose error is close to the error of the best concept
in class with respect to the distribution. Beimel et al. (2015) proved that any private learner for a
class of functions C can be converted to a private agnostic learner for the class with similar sample
complexity. Formally,

Theorem 8 (Beimel et al. (2015)) Let C be a concept class with VC dimension VC(C). There
exists a constant \ such that if there exists an (1, )-differentially private (c, 3)-PAC learner for C
with sample complexity m, then for every € > 0 there exists a (¢, §)-differentially private (Ao, \(3)-

agnostic PAC learner for C with sample complexity O (% + - VveC(0) log(o%ﬁ)> )

a?e

Halfspaces, Convex Hull, and Tukey Depth. We next define the geometric objects we use in this
paper.

Definition 9 (Halfspaces and Hyperplanes) Ler X C R% For ay,...,aq,w € R, let the halfs-
pacehsg, a0 X — {0,1} bedefinedashs,, .. a,w(x1,...,2q4) = Lifand only ifzgi:l a;T; >
w. Define the concept class HALFSPACE(X') = {hsq,, . ayw}a1,..aqwer. We say that a halfspace
hs contains a point x € R? if hs(x) = 1. The hyperplane hp,, ... ayw defined by ay, ... aq,w is

the set of all points x = (x1,...,xq) such that Zle a;r; = w.

Definition 10 Ler S C R? be a finite multiset of points. A point x € R% is in the convex hull of S if
X is a convex combination of the elements of S, that is, there exists non-negative numbers {ay }

yES
such that g ay =land ) gayy = x.

We next define the Tukey median of a point, which generalizes the median to R?.

Definition 11 (Tukey depth (Tukey, 1975)) Let S C R¢ be a finite multiset of points. The Tukey
depth of a point x € R® with respect to S, denoted by tds(x), is the minimum number of points in
S contained in a halfspace containing the point x, that is,

6% (x) = i S:h =11.
(x) hsEHALFSPE(}éZ{T,hS(X)Zl [y € s(y) H

The Tukey median of S is a point maximizing the Tukey depth. A centerpoint is a point of depth at
least |S|/(d + 1).

Observation 12 The Tukey depth of a point is a sensitivity one function of the multiset S.

Claim 13 (Tukey depth, alternative definition) Ler S C R? be a multiset of points. For a given
ai,...,aq € R define the function

d d
tash...,ad(w) £ min{ {(yh .- 'ayd) €S: Zaiyi > ’LU} ) {(ylv e ayd) €S5: Zaiyi < w} } :

i=1 i=1
(2)

Then,
d
S : S

td” (21, ..., 2p) = (al,.r.?izg)eR Corau (; ami) . (3)
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Claim 14 (Tukey depth, another alternative definition) Ler S C RY be a multiset of points. The

Tukey depth of a point X is the size of the smallest set A C S such that x is not in the convex hull of
S\ A

Claim 15 (Yaglom and Boltyanskii (1961); Edelsbrunner (1987)) Let S C RY be a multiset of
points. There exists x € R% such that td°(x) > |S|/(d + 1).

Thus, a centerpoint always exists and a Tukey median must be a centerpoint. However, not
every centerpoint is a Tukey median. We will use the following regarding the set of points of whose
Tukey depth is at least r.

Fact 16 (see e.g. Liu et al. (2014)) Let S C R? be a multiset of points and r > 0. Define T (r) =
{x € R? : td®(x) > r}. Then T (r) is a polytope whose faces are supported by affine subspaces
that are spanned by points from S.

So, for example the set of all Tukey medians is a polytope and if it is d-dimensional then each of its
facet is supported by a hyperplane that passes through d + 1 points from S.

3. Finding a Point in the Convex Hull

Our goal is to privately find a point in the convex hull of a set of input points (i.e., the database).
We will actually achieve a stronger task and find a point whose Tukey depth is at least |S|/2(d + 1)
(provided that | S| is large enough). Observe that x is in the convex hull of S if and only if td® (x) >
0. As we mentioned in the introduction, finding a point whose Tukey depth is high results in a better
learning algorithms for halfspaces.

The idea of our algorithm is to find the point x = (x1, ..., x4) coordinate after coordinate: we
use ARecConcave to find a value =7 that can be extended by some x»,...,z4 so that the depth of
(7, x2...,24) is close to the depth of the Tukey median, then we find a value 3 so that there is a
point (x7, 25, x3...,x4) whose depth is close to the depth of the Tukey median, and so forth until
we find all coordinates. The parameters in ARecConcave are set such that in each step we lose depth
of at most n/2(d+1)? compared to the Tukey median, resulting in a point (27, . . ., z;) whose depth
is at most n/2(d + 1) less than the depth of the Tukey median, i.e., its depth is at least n/2(d + 1).

Defining a Quasi-Concave Function. To apply the above approach, we need to prove that the
functions considered in the algorithm ARecConcave are quasi-concave.

Definition 17 Let S C R be a finite multiset. For every 1 < i < d and every z},..., x5 | € R,

A S
define ink’m’w;ll(mi) = maxXy, ,..a.er td7 (2], .. T, Ty, ..., Tg).

Lemma 18 For every 1 < i < d and every z7,...,x;_; € R, the function Q%vaz_l(mi) is a
quasi-concave function. Furthermore, Q% gt (x;) is a sensitivity 1 function of the multiset S.

slg

See the full version of this work for the proof.
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Constructing Finite Domains. The input to the private algorithm for finding a point in the convex
hull is a dataset of points S C X, where X is a finite set whose size is at most 7. We note that the
dataset .S may contain several copies of the same point (i.e. it is a multiset). By the results of Bun
et al. (2015) and Alon et al. (2018), the restriction to subsets of a finite set X is essential (even when
d = 1). The algorithm performs d iterations, where in iteration ¢ it computes the ¢’th coordinate of
the output point.

The point outputted by the algorithm is an (approximate) Tukey Median with respect S C X.
Note that a Tukey median might not be a point in X. Furthermore, the proof that the functions
Q%’m@: | are quasi-concave is over the reals. We construct finite domains so that the functions

Q%’_wwr_l attain their maximum over these finite domains. In each iteration, the algorithm, given
x],...,x;_q, constructs a new domain. We will not try to minimize the size of the domains as
the dependency of the sample complexity of ARecConcave ON the size of the domain, denoted X,
is 20(og" IX]) The next claim describes the extension in the i’th iteration.

Claim 19 For every 1 <1 < d, and for every x7,...,x;_| € R there exists sets Xi, el X, such
that | X;| < | X 2% fori < j < d and for every multiset S C X:

o There exist x",..., x5 € X; X -+ X Xg such that
S/ % * 1 1S,.% * m m
max td (I’l,...,l‘i_l,xi,...,%d) —td (x17...,xi_1,x,i ,...,xd ), (4)
Ti,..., LgER
e Forevery x; € X; there exist x}} ,...,x; € Xiy1 X ... X Xg such that
tdS’ * * o _tdS * * o .m m
max (@], T, @iy T, - xq) = 8d7 (2], @, T, X, -, X,

Tit1,-,LdER

(&)

Proof The construction heavily exploits Theorem 16. Let L denote the set of all affine subspaces
that are spanned by points in X. Since each such subspace is spanned by at most d + 1 points, it
follows that |L| < (Jl)ﬁl) < | X|4*t!. By Theorem 16, for every dataset S and every r > 0, every
vertex of 7 (r) (the polytope of points of Tukey depth at least ) can be written as the intersection
of at most d subspaces in L. In particular, there exists a Tukey median that is the intersection of at
most d subspaces in L.

We construct the sets X;, ..., X as follows. First, for every d — 4 subspaces in L such that there
exists aunique pointx = (x]...x} {,;...,xq) in the intersection of these d—i subspaces, we add
x; to X j forall j > 7. We next argue that Equation (4) is satisfied: indeed, by Theorem 16, this con-
struction contains a vertex of every set of the form 7 (r)N{(x1,...,24) € R : zy = x%,... 251 =
xj_, },forevery r > 0. In particular, by plugging r = max,,,, . z,eR tds(f{, e T Ty, ),
it contains a point satisfying (4). Second, for every z; € X;, we repeat the same process with respect
tox] ...z ;,x; adding values to X j for all j > ¢ + 1; this ensures that Equation (5) is satisfied.

As explained above, the size of X is at most | X |%(4+1) and the size of X ;j for every j > i is at
most |Xi”X|d(d+1) < |X|2d(d+1). ]
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Algorithm Api,qTukey
Algorithm:
(i) Let 3, ¢, ¢ be the utility/privacy parameters, and .S be an input database from X.
(i1) Fori =1to d do:

(a) Construct the sets X, ..., Xy for xy,...,x;_; as in Theorem 19. Let T =
max;<j<d | Xjl. X
(* By Theorem 19, log* T' = log* d + log™ | X| + O(1). %)

(b) For every z; € X',» define

S N\ A S, * * )
Qzr,er (@) = max _ td”(2],..., 21, Ty ..., Ta).
Tit1€Xi41,.-,2d€EXg

(¢) Execute ARecConcave ON S with the function Qf’{

G-Un 1 o _B _ _ e _ 5 e s
d@+1) Q0 = 39: 00 = g,€0 = WW’% = 5. Let x be its output.

- _n_ _
@ and parameters r = 75

(i) Return z7, ..., 2.

Figure 1: Algorithm ApindTukey for finding a point whose Tukey depth is at least n/2(d + 1).

The Algorithm. In Figure 1, we present an (e, §)-differentially private algorithm Apindrukey that
with probability at least 1 — 3 finds a point whose Tukey depth is at least n/2(d + 1). The informal
description of the algorithm appears in the beginning of Section 3.

Theorem 20 Letc < 1land § < 1/2 and X C R? be a set of size at most T. Assume that
the input dataset S C X satisfies |S| = O % . 425 . 9O(log* T+log* d) logo"r’(%) log(%) . Then,

AFindTukey is an (g, 8)-differentially private algorithm that with probability at least 1 — (3 returns a
point x7, ..., such that tds(x{, N 72(&'1)-

The correctness (utility) of ApindTukey is proved by induction, using the correctness of ARrecConcave-
The privacy analysis follows from the privacy of ARecConcave and using composition properties of

differential privacy. See the full version of this work for the details.

Running Time of the Algorithm. A straightforward implementation of ApinqTukey results in
an algorithm performing at most | X ]pOIY(d) arithmetic operations on elements of X. To see this,
consider the ith iteration, and observe that Step (a) can be implemented in time | X \pon) (as spec-
ified in the analysis of Theorem 19). For Step (c), note that in time | X [P°¥(?) we can compute
Q%,_._’x* 1(%) for every x; € X;. Once these are computed, the runtime of ARecConcave 1S at

i—
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most poly(|X;|). Overall, the algorithm an be implemented using at most | X [P°¥(4) arithmetic
operations.

4. Learning Halfspaces Using Convex Hull

We describe in Figure 2 a reduction from learning halfspaces to finding a point in a convex hull of a
multiset of points. Furthermore, we show that if the algorithm we use in the reduction finds a point
whose Tukey depth is high (as our algorithm from Section 3 does), then the required sample com-
plexity of the learning algorithm is reduced. As a result, we get an upper bound of O(d4‘521°g* X ‘)
on the sample complexity of private learning halfspaces (ignoring the privacy and learning parame-
ters). In comparison, using the exponential mechanism of McSherry and Talwar (2007) results in a
(e, )-deferentially private algorithm whose sample complexity is O(d log |X|), e.g., for the inter-
esting case where X = [T']? for some T, the complexity is O(d? log T'). Our upper bound is better
than the sample complexity of the exponential mechanism when d is small compared to log |T], in
particular when d is constant.

Algorithm ALearnHalfSpace

Preprocessing:
e Fix aset H C R¥! that contains representations of all halfspaces in HALFSPACE(X ).
Algorithm:

1. Lete, 4, o, 3 be the privacy and utility parameters and let S be a realizable input sample
of size s, where s is as in Theorem 21.

2. Partition S into m equisized subsamples Si,...,S,,, where m = m(d +
1,2| X%, ¢, 4, 8/2) as in Theorem 21.
(* Note that each S; has size @(dlog(ﬁ)+log(2m/ﬁ)). *)

ra/m

3. For each S; pick an arbitrary consistent halfpace h; € H.

4. Apply an (e, 0)-differentially private algorithm A for finding a point in a convex hull
with parameters ¢, 9, g on Hy = (hy...hp).

5. Output the halfspace h found by A.

Figure 2: A reduction from learning halfspaces to finding a point in a convex hull.

Theorem 21 Assume that Algorithm A used in step 4 of Algorithm Al carnHaltSpace 15 an (€, 9)-
differentialy private algorithm that finds with probability at least 1 — 3 a point in a convex hull for
a multisets S C X C R? whose Tukey depth is at least r provided that |S| > m(d, |X|,e, 4, 3) for

10
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Lete < 1,6 < % and o, B < 1 be the privacy and utility parameters. Then, ArcarmHalfSpace
is an (g, d)-differentially private (c, 3)-PAC learner for HALFSPACE(X) with sample complexity

m

<= O<m2(dlog(a)+log(m/ﬁ))> where m = m(d+ 1, 2[X\d+l,€,5, B/2).

ro

Using AFrindTukey in step 4 of Algorithm Ar carnHaltSpace, We get the following corollary (which
follows from Theorem 20 and Theorem 21).

Corollary 22 Lete < 1, § < 1/2, and X C R? be a set. There exists an (<, 6)-differentially
private (a, 3)-PAC learner with sample complexity s for HALFSPACE(X ) with

L O (d4.520(log* | X |+log* d) 10g1.5 % 10g2 [13)
e

Corollary 22 establishes an upper bound on the sample complexity of privately learning half-
spaces whose dependency on the domain size |X| is 20(10g"(IX])) " The crux of the algorithm is
a reduction to privately publishing a point with a large Tukey depth with respect to a given input
dataset. A drawback of this approach is that the latter task is likely to be computationally difficult
(even without privacy constraints), unless the dimension d is constant (see Miller and Sheehy (2010)
and references within).

In ApcarnHalfSpace W€ can use an algorithm A that finds a point in the convex hull (i.e., a point

whose Tukey depth is at least 1). The resulting learning algorithm require sample complexity of

2, m
O(m d1og( D‘O)éﬂog(m/ A) ), where m is the sample complexity of .A. This may result in a more effi-

cient private learning algorithm for halfspaces as the task of privately finding a point in the convex
hull might be easier than the task of privately finding a point with high Tukey depth. Furthermore,
in this case, we can use an algorithm that privately finds a hypothesis that is a linear combination
with positive coefficients of the hypotheses in Hy. This follows from the observation that if all
hypotheses in Hy are correct on a point X, then any linear combination with positive coefficients of
the hypotheses in Hy is correct on x.

Private agnostic-PAC learner for halfspaces. Instantiating the transformation of Beimel et al.
(2015) for the agnostic case (see Theorem 8) with our learner from Corollary 22, we obtain a private
agnostic learner for halfspaces.

Corollary 23 Lete < 1,5 < 1/2, and X C R? be a set. There exists an (¢, §)-differentially
private («, 3)-agnostic PAC learner with sample complexity s for HALFSPACE(X ) with

R d4-590(log™ | X|+log™ d)
5= O<

logl‘5 %log2 % dlog(ﬁ)
+ )
e e

5. A Lower Bound on the Sample Complexity of Privately Finding a Point in the
Convex Hull

In this section we show a lower bound on the sample complexity of privately finding a point in
the convex hull of a database S C X = [T']%. We show that any (e, §)-differentially private algo-
rithm for this task must have sample complexity Q(g log %) Our lower bound actually applies to a
possibly simpler task of finding a non-trivial linear combination of the points in the database.

11



PRIVATE CENTER POINTS AND LEARNING OF HALFSPACES

By Bun et al. (2015), finding a point in the convex hull (even for d = 1) requires sam-
ple complexity Q(log*T"). Thus, together we get a lower bound on the sample complexity of
Q(41og 3 + log* 7).

It may be tempting to guess that, even with pure (e, 0)-differential privacy, a sample complexity
of O(log|X|) = O(dlogT) should suffice for solving this task, as the size of the output space
is T, because S C [T]d, and hence (it seems) that one could privately solve this problem using
the exponential mechanism of McSherry and Talwar (2007) with sample complexity that depends
logarithmically on the size of the output space. We show that this is not the case, and that any
(e, 0)-differentially private algorithm for this task must have sample complexity Q(dg—2 logT).

Theorem 24 Let T > 2, and d > 10. Let A be an (e, 0)-differentially private algorithm that
takes a database S C [T)? of size m and returns, with probability at least 1/2, a non-trivial linear

combination of the points in S. Then, m = () (min {%2 log T, g log %}) .

The proof of Theorem 24 builds on the analysis of Blum et al. (2008) for lower bounding the
sample complexity of releasing approximate answers for counting queries. See the full version of
this work for more details.
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