
ar
X

iv
:1

91
1.

06
87

9v
4

 [c
s.C

R
]

14
 A

pr
 2

02
0

Separating Local & Shuffled

Differential Privacy via Histograms

Victor Balcer∗ and Albert Cheu†

April 15, 2020

Abstract

Recent work in differential privacy has highlighted the shuffled model as a promising avenue
to compute accurate statistics while keeping raw data in users’ hands. We present a protocol in
this model that estimates histograms with error independent of the domain size. This implies
an arbitrarily large gap in sample complexity between the shuffled and local models. On the
other hand, we show that the models are equivalent when we impose the constraints of pure
differential privacy and single-message randomizers.

1 Introduction

The local model of private computation has minimal trust assumptions: each user executes a
randomized algorithm on their data and sends the output message to an analyzer [17, 19, 11].
While this model has appeal to the users—their data is never shared in the clear—the noise in every
message poses a roadblock to accurate statistics. For example, a locally private d-bin histogram
has, on some bin, error scaling with

√
log d. But when users trust the analyzer with their raw data

(the central model), there is an algorithm that achieves error independent of d on every bin.
Because the local and central models lie at the extremes of trust, recent work has focused on the

intermediate shuffled model [6, 8]. In this model, users execute ranomization like in the local model
but now a trusted shuffler applies a uniformly random permutation to all user messages before
the analyzer can view them. The anonymity provided by the shuffler allows users to introduce less
noise than in the local model while achieving the same level of privacy. This prompts the following
questions:

In terms of accuracy, how well separated is the shuffled model from the local model?

How close is the shuffled model to the central model?

1.1 Our Results

In Section 3, we provide a new protocol for histograms in the shuffled model. To quantify accu-
racy, we bound the simultaneous error : the maximum difference over all bins between each bin’s
estimated frequency and its true frequency in the input dataset.

∗School of Engineering & Applied Sciences, Harvard University. Supported by NSF grant CNS-1565387.
†Khoury College of Computer Sciences, Northeastern University. Supported by NSF grants CCF-1718088, CCF-

1750640, and CNS-1816028.

1

http://arxiv.org/abs/1911.06879v4

Theorem 1.1 (Informal). For any ε < 1 and δ = o(1/n), there exists a shuffled protocol that sat-
isfies (ε, δ)-differential privacy and reports a histogram with simultaneous error O(log(1/δ)/(ε2n))
with constant probability.

For comparison, [8] give a protocol with error O(
√

log d · log 1/δ/(εn)). Our protocol has smaller
error when log(1/δ) = o(log d). In the natural regime where δ = Θ(poly(1/n)), that condition is
satisfied when log n = o(log d). An example for this setting would be a dataset holding the browser
home page of each user. The data universe could consist of all strings up to a certain length which
would far exceed the number of users.

In Section 3.3, we show that the histogram protocol has strong implications for the distributional
setting. Here, the rows of the dataset are independently drawn from a probability distribution. We
focus on the sample complexity, which is the number of samples needed to identify or estimate some
feature of the distribution. We prove that the separation in sample complexity between the local
and shuffled models can be made arbitrarily large:

Theorem 1.2 (Informal). There is a distributional problem where the sample complexity in the
local model scales with a parameter of the problem, but the sample complexity in the shuffled model
is independent of that parameter.

We also show that there is a distributional problem which requires polynomially more samples
in the sequentially interactive local model than in the shuffled model. This is done by reusing the
techniques to prove Theorem 1.2.

A natural conjecture is that there are progressively weaker versions of Theorem 1.2 for progres-
sively constrained versions of the model. In Section 4, we prove that the shuffled model collapses
to the local model when constraints are too strong:

Theorem 1.3 (Informal). For every single-message shuffled protocol that satisfies pure differential
privacy, there is a local protocol with exactly the same privacy and sample complexity guarantees.

1.2 Related Work

Table 1 presents our histogram result alongside existing results for the problem—all previous bounds
on simultaneous error in the shuffled model depend on d. Although we focus on simultaneous error,
error metrics focusing on per-bin error are also used in the literature such as mean squared error
(MSE) and high probability confidence intervals on each bin. When considering these alternative
metrics or when d is not large, other histogram protocols may outperform ours (see e.g. [18]).

Quantitative separations between the local and shuffled models exist in the literature [8, 1, 13,
12]. As a concrete example, [8] implies that the sample complexity of Bernoulli mean estimation
in the shuffled model is O(1/α2 + log(1/δ)/(αε)). In contrast, [5] gives a lower bound of Ω(1/α2ε2)
in the local model.

Prior work have shown limits of the shuffled model, albeit under communication constraints.
The first set of results follow from a lemma in [8]: a single-message shuffled protocol implies a local
protocol with a weaker differential privacy guarantee. Specifically, if the shuffled protocol obeys
(ε, δ)-differential privacy, then the local protocol obeys (ε + lnn, δ)-differential privacy. Lower
bounds for the local model can then be invoked, as done in [8, 13].

Another class of lower bound comes from a lemma in [12]: when a shuffled protocol obeys ε-
differential privacy and bounded communication complexity, the set of messages output by each user
is insensitive to their personal data. Specifically, changing their data causes the set’s distribution
to change by ≤ 1 − 2−Oε(m2ℓ) in statistical distance, where m denotes number of messages and ℓ
the length of each message. This is strong enough to obtain a lower bound on binary sums.

2

Table 1: Comparison of results for the histogram problem. To simplify the presentation, we assume
constant success probability, ε < 1, δ < 1/ log d for results from [13], and e−O(nε2) ≤ δ < 1/n for
our result.

Model Simultaneous Error No. Messages per User Source

Local Θ
(

1
ε
√
n
· √log d

)

1 [3]

Shuffled

O
(

1
εn ·

√

log d · log 1
δ

)

O(d) [8]

O

(

1
εn

√

log3 d · log(1δ log d)
)

O
(

1
ε2

log3 d · log(1δ log d)
)
w.h.p. [13]

O
(
log d
n + 1

εn ·
√

log d · log 1
εδ

)

O
(

1
ε2

log 1
εδ

)
[13]

O
(

1
ε2n

log 1
δ

)
O(d) [Theorem 3.2]

Central Θ
(

1
εn min

(
log d, log 1

δ

))
N/A [9, 7, 4, 14]

The amplification-by-shuffling lemmas in [2, 10] show that uniformly permuting the messages
generated by a local protocol improves privacy guarantees: an ε-private local protocol becomes an
(ε′, δ)-private shuffled protocol where ε′ ≪ ε and δ > 0. One might conjecture weaker versions of
these lemmas where δ = 0 but Theorem 1.3 eliminates that possibility.

2 Preliminaries

We define a dataset ~x ∈ X n to be an ordered tuple of n rows where each row is drawn from a
data universe X and corresponds to the data of one user. Two datasets ~x, ~x ′ ∈ X n are considered
neighbors (denoted as ~x ∼ ~x ′) if they differ in exactly one row.

Definition 2.1 (Differential Privacy [9]). An algorithm M : X n → Z satisfies (ε, δ)-differential
privacy if

∀~x ∼ ~x ′ ∀T ⊆ Z Pr[M(~x) ∈ T] ≤ eε · Pr[M(~x ′) ∈ T] + δ.

We say an (ε, δ)-differentially private algorithm satisfies pure differential privacy when δ = 0
and approximate differential privacy when δ > 0. For pure differential privacy, we may omit the δ
parameter from the notation.

Definition 2.2 (Local Model [17]). A protocol P in the (non-interactive1) local model consists of
two randomized algorithms:

• A randomizer R : X → Y that takes as input a single user’s data and outputs a message.

• An analyzer A : Y∗ → Z that takes as input all user messages and computes the output of
the protocol.

1The literature also includes interactive variants; see [15] for a definition of sequential and full interactivity.

3

We denote the protocol P = (R,A). We assume that the number of users n is public and available
to both R and A. Let ~x ∈ X n. The evaluation of the protocol P on input ~x is The evaluation of
the protocol P on input ~x is

P(~x) = (A ◦ R)(~x) = A(R(x1), . . . ,R(xn)).

Definition 2.3 (Differential Privacy for Local Protocols). A local protocol P = (R,A) satisfies
(ε, δ)-differential privacy for n users if its randomizer R : X → Y is (ε, δ)-differentially private (for
datasets of size one).

Definition 2.4 (Shuffled Model [6, 8]). A protocol P in the shuffled model consists of three ran-
domized algorithms:

• A randomizer R : X → Y∗ that takes as input a single user’s data and outputs a vector of
messages whose length may be randomized. If, on all inputs, the probability of sending a
single message is 1, then the protocol is said to be single-message. Otherwise, the protocol is
said to be multi-message.

• A shuffler S : Y∗ → Y∗ that concatenates all message vectors and then applies a uniformly
random permutation to (the order of) the concatenated vector. For example, when there are
three users each sending two messages, there are 6! permutations and all are equally likely to
be the output of the shuffler.

• An analyzer A : Y∗ → Z that takes a permutation of messages to generate the output of the
protocol.

As in the local model, we denote the protocol P = (R,A) and assume that the number of users
n is accessible to both R and A. The evaluation of the protocol P on input ~x is

P(~x) = (A ◦ S ◦ R)(~x) = A(S(R(x1), . . . ,R(xn))).

Definition 2.5 (Differential Privacy for Shuffled Protocols [8]). A shuffled protocol P = (R,A)
satisfies (ε, δ)-differential privacy for n users if the algorithm (S◦R) : X n → Y∗ is (ε, δ)-differentially
private.

We note a difference in robustness between the local and shuffled models. A user in a local
protocol only has to trust that their own execution of R is correct to ensure differential privacy. In
contrast, a user in a shuffled protocol may not have the same degree of privacy when other users
deviate from the protocol.

For any d ∈ N, let [d] denote the set {1, . . . , d}. For any j ∈ [d], we define the function
cj : [d]

n → R as the normalized count of j in the input:

cj(~x) = (1/n) · |{i ∈ [n] : xi = j}|.

We use histogram to refer to the vector of normalized counts (c1(~x), . . . , cd(~x)). For measuring the
accuracy of a histogram protocol P : [d]n → R

d, we use the following metrics:

Definition 2.6. A histogram protocol P : [d]n → R
d has (α, β)-per-query accuracy if

∀~x ∈ [d]n ∀j ∈ [d] Pr[|P(~x)j − cj(~x)| ≤ α] ≥ 1− β.

Definition 2.7. A histogram protocol P : [d]n → R
d has (α, β)-simultaneous accuracy if

∀~x ∈ [d]n Pr[∀j ∈ [d] |P(~x)j − cj(~x)| ≤ α] ≥ 1− β.

4

3 The Power of Multiple Messages for Histograms

In this section, we present an (ε, δ)-differentially private histogram protocol in the shuffled model
whose simultaneous error does not depend on the universe size. We start by presenting a private
protocol for releasing a binary sum that always outputs 0 if the true count is 0 and otherwise outputs
a noisy estimate. The histogram protocol uses this counting protocol to estimate the frequency
of every domain element. Its simultaneous error is the maximum noise introduced to the nonzero
counts. There are at most n such counts.

For comparison, a protocol in [8] adds independent noise to all counts without the zero-error
guarantee. The simultaneous error is therefore the maximum noise over all d counts, which intro-
duces a log d instead of a log n factor.

3.1 A Two-Message Protocol for Binary Sums

In the protocol Pzsum
ε,δ (Figure 1), each user reports a vector whose length is the sum of their data

and a Bernoulli random variable. The contents of each vector will be copies of 1. Because the
shuffler only reports a uniformly random permutation, the observable information is equivalent to
the sum of user data, plus noise. The noise is distributed as Bin(n, p), where p is chosen so that
there is sufficient variance to ensure (ε, δ)-differential privacy. We take advantage of the fact that
the binomial distribution is bounded: if the sum of the data is zero, the noisy sum is never more
than n. Hence, the analyzer will perform truncation when the noisy sum is small. We complete
our proof by arguing that it is unlikely for large values to be truncated.

To streamline the presentation and analysis, we assume that
√

(100/n) · ln(2/δ) ≤ ε ≤ 1 so
that p ∈ (1/2, 1). We can achieve (ε, δ) privacy for a broader parameter regime by setting p to a
different function; we refer the interested reader to Theorem 4.11 in [8].

Figure 1: The pseudocode for Pzsum
ε,δ , a private shuffled protocol for normalized binary sums

Randomizer Rzsum
ε,δ (x ∈ {0, 1}) for ε, δ ∈ [0, 1]:

1. Let p ← 1− 50
ε2n

ln(2/δ).

2. Sample z ∼ Ber(p).

3. Output (1, . . . , 1
︸ ︷︷ ︸

x+z copies

).

Analyzer Azsum
ε,δ (~y ∈ {1}∗) for ε, δ ∈ [0, 1]:

1. Let p ← 1− 50
ε2n ln(2/δ).

2. Let c∗ = 1
n · |~y|, where |~y| is the length of ~y.

3. Output

{

c∗ − p if c∗ > 1

0 otherwise
.

Theorem 3.1. For any ε, δ ∈ [0, 1] and any n ∈ N such that n ≥ (100/ε2) · ln(2/δ), the protocol
Pzsum
ε,δ = (Rzsum

ε,δ ,Azsum
ε,δ) has the following properties:

5

i. Pzsum
ε,δ is (ε, δ)-differentially private in the shuffled model.

ii. For every β ≥ δ25 , the error is |Pzsum
ε,δ (~x)− 1

n

∑
xi| ≤ α with probability ≥ 1− β where

α =
50

ε2n
log

2

δ
+

1

εn
·
√

200 log
2

δ
· log 2

β

= O

(
1

ε2n
log

1

δ

)

.

iii. Pzsum
ε,δ ((0, . . . , 0)

︸ ︷︷ ︸

n copies

) = 0.

iv. Each user sends at most two one-bit messages.

Proof of Part i. If we let zi be the random bit generated by the i-th user, the total number of
messages is |~y| = ∑n

i=1 xi + zi. Observe that learning |~y| is sufficient to represent the output of
shuffler since all messages have the same value. Thus, the privacy of this protocol is equivalent to
the privacy of

M(~x) =

n∑

i=1

xi + Bin(n, p) ∼ −
(

−
n∑

i=1

xi + Bin(n, 1− p)

)

+ n.

By post-processing, it suffices to show the privacy of Mneg(~x) = −∑n
i=1 xi + Bin(n, 1 − p) where

1−p = 50
ε2n

ln 2
δ . Because privacy follows almost immediately from technical claims in [13], we defer

the proof to Appendix A.

Proof of Part ii. Fix any ~x ∈ {0, 1}n. For shorthand, we define α′ = 2 ·
√

p(1−p)
n · ln(2/β) so that

α = (1 − p) + α′. A Chernoff bound implies that for β ≥ 2e−np(1−p), the following event occurs
with probability ≥ 1− β: ∣

∣
∣
∣
∣

1

n
·

n∑

i=1

zi − p

∣
∣
∣
∣
∣
≤ α′ (1)

The inequality β ≥ 2e−np(1−p) follows from our bounds on ε, β, and n.
The remainder of the proof will condition on (1). If c∗ > 1, then the analyzer outputs c∗ − p.

We show that the error of c∗ − p is at most α′:
∣
∣
∣
∣
∣
(c∗ − p)− 1

n
·

n∑

i=1

xi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

n
·

n∑

i=1

(xi + zi)− p− 1

n
·

n∑

i=1

xi

∣
∣
∣
∣
∣

(By construction)

=

∣
∣
∣
∣
∣

1

n
·

n∑

i=1

zi − p

∣
∣
∣
∣
∣

≤ α′ (By (1))

If c∗ ≤ 1, then the analyzer will output 0. In this case, the error is exactly 1
n

∑
xi. We argue

that c∗ ≤ 1 implies 1
n

∑
xi ≤ α.

1 ≥ c∗

=
1

n
·

n∑

i=1

(xi + zi) (By construction)

≥ 1

n
·

n∑

i=1

xi + p− α′ (By (1))

6

R e ar r a n gi n g t er m s yi el d s

1

n
·

n

i= 1

x i ≤ (1 − p) + α ′ = α

w hi c h c o n cl u d es t h e p r o of.

P r o of of P a rt iii. If x = (0, . . . , 0), t h e n |y | i s d r a w n f r o m 0 + Bi n (n, p), w hi c h i m pli es c ∗ ≤ 1 wit h
p r o b a bilit y 1. H e n c e, P z s u m

ε, δ (x) = 0.

3. 2 A M ul ti- M e s s a g e P r o t o c ol f o r Hi s t o g r a m s

I n th e p r ot o c ol P hi s t
ε, δ (Fi g u r e 2), u s er s e n c o d e t h eir d at a x i ∈ [d] as a o n e- h ot v e ct or b ∈ { 0 , 1 } d .

T h e n p r ot o c ol P z s u m
ε, δ i s e x e c u t e d o n e a c h c o or di n at e j of b . T h e e x e c u ti o n s ar e d o n e i n o n e r o u n d

of s h u ffli n g. T o r e m o v e a m bi g uit y b et w e e n e x e c u ti o n s, e a c h m es s a g e i n e x e c u ti o n j h as v al u e j .

Fi g u r e 2: T h e p s e u d o c o d e f or P hi s t
ε, δ , a p ri v at e s h u ffl e d p r ot o c ol f or hi st o gr a m s

R a n d o mi z e r R hi s t
ε, δ (x ∈ [d]) f or ε, δ ∈ [0, 1] :

1. F or e a c h j ∈ [d], l et b j ← [x = j] a n d c o m p u t e s c al ar p r o d u ct m j ← j · Rz s u m
ε, δ (b j).

2. O u t p u t t h e c o n c at e n ati o n of all m j .

A n al y z e r A hi s t
ε, δ (y ∈ [d]∗) f or ε, δ ∈ [0, 1] :

1. F or e a c h j ∈ [d], l et y (j) ← all m es s a g es of v al u e j , t h e n c o m p u t e c̃ j ← A z s u m
ε, δ (y (j)).

2. O u t p u t (c̃ 1 , . . . , c̃ d).

T h e o r e m 3. 2. F o r a n y ε, δ ∈ [0, 1] a n d a n y n ∈ N s u c h t h at n ≥ (1 0 0/ ε 2) · l n (2/ δ), t h e p r ot o c ol
P hi s t

ε, δ = (R hi s t
ε, δ , A hi s t

ε, δ) h a s t h e f oll o wi n g p r o p e rti e s:

i. P hi s t
ε, δ i s (2ε, 2 δ) - di ff e r e nti all y p ri v at e i n t h e s h u ffl e d m o d el.

ii. F o r e v e r y β ≥ δ 2 5 , P hi s t
ε, δ h a s (α, β)- p e r- q u e r y a c c u r a c y f o r

α = O
1

ε 2 n
l o g

1

δ
.

iii. F o r e v e r y β ≥ n · δ 2 5 , P hi s t
ε, δ h a s (α, β)- si m ult a n e o u s a c c u r a c y f o r

α = O
1

ε 2 n
l o g

1

δ
.

i v. E a c h u s e r s e n d s at m o st 1 + d m e s s a g e s e a c h of l e n gt h O (l o g d).

7

T h e a c c u r a c y g u ar a nt e e d b y t hi s p r ot o c ol i s cl os e t o w h at i s p os si bl e i n t h e c e ntr al m o d el: t h er e
i s a st a bilit y- b as e d al g orit h m wit h si m ult a n e o u s er r or O ((1/ (ε n)) · l n (1/ δ)) [7]. H o w e v er, i n P hi s t

ε , δ ,
e a c h u s er c o m m u ni c at es O (d) m es s a g es of O (l o g d) bits. It r e m ai n s a n o p e n q u esti o n as t o w h et h er
or n ot t hi s c a n b e i m p r o v e d w hil e m ai nt ai ni n g si mil ar a c c u r a c y.

B e c a u s e t h e si m ult a n e o u s er r or of a si n gl e- m e s s a g e hi st o gr a m p r ot o c ol i s at l e ast Ω ((1 / (ε n)) ·
p ol y (l o g d)) [8], t hi s p r ot o c ol i s al s o p r o of t h at t h e si n gl e- m es s a g e m o d el i s a stri ct s u b cl as s of t h e
m ulti- m es s a g e m o d el. T hi s s e p ar ati o n w as p r e vi o u sl y s h o w n b y [2 , 1] f or t h e s u m m ati o n p r o bl e m.2

P r o of of P a rt i. Fi x a n y n ei g h b ori n g p air of d at as ets x ∼ x ′. L et y ← (S ◦ R hi s t
ε, δ)(x) a n d y ′ ←

(S ◦ R hi s t
ε, δ)(x ′). F or a n y j = j ′, t h e c o u nt of j i n o u t p u t of t h e s h u ffl er i s i n d e p e n d e nt of t h e c o u nt

of j ′ i n t h e o u t p u t b e c a u s e e a c h e x e c u ti o n of R z s u m
ε, δ i s i n d e p e n d e nt. A s i n S t e p (1) of A hi s t

ε, δ , f or
j ∈ [d], l et y (j) (y ′

(j) r es p.) b e t h e v e ct or of all m es s a g es i n y (y ′ r es p.) t h at h a v e v al u e j .

F or a n y j ∈ [d] w h er e c j (x) = c j (x
′), y (j) i s i d e nti c all y di stri b u t e d t o y ′

(j) . F or e a c h of t h e t w o

j ∈ [d] w h er e c j (x) = c j (x
′), w e will s h o w t h at t h e di stri b u ti o n of y (j) i s cl os e t o t h at of y ′

(j) . L et

r, r ′ ∈ { 0 , 1 } n w h er e r i = [x i = j] a n d r ′
i = [x ′

i = j]. N o w,

y (j) ∼ j · (S ◦ R z s u m
ε, δ)(r) a n d y ′

(j) ∼ j · (S ◦ R z s u m
ε, δ)(r ′).

S o b y T h e or e m 3. 1 P ar t i, f or a n y T ⊆ { j } ∗ ,

P r [y (j) ∈ T] ≤ e ε · P r[y ′
(j) ∈ T] + δ.

(2ε, 2 δ)- di ff er e nti al p ri v a c y f oll o w s b y c o m p ositi o n.

P r o of of P a rt ii-iii. N oti c e t h at t h e j -t h el e m e nt i n t h e o u t p u t c̃ j i s i d e nti c all y di stri b u t e d wit h
a n e x e c u ti o n of t h e c o u nti n g p r ot o c ol o n t h e bits b i, j i n di c ati n g if x i = j . F or m all y, c̃ j ∼
P z s u m

ε, δ ({ b i, j } i∈ [n]) f or all j ∈ [d]. P er- q u er y a c c u r a c y i m m e di at el y f oll o w s f r o m T h e or e m 3. 1 P ar t ii.
T o b o u n d si m ult a n e o u s er r or, w e l e v er a g e t h e p r o p er t y t h at w h e n c j (x) = 0, t h e c o u nti n g

p r ot o c ol will r e p or t a n o n z er o v al u e wit h p r o b a bilit y 0. L et Q = { j ∈ [d] : c j (x) > 0 } a n d l et α b e
t h e er r or b o u n d d e fi n e d i n T h e or e m 3. 1 P ar t ii f or t h e f ail u r e p r o b a bilit y β / n .

P r (∃ j ∈ [d] s.t. |c̃ j − c j (x)| > α)

≤ P r (∃ j ∈ Q s.t. |c̃ j − c j (x)| > α) + P r (∃ j /∈ Q s.t. |c̃ j − c j (x)| > α)

= P r (∃ j ∈ Q s.t. |c̃ j − c j (x)| > α) (T h e or e m 3. 1 P ar t iii)

≤
j ∈ Q

P r (|c̃ j − c j (x)| > α)

≤
j ∈ Q

β / n (T h e or e m 3. 1 P ar t ii)

≤ β (|Q | ≤ n)

T h i s c o n cl u d es t h e p r o of.

2 I n p ar ti c ul a r, a p ri v a t e u n bi a s e d e s ti m a t o r f o r i x i wi t h r e al- v al u e d x i ∈ [0, 1] i n t h e si n gl e- m e s s a g e s h u ffl e d

m o d el m u s t h a v e e r r o r Ω (n 1 / 6) [2] w hil e t h e r e e xi s t s a m ul ti- m e s s a g e s h u ffl e d m o d el p r o t o c ol f o r e sti m a ti n g s u m m a ti o n
wi t h e r r o r O (1 / ε) [1].

8

3.3 Applications

In this section, we use our histogram protocol to solve two distributional problems; one of these re-
sults implies a very strong separation in sample complexity between the non-interactive local model
and the shuffled model. Both distributional problems reduce to what we call support identification:

Definition 3.3 (Support Identification Problem). The support identification problem has positive
integer parameters h ≤ d. Let D be a set of size d and let UH be the uniform distribution over any
H ⊆ D. The set of problem instances is {UH : H ⊆ D and |H| = h}. A protocol solves the (h, d)-
support identification problem with sample complexity n if, given n users with data independently
sampled from any problem instance UH , it identifies H with probability at least 99/100.

We now show how to solve this problem in the shuffled model.

Claim 3.4. Fix any ε ∈ (0, 1] and δ < (1/200h)1/25 . Under (ε, δ)-differential privacy, the sample
complexity of the (h, d)-support identification problem is O(h log h · (1/ε2) · log(1/δ)) in the shuffled
model.

Proof. For the purposes of this proof, we assume there is some bijection f between D and [d] so
that any reference to j ∈ [d] corresponds directly to some f(j) ∈ D and vice versa. Consider the
following protocol: execute Phist

ε,δ on n samples from UH and then choose the items whose estimated
frequencies are at least (t+1)/n (the magnitude of t will be determined later). We will prove that
the items returned by the protocol are precisely those of H, with probability at least 99/100.

Let Esamp be the event that every element in support H has frequency at least (2t + 1)/n in
the sample. Let Epriv be the event that the histogram protocol estimates the frequency of every
element in D with error at most t/n. If both events occur, every element in H has estimated
frequency at least (t + 1)/n and every element outside H has estimated frequency at most t/n.
Hence, it suffices to show that Esamp and Epriv each occur with probability ≥ 199/200.

We lower bound the probability of Esamp via a coupon collector’s argument. That is, if we have
n = O(kh log h) samples from UH then each element of H appears at least k times with probability
at least 199/200. Hence we set k = (2t+ 1).

To lower bound the probability of Epriv, we simply invoke Theorem 3.2: given that ε ∈ (0, 1]
and δ > (1/200h)1/25 , the frequency of every item in D is estimated up to error t/n for some
t = O((1/ε2) · log(1/δ)) with probability ≥ 199/200.3

In the above analysis, if we had used a protocol with simultaneous error that depends on the
domain size d, then t would in turn depend on d. For example, using the histogram protocol in
[8] would give t = Ω((1/ε) ·

√

log d · log(1/δ)). This results in a protocol whose sample complexity
grows with d in addition to h.

So having shown how to solve the support identification problem with few samples, we now
describe two different problems and explain how to reduce these to support identification. This
will imply low sample complexity in the shuffled model.

Definition 3.5 (Pointer-Chasing Problem [16]). The pointer chasing problem is denoted PC(k, ℓ)
where k, ℓ are positive integer parameters. A problem instance is U{(1,a),(2,b)} where a, b are permu-
tations of [ℓ]. A protocol solves PC(k, ℓ) with sample complexity n if, given n independent samples
from any U{(1,a),(2,b)}, it outputs the k-th integer in the sequence a1, ba1 , aba1 . . . with probability
at least 99/100.

3The bound on δ in Theorem 3.2 is a function of n. This is derived from a pessimistic bound on the number of
unique values in the input. But in this reduction, we know that data takes one of h values.

9

To solve PC(k, ℓ), note that it suffices to identify {(1, a), (2, b)} and directly perform the pointer
chasing. Because the support has size h = 2, Phist

ε,δ can be used to solve the problem with just

O((1/ε2) · log(1/δ)) samples, independent of k and ℓ. But in the case where k = 2, [16] gives a
lower bound of Ω(ℓ/eε) for non-interactive local protocols. So there is an arbitrarily large separation
between the non-interactive shuffled and non-interactive local models (Theorem 1.2).

Definition 3.6 (Multi-Party Pointer Jumping Problem [15]). The multi-party pointer jumping
problem is denoted MPJ(s, h) where s, h are positive integer parameters. A problem instance is
U{Z1,...,Zh} where each Zi is a labeling of the nodes at level i in a complete s-ary tree. Each label
Zi,j is an integer in {0, . . . , s−1}. The labeling implies a root-leaf path: if the i-th node in the path
has label Zi,j, then the (i+1)-st node in the path is the (Zi,j)-th child of the i-th node. A protocol
solves MPJ(s, h) with sample complexity n if, given n samples from any U{Z1,...,Zh}, it identifies the
root-leaf path with probability at least 99/100.

As with pointer-chasing, we can solve MPJ(s, h) when the support is identified. This takes
O(h log h · (1/ε2) · log(1/δ)) samples in the shuffled model. But [15] gives a lower bound of
Ω(h3/(ε2 log h)) in the local model when s = h4, even allowing for sequential interactivity. However,
we do not claim a polynomial separation between the shuffled model and sequentially interactive
local model. This would require a proof that every sequentially interactive local protocol has a
counterpart in the shuffled model.

Note that the reductions we employ can also be applied in the central model. That is, instead
of executing Phist

ε,δ in the reduction (Claim 3.4), execute the central model algorithm, from [7], with
simultaneous error O((1/(εn)) · log(1/δ)). This improves the bounds by 1/ε.

Table 2: The sample complexity of private pointer-chasing (PC) and multi-party pointer jumping
(MPJ). Shuffled and central results follow from a reduction to histograms.

Model PC(k, ℓ) MPJ(s, h)

Local
Ω(ℓ/eε) [16] Ω(h3/(ε2 log h)) [15]
for k = 2 for s = h4, seq. interactive

Shuffled O
(

1
ε2

log 1
δ

) O
(
h log h · 1

ε2
log 1

δ

)

for δ < (1/200h)1/25

Central O
(
1
ε log

1
δ

)
O
(
h log h · 1

ε log
1
δ

)

4 Pure Differential Privacy in the Shuffled Model

In this section, we prove that any single-message shuffled protocol that satisfies ε-differential privacy
can be simulated by a local protocol under the same privacy constraint.

Theorem 4.1 (Formalization of Thm. 1.3). For any single-message shuffled protocol P = (R,A)
that satisfies ε-differential privacy, there exists a local protocol PL = (RL,AL) that satisfies ε-
differential privacy and PL(~x) is identically distributed to P(~x) for every input ~x ∈ X n.

We start with the following claim, which strengthens a theorem in [8] for the special case of
pure differential privacy in the shuffled model:

10

Claim 4.2. Let P = (R,A) be any single-message shuffled protocol that satisfies ε-differential
privacy. Then R is an ε-differentially private algorithm.

Proof. Assume for contradiction that R is not ε-differentially private. So there are values x, x′ ∈ X
and a set Y ⊆ Y such that

Pr[R(x) ∈ Y] > eε · Pr[R(x′) ∈ Y].

Let ~x = (x, . . . , x
︸ ︷︷ ︸

n copies

) and ~x ′ = (x′, x, . . . , x
︸ ︷︷ ︸

n−1 copies

). Now consider Y n, the set of message vectors where

each message belongs to Y .

Pr[(S ◦ R)(~x) ∈ Y n] = Pr[R(~x) ∈ Y n]

= Pr[R(x) ∈ Y]n

> eε · Pr[R(x′) ∈ Y] · Pr[R(x) ∈ Y]n−1

= eε · Pr[(S ◦ R)(~x ′) ∈ Y n]

which contradicts the fact that S ◦ R is ε-differentially private.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Consider the aggregator AL that applies a uniformly random permutation
to its input and then executes A. Then PL = (R,AL) is a local protocol that simulates P, in
the sense that PL(~x) is identically distributed to P(~x) for every ~x ∈ X n. And by Claim 4.2, the
randomizer is ε-differentially private.

4.1 Roadblocks to Generalizing Theorem 4.1

One might conjecture Claim 4.2 also holds for multi-message protocols and thus immediately gen-
eralize Theorem 4.1. However, this is not the case:

Claim 4.3. There exists a multi-message shuffled protocol that is ε-differentially private for all
ε ≥ 0 but its randomizer is not ε-differentially private for any finite ε.

Proof. Consider the randomizer R∞ that on input x ∈ {0, 1} outputs two messages x and 1 − x.
The output of the shuffler S ◦ R∞ is 0-differentially private since for all inputs the output is a
random permutation of exactly n 0s and n 1s. However, R∞ is not ε-differentially private for any
finite ε as the first message of R∞(x) is that user’s bit x.

We note that it is without loss of accuracy or privacy to suppose that a randomizer shuffles its
messages prior to sending them to the shuffler. We call these pre-shuffle randomizers. Observe that
the pre-shuffle version of R∞ (i.e. S ◦ R∞ for 1 user) satisfies 0-differential privacy. So one might
conjecture Claim 4.2 holds for pre-shuffle randomizers and thus generalize Theorem 4.1. But this
too is not the case:

Claim 4.4. There exists a multi-message shuffled protocol that is ε-differentially private for some
finite ε but its pre-shuffle randomizer is not ε-differentially private for any finite ε.

Proof. Consider any randomizer Rgap that takes binary input and outputs four binary messages
with the following constraint: the messages can take any value when the input is 0 but on in-
put 1, there cannot be exactly two 1s. Formally, the supports are supp(Rgap(0)) = {0, 1}4 and
supp(Rgap(1)) = {~y ∈ {0, 1}4 :

∑

i yi 6= 2}.

11

The pre-shuffle randomizer S ◦Rgap cannot satisfy pure differential privacy because (0, 0, 1, 1) ∈
supp(Rgap(0)) but (0, 0, 1, 1) /∈ supp(Rgap(1)). On the other hand, for all n ≥ 2 and ~x ∈ {0, 1}n,

supp(S ◦ Rgap(~x)) = {0, 1}4n.

This follows from the fact that every number in {0, . . . , 4n}—the number of 1s sent to the shuffler—
can be expressed as the sum of n numbers from {0, 1, 3, 4}. Thus, there is some finite ε for which
the protocol with randomizer Rgap is ε-differentially private.

Acknowledgments

We are grateful to Daniel Alabi and Maxim Zhilyaev for discussions that shaped the early stages
of this work. We are also indebted to Matthew Joseph and Jieming Mao for directing us to the
pointer-chasing and multi-party pointer-jumping problems. Finally, we thank Salil Vadhan for
editorial comments and providing a simpler construction for Claim 4.3.

References

[1] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. Differentially private summation
with multi-message shuffling. arXiv preprint arXiv:1906.09116, 2019.

[2] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle
model. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes in Computer Science,
pages 638–667. Springer, 2019.

[3] Raef Bassily and Adam D. Smith. Local, private, efficient protocols for succinct histograms.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 127–135. ACM, 2015.

[4] Amos Beimel, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample
complexity for private learning and private data release. In Daniele Micciancio, editor, Theory
of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings, volume 5978 of Lecture Notes in Computer Science, pages
437–454. Springer, 2010.

[5] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simultane-
ously solving how and what. In David A. Wagner, editor, Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 451–468.
Springer, 2008.

[6] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017, pages 441–459. ACM, 2017.

12

[7] Mark Bun, Kobbi Nissim, and Uri Stemmer. Simultaneous private learning of multiple con-
cepts. In Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 369–380.
ACM, 2016.

[8] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Dis-
tributed differential privacy via shuffling. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Pro-
ceedings, Part I, volume 11476 of Lecture Notes in Computer Science, pages 375–403. Springer,
2019.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 265–
284. Springer, 2006.

[10] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy
via anonymity. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 2468–2479. SIAM, 2019.

[11] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In Frank Neven, Catriel Beeri, and Tova Milo,
editors, PODS, pages 211–222. ACM, 2003.

[12] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Ameya
Velingker. Pure differentially private summation from anonymous messages. CoRR,
abs/2002.01919, 2020.

[13] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker. On the
power of multiple anonymous messages. IACR Cryptology ePrint Archive, 2019:1382, 2019.

[14] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 705–714. ACM, 2010.

[15] Matthew Joseph, Jieming Mao, Seth Neel, and Aaron Roth. The role of interactivity in
local differential privacy. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 94–105. IEEE Computer Society, 2019.

[16] Matthew Joseph, Jieming Mao, and Aaron Roth. Exponential separations in local differential
privacy. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 515–527. SIAM,
2020.

[17] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam D. Smith. What can we learn privately? In 49th Annual IEEE Symposium on Founda-

13

tions of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages
531–540. IEEE Computer Society, 2008.

[18] Tianhao Wang, Min Xu, Bolin Ding, Jingren Zhou, Ninghui Li, and Somesh Jha. Prac-
tical and robust privacy amplification with multi-party differential privacy. arXiv preprint
arXiv:1908.11515, 2019.

[19] Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

A Privacy via Smooth Distributions

Ghazi, Golowich, Kumar, Pagh and Velingker [13] identify a class of distributions and argue that,
if η is sampled from such a distribution, adding η to a 1-sensitive sum ensures differential privacy
of that sum.

Definition A.1 (Smooth Distributions, [13]). A distribution D over Z is (ε, δ, k)-smooth if for all
k′ ∈ [−k, k],

Pr
Y∼D

[
PrY ′∼D[Y ′ = Y]

PrY ′∼D[Y ′ = Y + k′]
≥ e|k

′|ε
]

≤ δ.

Lemma A.2 (Smoothness for Privacy, [13]). Let f : Zn → Z be a function such that |f(~x)−f(~x ′)| ≤
1 for all ~x ∼ ~x ′. Let D be an (ε, δ, 1)-smooth distribution. The algorithm that takes as input ~x ∈ Z

n,
then samples η ∼ D and reports f(~x) + η satisfies (ε, δ)-differential privacy.

Lemma A.3 (Binomial Distribution is Smooth, [13]). For any positive integer n, γ ∈ [0, 1/2],
α ∈ [0, 1], and any k ≤ αγn/2, the distribution Bin(n, γ) is (ε, δ, k)-smooth with

ε = ln
1 + α

1− α
and δ = exp

(

−α2γn

8

)

+ exp

(

− α2γn

8 + 2α

)

.

Corollary A.4. Fix any ε, δ ∈ [0, 1]. Let n ≥ (100/ε2) · ln(2/δ). The algorithm Mneg that takes
as input ~x ∈ {0,−1}n then samples

η ∼ Bin

(

n, 50 · ln(2/δ)
nε2

)

and reports η +
∑

xi satisfies (ε, δ)-differential privacy.

Proof. When α = (eε − 1)/(eε + 1) observe that α ∈ [ε/
√
5, 1) and Lemma A.3 implies that η is

sampled from an (ε, δ, 1)-smooth distribution:

ln
1 + α

1− α
= ln

(eε + 1) + (eε − 1)

(eε + 1)− (eε − 1)
= ε

and

exp

(

−α2γn

8

)

+ exp

(

− α2γn

8 + 2α

)

≤ 2 exp

(

−α2γn

10

)

(α < 1)

≤ 2 exp

(

−γε2n

50

)

= δ.

So by Lemma A.2, we have Mneg is (ε, δ)-differentially private.

14

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 The Power of Multiple Messages for Histograms
	3.1 A Two-Message Protocol for Binary Sums
	3.2 A Multi-Message Protocol for Histograms
	3.3 Applications

	4 Pure Differential Privacy in the Shuffled Model
	4.1 Roadblocks to Generalizing Theorem ??

	A Privacy via Smooth Distributions

