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Abstract

Motivated by the desire to bridge the utility gap between local and trusted curator models
of differential privacy for practical applications, we initiate the theoretical study of a hybrid
model introduced by “Blender” [Avent et al., USENIX Security ’17], in which differentially pri-
vate protocols of n agents that work in the local-model are assisted by a differentially private
curator that has access to the data of m additional users. We focus on the regime where m� n
and study the new capabilities of this (m,n)-hybrid model. We show that, despite the fact that
the hybrid model adds no significant new capabilities for the basic task of simple hypothesis-
testing, there are many other tasks (under a wide range of parameters) that can be solved in the
hybrid model yet cannot be solved either by the curator or by the local-users separately. More-
over, we exhibit additional tasks where at least one round of interaction between the curator
and the local-users is necessary – namely, no hybrid model protocol without such interaction
can solve these tasks. Taken together, our results show that the combination of the local model
with a small curator can become part of a promising toolkit for designing and implementing
differential privacy.
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1 Introduction

Data has become one of the main drivers of innovation in applications as varied as technology,
medicine [33], and city planning [34, 53]. However, the collection and storage of personal data
in the service of innovation by companies, researchers, and governments poses significant risks
for privacy and personal freedom. Personal data collected by companies can be breached [21];
subpoenaed by law enforcement in broad requests [44]; mis-used by companies’ employees [37,
20]; or used for purposes different from those announced at collection time [64]. These concerns
alongside data-hungry company and government practices have propelled privacy to the frontier
of individuals’ concerns, societal and policy debates, and academic research.

The local model of differential privacy [66, 43] has recently emerged as one of the promising ap-
proaches for achieving the goals of enabling data-driven innovation while preserving a rigorous
notion of privacy for individuals that also addresses the above challenges. The differential privacy
aspect provides each participating individual (almost) with the same protection she would have
had her information not been included [25], a guarantee that holds even with respect to all power-
ful adversaries with access to multiple analyses and rich auxiliary information. The local aspect of
the model means that this guarantee will continue to hold even if the curator’s data store is fully
breached. From the utility perspective, the deployment of local differential privacy protocols by
Google, Apple, and Microsoft demonstrate that the local differential privacy model is a viable ap-
proach in certain applications, without requiring trust in the companies or incurring risks from
hackers and intelligence agencies [28, 55, 35, 1, 22].

The adoption of the local model by major industry players has motivated a line of research in
the theory of local differential privacy (e.g., [9, 8, 16, 59, 40, 42, 41]). Alongside algorithmic im-
provements, this body of work highlighted the wide theoretical and practical gap between utility
achievable in the more traditional trusted curator model of differential privacy (where the cura-
tor ensures the privacy of its output but can perform computations on raw individual data) and
that achievable in the local differential privacy model. In particular, the number of data points
necessary to achieve a particular level of accuracy in the local model is significantly larger than
what is sufficient for the same accuracy in the curator model (see, e.g., [10, 43, 56, 9]). This has
negative consequences. First, data analysis with local differential privacy becomes the privilege
of the data-rich, handicapping smaller companies and helping to cement monopolies. Second, in
an effort to maintain accuracy the entities deploying local differential privacy are tempted to use
large privacy loss parameters [60], ultimately putting into question the privacy guarantee [36].

New models for differentially private computation have recently emerged to alleviate the (in-
evitable) low accuracy of the local model, of which we will discuss the shuffle model [38, 14, 19,
6, 5, 32] and the hybrid model [2].1 In the shuffle model, it is assumed that the curator receives
data in a manner disassociated from a user identifier (e.g., after the raw data has been stripped
of identifiers and randomly shuffled). Recent work has proved that protocols employing shuffling
can provide better accuracy than local protocols and sometimes match the accuracy of the curator
model [19, 6, 5, 32].2 Although the shuffle model is a promising approach for bridging the gap be-
tween the local and trusted curator model, it suffers from two weaknesses: it requires individuals’
trust in the shuffler (which itself may be subject to breaches, subpoenaes, etc. and the infrastruc-

1Approaches which weaken differential privacy itself or justify the use of large privacy loss parameters are outside
our scope and deserve a separate discussion.

2Furthermore, the shuffle model provides new “privacy amplification” tools that can be used in the design of differ-
entially private algorithms [27, 6].
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ture for which may not exist), and, as highlighted by [6], its privacy guarantees to an individual
rely on the assumption that sufficiently many other individuals do not deviate from the protocol.

The focus of this work is on a generalization of the hybrid model introduced by [2], where a
majority of individuals that participate in a local differential privacy computation is augmented
with a small number of individuals who contribute their information via a trusted curator. From
a practical point of view, this separation is aligned with current industry practices, and the small
number of individuals willing to contribute via a curator can be employees, technology enthusi-
asts, or individuals recruited as alpha- or beta-testers of products in exchange for early access to
its features or decreased cost [48, 49, 51].

Untrusted 
referee !
(no input)

Trusted 
curator "
(# input
points)

$1

$2

$'

… ( local model agents
each with 1 input point

output )

Figure 1: The hybrid model.

Furthermore, unlike Blender [2], in an effort to
explore a rich trust and communication model, and
anticipate development of future technologies and
practices, we do not assume that the curator trusted
by the opt-in users and the eventual data recipient
(whom we call the referee) are the same entity (see
Figure 1). The detailed discussion of the benefits of
this modeling assumption appears after the formal
model definition in Section 2.2.

1.1 This work: The power of the hybrid model

We initiate a theoretical study of the extent to which the hybrid model improves on the utility of
the local model by addition of a small curator (and vice versa, improves on the utility of a small
curator by addition of parties that participate in a local model computation). We ask whether
there are tasks that cannot be computed privately by a small curator, or in the local model (even
with many participants), but are feasible in a model that combines both. We answer this question
in the affirmative.

A concatenation of problems (direct-sum). Our first example is composed of two indepen-
dent learning tasks, each task can be privately learned in one model, however, cannot be pri-
vately learned in the other model. Each data point is parsed as two points (x,y) that are labeled
(Park(x),Thrt(y)) where the former is a parity function Park(x) = 〈k,x〉 and the latter is a thresh-
old function Thrt(y) = 1{y≥t} (see Section 2.4 for complete definitions). For a choice of parameters,
known sample complexity bounds imply that the parity learning part of the task can be performed
by the curator but cannot be privately computed in the local model with sub-exponential number
of messages [43], and, conversely, that the threshold learning part cannot be performed by the
curator [11, 30] but can be performed by the local model parties. It follows that for our choice of
parameters the combined task cannot be performed neither by the curator nor by the local model
with sub-exponential number of rounds (as the number of local agents is small, each agent in the
local model must send many messages), but is feasible in the hybrid model without interaction
(see Appendix A for a detailed analysis).

Select-then-estimate. In our second example, each input point x is sampled i.i.d. from an un-
known distribution over {−1,1}d . Letting µ = E [x], the goal is to output a pair (i, µ̂i) where i
approximately maximizes µi (i.e., µi ≥ maxj µj − α) and µ̂i approximates µi (i.e., |µ̂i − µi | ≤ α′),
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where α′ < α. That is, once we found a good coordinate i, we want to approximate its quality
with smaller error. A number of sample complexity bounds apply here (in particular, [61] and
Appendix C), yielding a wide range of parameters where the task cannot be performed by the
curator alone, nor by the local model parties alone. The hybrid model, however, allows for a solu-
tion where the curator first identifies i such that µi ≥maxj µj −α and the estimation of µi within
accuracy α′ is then performed by the local model parties (see Appendix B for a detailed analysis).

The select-then-estimate problem is a sub-component of many statistical and data-mining ap-
plications [4, 58, 2]. It is also of core interest in genome-wide association studies (GWAS), where
the inputs are genomes of patients affected by a particular disease and the goal is to (approxi-
mately) identify disease-related genome locations and estimate their significance [3, 67, 15]. Solv-
ing the problem while ensuring privacy is particularly challenging when the feature dimension is
large compared to the number of available samples, which is the case for GWAS [13, 3, 39, 57].
As genomic data is particularly sensitive, the hybrid model of differential privacy appears appro-
priate for it from the privacy perspective – the majority of the data would be analyzed with the
guarantee of local differential privacy, and only a small number of data points would be entrusted
to a curator, whose analysis’s output should also be differentially private [65]. As our example
suggests, the hybrid model may be useful also from the utility perspective.

We next present and study tasks that require protocols with different interaction patterns involv-
ing both the curator and the local agents; that is, the referee needs to relay messages from the
curator to the local model agents in one problem or vice versa in a second problem.

Learning parity XOR threshold. This task, which is a twist on the above concatenation of prob-
lems, combines two independent learning tasks. Rather than merely concatenating, in the learn-
ing parity XOR threshold problem points are labeled by Park(x) ⊕ Thrt(y). A simple argument
shows that (for specifically chosen parameters) the task cannot be performed by the curator alone
or by the local model agents with sub-exponential number of rounds. The task is, however, fea-
sible in the hybrid model without interaction. Observe that the local model agents can complete
the task once the parity part is done, and that Thrt(y) = 0 for the lower half of the points y or
Thrt(y) = 1 for the upper half of the points y (or both). These observations suggest a protocol
where the curator first performs two parity learning tasks (splitting points according to y values),
and the task is then completed by the local model agents. This requires communication (as the
referee needs to relay a message from the curator to the local model agents), and it may seem that
this interaction is necessary for the task. However, in Section 3 we show that this is not the case,
by demonstrating a non-interactive protocol where all parties send a message to the referee at the
same round.

1-out-of-2d-parity. Our next task can be solved in the hybrid model (but neither by a small cu-
rator model nor in the local model with sub-exponential number of rounds). This task requires
interaction, first with the local model agents and then with the curator. The task consists of a
multitude of parity problems, only one of which – determined by the input – needs to be solved.
The curator is capable of solving the parity task privately, however, the curator’s limited number
of samples does not allow solving all parity problems privately, nor does it allow distinguishing
which problem to solve. The local model agents cannot solve parity (with sub-exponential number
of rounds) [43] but can recover which problem needs to be solved (via a heavy hitters computa-
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tion [16]). Thus, the referee needs to first interact with the local agents and then the curator. See
Section 4.

Parity-chooses-secret. The third task in this part can be solved in the hybrid model (but neither
with a small curator, nor in the local model with sub-exponential number of rounds). The task
requires interaction in the reverse order from the previous task: first with the curator, then with
the local model agents. The input to this task contains shares of a large collection of secrets and
the goal is to recover one of these secrets. The secret that should be recovered is determined
by the input as the solution to a parity problem. The curator can solve the parity problem but
does not have enough information to recover any of the secrets. The local model agents receive
enough information to recover all secrets, but doing so would breach privacy (as implied by [46]).
They cannot solve the parity problem with sub-exponential number of rounds. In the hybrid
model protocol, the curator first solves the parity problem privately, and relates the identity of
the secret to be recovered through the referee to the local model agents who then can send enough
information to recover the required secret. See Section 5.

The latter two tasks highlight information and private-computation gaps between the curator
and the local model agents. The local model agents receive enough information to solve the task,
but lack the ability to privately solve an essential sub-task (when they are not allowed to use
exponentially many rounds). The curator does not receive enough information to solve the task
(even non-privately), but can solve the hard sub-task.

When the hybrid model does not help much. Although most of the results in this work are on
the positive side, demonstrating that cleverly utilizing a curator in synergy with local agents can
allow for new capabilities, we also show that for one of the most basic tasks – namely, basic hy-
pothesis testing – the hybrid model has no significant advantage over what can be done separately
in either the local model with m agents or in the curator model with database of size n. We show
that if for two distributions D0 and D1 there is a private protocol in the hybrid model that given
i.i.d. samples from Dj correctly identifies j, then there is a private protocol with the same sample
size either in the local model or in the curator model that correctly identifies j (with some small
loss in the success probability). We then consider two distributions D0 and D1 over the the do-
main {0,1}, where in D0 the probability of 1 is strictly less than 1/2 and in D1 the probability of 1
is strictly greater than 1/2 and identify values of m and n such that in the hybrid model, where the
curator has m samples and there are n agents (each holding one sample), no protocol exists that
can differentiate whether the m+n inputs were sampled i.i.d. from D0 or from D1. Since comput-
ing the sum of i.i.d. sampled bits from D0 or D1 can distinguish between these distributions, the
above results imply that for computing the sum, the hybrid model is no better than each model
separately. See Section 6.

A new lower bound for selection in the local model. As mentioned above, our analysis for the
select-then-estimate task relies on lower bounds on the sample complexity of selection in the local
model. Ullman [61] gives a (tight) lower bound of Ω(d logd

α2ε2 ) samples for the non-interactive case.
In Appendix C we show that for interactive local model protocols, the number of messages in
such protocol is Ω(d1/3). For example, if the curator interacts with the local model parties so that
each party sends t messages, then the number of parties must be at least Ω(d1/3/t). The proof is

4



by a generic reduction from any private PAC learning task to selection, which preserves sample
complexity. The bound is obtained by applying the reduction from privately learning parity and
applying bounds on the sample complexity of privately learning parity from [43].

1.2 Discussion and future work

Our results show that the combination of the local model with a small curator can become part of
a promising toolkit for designing and implementing differential privacy. More work is needed to
develop the theory of this model (and possibly introduce variants), and, in particular, characterize
which tasks can benefit from it. From an algorithms design perspective, now that we know that
the hybrid model can lead to significant improvements over both the curator and local models, an
exciting open question is understanding what other non-trivial algorithms can be designed that
take advantage of the synergy.

Selection bias. In this work we assume that the inputs for the curator and for the local model
agents come from the same distribution. However, the recruitment of individuals for participating
via a curator can create unintended differences between the input distributions seen by the curator
and the entire population, and hence lead to biases, an issue which is outside the scope of the
current work. Selection bias remains an important issue that needs to be addressed.

Approximate differential privacy. Our separations between the hybrid model and the cura-
tor and local models hold for pure differential privacy (i.e., ε-differential privacy). Specifically,
we use lower bounds for ε-differential private learning of the threshold functions in the cura-
tor model [11, 30]; these lower bounds do not hold for (ε,δ)-differential private learning of the
threshold functions [12, 17]. We also use lower bounds for ε-differential private learning of parity
in the local model [43]; it is open if these lower bounds hold for fully interactive (ε,δ)-differential
private learning protocols of parity. Possible separations for (ε,δ)-differential privacy are left for
future research.

2 Preliminaries

2.1 Protocols for differentially private computations

Let X be a data domain. We consider a model where the inputs and the computation are dis-
tributed among parties P1, . . . ,Pn. Each party is an interactive randomized functionality: it can
receive messages from the other parties, perform a randomized computation, and send mes-
sages to the other parties. At the beginning of a computation, each party Pi receives its in-
put xi = (xi,1, . . . ,xi,`i ) ∈ X`i . I.e., the input of party Pi consists of a sequence of `i ≥ 0 entries
taken from the data domain X, and the entire joint input to the protocol is (x1,1 . . . ,x1,`1

,x2,1,
. . . ,x2,`2

, . . . ,xn,1, . . . ,xn,`n). The parties engage in a randomized interactive protocol Π = (ΠP1
, . . . ,ΠPn),

where a message sent by a party Pi in some round is computed according to ΠPi and depends on
its input xi , its random coins, and the sequence of messages it has seen in previous rounds. When
a party Pi halts, it writes its output to a local output register oPi . The number of messages in a
protocol is the number of rounds multiplied by the number of parties.
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Definition 2.1. We say that x = (x1, . . . ,x`) ∈ X` and x′ = (x′1, . . . ,x
′
`) ∈ X` are neighboring if they

differ on at most one entry, i.e., there exist i∗ ∈ [`] such that xi = x′i for i ∈ [`] \ {i∗}.

Definition 2.2. We say that two probability distributions D0,D1 ∈ ∆(Ω) are (ε,δ)-close and write
D0 ≈ε,δ D1 if

Pr
t∼Db

[t ∈ T ] ≤ eε · Pr
t∼D1−b

[t ∈ T ] + δ

for all measurable events T ⊂Ω and b ∈ {0,1}.

We are now ready to define what it means for a protocol to be differentially private in a fully
malicious setting, i.e., in a setting where an arbitrary adversary controls the behavior of all but one
party. Intuitively, a protocol is differentially private in a fully malicious setting if there do not exist
a party Pi and an adversary A controlling P1, . . . ,Pi−1,Pi+1, . . . ,Pn such that A can “trick” Pi to act
non-privately. More formally, we model the adversary as an interactive randomized functionality.
For a party Pi , define APi to be a randomized functionality as follows.

1. An input of APi consists of a sequence of `i entries taken from the data domain, x ∈ X`i .

2. APi simulates an interaction between party Pi with x as its input, and A. The simulated Pi
interacts with A following the instructions of its part in the protocol, ΠPi . The adversary
A interacts with Pi sending messages for parties P1, . . . ,Pi−1,Pi+1, . . . ,Pn. However, A does not
necessarily adhere to the protocol Π.

3. The simulation continues until A halts with an output oA, at which time APi halts and out-
puts oA.

Definition 2.3 (Multiparty differential privacy [25, 43, 10, 62]). A protocol Π is (ε,δ)-differentially
private if for all i ∈ [n], for all interactive randomized functionalities A, and all neighboring x,x′ ∈ X`i ,
APi (x) ≈ε,δ APi (x

′). When `1 = `2 = · · · = `n = 1 we say that the protocol operates in the local model,
and when n = 1 we say that the protocol (or the algorithm) operates in the curator model. We say that
a protocol Π is ε-differentially private if it is (ε,0)-differentially private.

Comparison to previous definitions. In contrast to [10, 62], our definition applies also to a
malicious adversary that can send arbitrary messages. The definition of [43] also applies to a ma-
licious adversary, however it requires that each answer of an agent preserves ε-differential privacy
(i.e., if there are d rounds, the protocol is dε-differentially private). In contrast, the definitions of
[10, 62] and our definition measures the privacy of the entire transcript of an agent.

Note that (i) Restricting the outcome oA to binary results in a definition that is equivalent to
Definition 2.3. (ii) It is possible to consider a relaxed version of Definition 2.3 where the adversary
A is “semi-honest” by requiring A to follow the protocol Π. (iii) Definition 2.3 differs from defini-
tions of security in the setting of secure multiparty computation as the latter also state correctness
requirements with respect to the outcome of the protocol. The difference between the setting is
that secure multiparty computation implements a specified functionality3 whereas differential
privacy limits the functionality to hide information specific to individuals, but does not specify it.

3Furthermore, secure multiparty computation is silent with respect to the chosen functionality, regardless whether
it is “privacy preserving” or “secure”.
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2.2 The hybrid model

A computation in the (m,n)-hybrid model is defined as the execution of a randomized interac-
tive protocol Π = (ΠC ,ΠP1

, . . . ,ΠPn ,ΠR) between three types of parties: a (single) curator C, n
“local model” agents P1, . . . ,Pn, and a referee R. The referee has no input, the curator C receives
m input points x = (x1, . . . ,xm) ∈ Xm and the n “local model” agents P1, . . . ,Pn each receive a sin-
gle input point yi ∈ X. We use the notation D to denote the joint input to the computation, i.e.,
D = (x1, . . . ,xm, y1, . . . , yn).

The communication in a hybrid model protocol is restricted to messages exchanged between
the referee R and the other parties C,P1, . . . ,Pn (i.e., parties C,P1, . . . ,Pn cannot directly communi-
cate among themselves). Parties C,P1, . . . ,Pn have no output, whereas when the execution halts
the referee R writes to a special output register o. See Figure 1. We require the protocol Π =
(ΠC ,ΠP1

, . . . ,ΠPn ,ΠR) to satisfy differential privacy as in Definition 2.3.
The hybrid model is a natural extension of well-studied models in differential privacy. Setting

n = 0 we get the trusted curator model (as C can perform any differentially private computation),
and setting m = 0 we get the local model. In this work, we are interested in the case 0 < m� n,
because in this regime, the hybrid model is closest in nature to the local model. Furthermore,
in many applications, once m is comparable to n it is possible to drop parties P1, . . . ,Pn from the
protocol without a significant loss in utility.

Comparing with Blender [2], where the curator C and the referee R are the same party, we
observe that the models are equivalent in their computation power – every differentially private
computation in one model is possible in the other (however, the models may differ in the number
of interaction rounds needed). Nevertheless, the separation between the curator and the referee
has merits as we now discuss.

On the separation between the curator and referee. From a theory point of view, it is useful
to separate these two parties as this allows to examine effects related to the order of interaction
between the parties (e.g., whether the referee communicates first with the curator C or with the
local model parties P1, . . . ,Pn).

Moreover, by separating the curator and referee, the hybrid model encapsulates a richer class
of trust models than [2], and, in particular, includes a trust model where data sent to the curator is
not revealed to the referee. In an implementation this may correspond to a curator instantiated by
a publicly trusted party, or by using technologies such as secure multiparty computation, or secure
cryptographic hardware which protects data and computation from external processes [50].

The curator-referee separation also makes sense from a practical point of view within a com-
pany. It is reasonable that only a small fraction of a company’s employees, with appropriate clear-
ance and training, should be able to access the raw data of those who contribute their data to the
trusted curator model, whereas the majority of employees should only see the privacy-preserving
version of it [54].

Remark 2.4 (A note on public randomness). Some of our protocols assume the existence of a
shared random string. In an implementation, shared randomness can be either set up offline or be
chosen and broadcast by the referee. We stress that the privacy of our protocols does not depend
on the shared random string actually being random. Furthermore, all our lower bounds hold even
when the local agents hold a shared (public) random string.
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2.3 Parity and threshold functions

A concept c : X → {0,1} is a predicate that labels examples taken from the domain X by either 0
or 1. A concept class C over X is a set of concepts (predicates) mapping X to {0,1}. Let b,c ∈ N be
parameters. The following two concept classes will appear throughout the paper:

• Thresholdb =
{
Thrt : t ∈ {0,1}b

}
where Thrt : {0,1}b → {0,1} is defined as Thrt(x) = 1{x≥t}, where

we treat strings from {0,1}b as integers in
{
0, . . . ,2b − 1

}
.

• Parityc = {Park : k ∈ {0,1}c} where Park : {0,1}c→ {0,1} is defined as Park(x) = 〈k,x〉 = ⊕cj=1kj · xj .

2.4 Preliminaries from learning theory and private learning

We now define the probably approximately correct (PAC) model of [63]. Given a collection of
labeled examples, the goal of a learning algorithm (or protocol) is to generalize the given data into
a concept (called a “hypothesis”) that accurately predicts the labels of fresh examples from the
underlying distribution. More formally:

Definition 2.5. The generalization error of a hypothesis h : X → {0,1} w.r.t. a target concept c and a
distribution D is defined as errorD(c,h) = Prx∼D[h(x) , c(x)].

Definition 2.6 (PAC Learning [63]). Let C be a concept class over a domain X, and let Π be a protocol
in which the input of every party is a collection of (1 or more) labeled examples from X. The protocol Π
is called an (α,β)-PAC learner for C if the following holds for all concepts c ∈ C and all distributions
D on X: If the inputs of the parties are sampled i.i.d. from D and labeled by c, then, with probability at
least 1− β, the outcome of the protocol is a hypothesis h : X→ {0,1} satisfying errorD(c,h) ≤ α.

The sample complexity of the protocol is the total number of labeled examples it operates on. That
is, if there are n parties where party Pi gets as input `i labeled examples, then the sample complexity of
the protocol is `1 + · · ·+ `n.

A PAC learning protocol that is restricted to only output hypotheses that are themselves in the
class C is called a proper learner; otherwise, it is called an improper learner. A common technique
for constructing PAC learners is to guarantee that the resulting hypothesis h has small empirical
error (as defined below), and then to argue that such an h must also have small generalization
error.

Definition 2.7. The empirical error of a hypothesis h : X→ {0,1} w.r.t. a labeled sample S = (xi , yi)
m
i=1

is defined as errorS (h) = 1
m |{i : h(xi) , yi}|. The empirical error of h w.r.t. an unlabeled sample S =

(xi)
m
i=1 and a concept c is defined as errorS (h,c) = 1

m |{i : h(xi) , c(xi)}|.

Indeed, in some of our constructions we will use building blocks that aim to minimize the
empirical error, as follows.

Definition 2.8. Let c : X → {0,1} be a concept and let D ∈ (X × {0,1})n be a labeled database. We say
that D is consistent with c if for every (x,y) ∈D it holds that y = c(x).

Definition 2.9. Let C be a concept class over a domain X, and let Π be a protocol in which the input
of every party is a collection of (1 or more) labeled examples from X. The protocol Π is called an (α,β)-
empirical learner for C if for every concept c ∈ C and for every joint input to the protocol D that is
consistent with c, with probability at least 1−β, the outcome of the protocol is a hypothesis h : X→ {0,1}
satisfying errorD(h) ≤ α.
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We will be interested in PAC-learning protocols that are also differentially private. Specifically,

Definition 2.10 ([43]). A private learner is a protocol Π that satisfies both Definitions 2.3 and 2.6.
Similarly, a private empirical learner is a protocol Π that satisfies both Definitions 2.3 and 2.9.

Dwork et al. [24] and Bassily et al. [7] showed that if a hypothesis h is the result of a differ-
entially private computation on a random sample, then the empirical error of h and its general-
ization error are guaranteed to be close. We will use the following multiplicative variant of their
result [52], whose proof is a variant of the original proof of [7].

Theorem 2.11 ([24, 7, 52, 29]). Let A : Xn → 2X be an (ε,δ)-differentially private algorithm that
operates on a database of size n and outputs a predicate h : X → {0,1}. Let D be a distribution over X,
let S be a database containing n i.i.d. elements from D, and let h←A(S). Then,

Pr
S∼D

h←A(S)

[
e−2ε · h(D)− h(S) >

10
εn

log
( 1
εδn

)]
< O (εδn) .

We next state known impossibility results for privately learning threshold and parity function.

Fact 2.12 ([11, 30]). Let b ∈ N. Any ε-differentially private (α,β)-PAC learner for Thresholdb

requires Ω( b
εα ) many samples.

Fact 2.13 ([43]). Let c ∈ N. In any ε-differentially private (α,β)-PAC learning protocol for Parityc
in the local model the number of messages is Ω(2c/3). This holds even when the underlying distri-
bution is restricted to be the uniform distribution.

Fact 2.13 implies, for example, that when there are poly(c) agents the number of rounds is
2Ω(c). It is open if there exists an ε-private protocol (or an (ε,δ)-private protocol) for learning
Parityc in the local model with poly(c) agents and any number of rounds.

Remark 2.14. The proof of Fact 2.13 in [43] is stated in a weaker model, where in each round
the referee sends an εi-differentially private local randomizer to an agent and the agent sends the
output of this randomizer on its input to the referee, such that ε1 + · · ·+ ε` ≤ ε. However, in their
proof they only use the fact that εi ≤ ε in every round, thus, their lower bound proof also applies
to our model.

Our protocols use the private learner of [43] for parity functions, a protocol of [8] for answer-
ing all threshold queries, a protocol of [16] for heavy hitters, and a protocol of [31] for approxi-
mating a quantile. These are specified in the following theorems.

Theorem 2.15 ([8]). Let α,β,ε ≤ 1, and let b ∈ N. There exists a non-interactive ε-differentially private
protocol in the local model with n = O

(
b3

α2ε2 · log
(

b
αβε

))
agents in which the input of every agent is

a single element from {0,1}b and the outcome is a function q : {0,1}b → [0,1] such that for every joint
input to the protocol D ∈ ({0,1}b)n, with probability at least 1−β, the outcome q is such that ∀w ∈ {0,1}b
we have q(w) ∈ |{x ∈D : x ≤ w}| / |D| ±α.

Remark 2.16. Theorem 2.15 does not appear explicitly in [8], but it is implicit in their analysis.
In more details, Bassily et al. [8] presented a protocol, named TreeHist, for identifying heavy
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hitters in the input database D ∈ ({0,1}b)n. TreeHist works by privately estimating for each pos-
sible prefix p ∈ {0,1}b′ (for b′ ≤ b) the number of input items that agree on the prefix p. Once
these estimated counts are computed, [8] simply identified the input items p ∈ {0,1}b with large
multiplicities in the data. Theorem 2.15 is obtained from the protocol TreeHist (with basically
the same analysis) by observing that these estimated counts (for every possible prefix) in fact give
estimations for the number of input items within any given interval. This observation has been
used several times in the literature, see, e.g., [26].

Theorem 2.17 ([43]). Let α,β,ε ≤ 1, and let c ∈ N. There exists an ε-differentially private algorithm
in the curator model that (α,β)-PAC learns and (α,β)-empirically learns Parityc properly with sample
complexity O

(
c
αε log( 1

β )
)
.

In fact, the algorithm of [43] privately produces a hypothesis with small error (w.h.p.) for
every fixed input sample that is consistent with some parity function.

Theorem 2.18 (Heavy hitters protocol [16]). There exist constants λ1,λ2 > 0 such that the following
holds. Let β,ε ≤ 1 and X be some finite domain. There exists a non-interactive ε-differentially private
protocol in the local model with n agents in which the input of each agent is a single element from X and
the outcome is a list Est of elements from X such that for every joint input to the protocol D ∈ Xn, with

probability at least 1 − β, every x that is an input of at least λ1
ε

√
n log

( |X |
β

)
agents appears in Est, and

vice versa, every element x in Est is an input of at least λ2
ε

√
n log

( |X |
β

)
agents.

Theorem 2.19 ([31, Theorem 17]). Let P be any distribution on the real line. Fix any p∗ ∈ (0,1)
and let Qmin,Qmax, q

∗ be such that Prx∼P [x ≤ q∗] = p∗ and q∗ ∈ [Qmin,Qmax]. For any ε > 0 and
for any λquant,τdist,βconf ∈ (0,1/2), there exists an interactive protocol in the local model with T =

dlog2(Qmax−Qmin
τdist

)e rounds that takes N i.i.d. draws from P , where N ≥ 8T
λ2

quant

(
eε+1
eε−1

)2
log(4T/βconf ), and

with probability at least 1 − βconf it returns q̃ such that either |q̃ − q∗| ≤ τdist or the probability mass P
places in-between q̃ and q∗ is at most λquant.

3 Learning parity XOR threshold

In this section we present a learning task that cannot be solved privately in the curator model or in
the local model, but can be solved in the hybrid model (without interaction). The task we consider
in this section – parity XOR threshold – is similar to the simpler task of the direct product of parity
and threshold discussed in Appendix A. In this section we design a non-interactive protocol in the
hybrid model for the parity XOR threshold task, which is more involved than the trivial protocol
for the parity and threshold task. This demonstrates that non-interactive protocols in the hybrid
model may have more power than one might initially suspects.

Fix b,c > 0, and let k ∈ {0,1}c and t ∈ {0,1}b be parameters. Define the function f k,t
b,c : {0,1}c ×

{0,1}b → {0,1} as follows: f k,t
b,c (x,y) = Park(x)⊕ Thrt(y) = 〈k,x〉 ⊕ 1{y≥t}

(
recall that we treat strings

in {0,1}b as integers in
{
0,1, . . . ,2b − 1

})
. Define the concept class ParityThresh as follows:

ParityThreshb,c =
{
f k,t
b,c : k ∈ {0,1}c and t ∈ {0,1}b

}
.

We first show that every differentially private algorithm (even in the curator model) for learn-
ing ParityThresh must have sample complexity Ω(b).
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Lemma 3.1. Every ε-differentially private algorithm for (1
4 ,

1
4 )-PAC learning ParityThreshb,c must have

sample complexity Ω(b).

Proof. Let A be an ε-differentially private algorithm for (1
4 ,

1
4 )-PAC learning ParityThreshb,c with

sample complexity m. We now use A to construct an ε-differentially private algorithm B for
(1

4 ,
1
4 )-PAC learning Thresholdb with the same sample complexity. By Fact 2.12 this will show that

m = Ω(b).
Algorithm B is simple: it takes an input database S = {(yi ,σi)}mi=1 ∈

(
{0,1}b × {0,1}

)m
and runs

A on the database Ŝ =
{
(~0, yi ,σi)

}m
i=1
∈

(
{0,1}c × {0,1}b × {0,1}

)m
to obtain a hypothesis ĥ. Then,

algorithm B returns the hypothesis h defined as h(y) = ĥ(~0, y). Note that changing one element of
S changes exactly one element of Ŝ , and hence algorithm B is ε-differentially private.

We next show that algorithm B is a (1
4 ,

1
4 )-PAC learner for Thresholdb. To that end, fix a target

distribution D on {0,1}b and fix a target concept Thrt (where t ∈ {0,1}b). Suppose that S contains
i.i.d. samples from D that are labeled by Thrt, and consider the following distribution D̂: To
sample an element from D̂ we sample y ∼ D and return ~0 ◦ y ∈ {0,1}b+c. Now observe that Ŝ

contains m i.i.d. samples from D̂ which are labeled by f
~0,t
b,c ∈ ParityThreshb,c. Therefore, by the

utility properties of A, with probability at least 3/4 the hypothesis ĥ satisfies errorD̂

(
ĥ, f

~0,t
b,c

)
≤ 1

4 .

In that case,

1
4
≤ errorD̂

(
ĥ, f

~0,t
b,c

)
= Pr

y∼D

[
ĥ
(
~0, y

)
, f

~0,t
b,c

(
~0, y

)]
= Pr

y∼D
[h (y) , Thrt(y)] = errorD(h,Thrt).

This shows that B is a (1
4 ,

1
4 )-PAC learner for Thresholdb, as required.

We next show that no protocol in the local model can learn ParityThresh, unless the number
of exchanged messages is very large.

Lemma 3.2. In every ε-differentially private protocol in the local model for (1
4 ,

1
4 )-PAC learning

ParityThreshb,c the number of messages is Ω(2c/3).

The proof of Lemma 3.2 is analogous to the proof of Lemma 3.1 (using Fact 2.13 instead of
Fact 2.12).

So, privately learning ParityThreshb,c in the curator model requires Ω(b) labeled examples, and
privately learning it in the local model requires Ω(2c/3) messages. We now show that ParityThreshb,c
can be learned privately by a non-interactive protocol in the hybrid model with roughly O(c) ex-
amples for the curator and with roughly O(b3) local agents. We will focus on the case where c� b.
Recall that a function f k,t

b,c (x,y) ∈ ParityThreshb,c is defined as f k,t
b,c (x,y) = Park(x)⊕Thrt(y). The dif-

ficulty in learning ParityThresh in the hybrid model is that we could only learn the threshold part
of the target function using the local agents (since if c� b then the curator does not have enough
data to learn it), but the threshold label is “hidden” from the local agents (because it is “masked”
by the parity bit that the local agents cannot learn). This false intuition might lead to the design
of an interactive protocol, in which the referee first obtains some information from the curator and
then passes this information to the local agents, which would allow them to learn the threshold
part of the target function. We now show that such an interaction is not needed, and design a
non-interactive protocol in which the local agents and the curator communicate with the referee
only once, simultaneously.
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Lemma 3.3. There exists a non-interactive ε-differentially private protocol in the (m,n)-hybrid model
for (α,β)-PAC learning ParityThreshb,c where m = O

(
c

α4ε
log( 1

αβ )
)

and n = O
(

b3

α4ε2 · log
(

b
αβε

))
.

Proof. We begin by describing a non-interactive protocol Π. The (joint) input to the protocol is
a database D where every point in D is of the form (xi , yi ,σi) ∈ {0,1}c × {0,1}b × {0,1}. At a high
level, the protocol works by using the local agents to obtain an approximation to the CDF of the
(marginal) distribution on the yi ’s (this approximation is given to the referee). In addition, the
trusted curator solves 1/α parity leaning problems. In more details, the trusted curator sorts its
database according to the yi ’s, divides its database into 1/α chunks, and then applies a private
learner for parity functions on each of the chunks. The trusted curator sends the referee the
resulting 1/α parity functions. The referee then defines the final hypothesis h that, given a point
(x,y), first uses the approximation to the CDF (obtained fro the local agents) to match this input
point to one of the chunks, and then uses the parity function obtained for that chunk from the
trusted curator to predict the label of the point.

The key observation here is that the threshold part of the target function is constant on all but
at most one of the chunks defined by the trusted curator. As we show, applying a learner for parity
on such a “consistent chunk” results in a good predictor for the labels of elements of that chunk.
Hence, provided that the approximation for the CDF of the yi ’s is accurate enough, this results in
an accurate learner for ParityThresh. We now formally present the protocol Π.

• The local agents on a (distributed) input D = (xi , yi ,σi)
n
i=1 ∈

(
{0,1}c × {0,1}b × {0,1}

)n
:

Run the protocol from Theorem 2.15 on the (distributed) database D̂ = (y1, y2, . . . , yn) with
privacy parameter ε and utility parameters α2,β. At the end of the execution, the referee
obtains a function q : {0,1}b→ [0,1] that approximates all threshold queries w.r.t. D̂.

• The curator on input S = (xi , yi ,σi)
m
i=1 ∈

(
{0,1}c × {0,1}b × {0,1}

)m
:

– Sort S according to the yi ’s in non-decreasing order.

– Divide S into blocks of size αm: S1,S2, . . . ,S1/α. For ` ∈ [1/α] we denote S` = (x`,i , y`,i ,σ`,i)
αm
i=1.

– For every ` ∈ [1/α], apply an αε-differentially private (α2,αβ)-PAC learner for Parity
on the database Ŝ` = (x`,i ◦1,σ`,i)

αm
i=1 ∈

(
{0,1}c+1 × {0,1}

)αm
to obtain a vector k` ∈ {0,1}c+1

(using Theorem 2.17).

– Send k1, . . . , k1/α to the referee.

• The referee:

– Obtain the function q and the vectors k1, . . . , k1/α.

– Define a hypothesis h : {0,1}c×{0,1}b→ {0,1} as h(x,y) = 〈x◦1, kI(y)〉, where I(y) =
⌈
q(y)
α

⌉
.

– Output h.

The privacy properties of the protocol Π are straightforward, as both the local agents and the
curator apply ε-differentially private computations: The local agents apply the algorithm from
Theorem 2.15, and the curator applies an αε-differentially private computation on each of the
blocks S1, . . . ,S1/α (note that changing one element of S can change at most one element of each of
these blocks).
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We now proceed with the utility analysis. Fix a target function f k∗,t∗

b,c ∈ ParityThreshb,c and fix a
target distribution D on {0,1}c × {0,1}b. We use Dc and Db to denote the marginal distributions on
{0,1}c and {0,1}b, respectively. We will make the simplifying assumption that Db does not give too
much weight on any single point in {0,1}b, specifically, Prw∼Db

[w = y] ≤ β/m2 for every y ∈ {0,1}b.
This assumption can be enforced by padding every example with O(log(m/β)) uniformly random
bits.

Let S and D (the inputs to the curator and the local agents) be sampled i.i.d. from D and
labeled by f k∗,t∗

b,c . We next show that w.h.p. the resulting hypothesis h has low empirical error on
S . By standard generalization arguments, such an h also has low generalization error.

First observe that there is at most one index `∗ ∈ [1/α] such that Thrt∗(y`∗,1) , Thrt∗(y`∗,αm). In
all other blocks S` we have that Thrt∗(·) is constant on all the y`,i ’s of that block. We will show
that w.h.p. the hypothesis h has small empirical error on every such block. Fix ` , `∗, and let
ν ∈ {0,1} be the value of Thrt∗(·) on the y`,i ’s of the `th block (that is, for every i ∈ [αm] we have
Thrt∗(y`,i) = ν). Recall that since the elements of S are labeled by f k∗,t∗

b,c , for every i ∈ [αm] we have
that

σ`,i = f k∗,t∗

b,c (x`,i , y`,i) = 〈k∗,x`,i〉 ⊕Thrt∗(y`,i) = 〈k∗,x`,i〉 ⊕ ν = 〈k∗ ◦ ν, x`,i ◦ 1〉.

Hence, the elements of Ŝ` are all labeled by the parity function defined by k∗ ◦ ν. Therefore, as k`
is the outcome of the learner form Theorem 2.17 on Ŝ`, for m ≥ O

(
c

α2ε log( 1
αβ )

)
, with probability

at least 1−αβ we have that errorŜ` (Park` ) ≤ α2, that is, 〈k`, x ◦ 1〉 is a good predictor for the label
of the elements in block S`.

Recall that the hypothesis h matches inputs (x,y) to the vectors k1, . . . , k1/α using the function
q obtained from the local agents, that is, on input (x,y), the hypothesis uses kdq(y)/αe. Therefore,
to complete the proof we need to show that most of the elements from block S` are matched by
the hypothesis h to the vector k`. To that end, let #S (w) = |{(x,y,σ) ∈ S : y ≤ w}|, and consider the
following event:

Event E1 : ∀w ∈ {0,1}b it holds that
∣∣∣∣∣q(w)− 1

m
·#S (w)

∣∣∣∣∣ ≤ 4α2.

We first conclude the proof assuming that Event E1 occurs. Fix ` , `∗, and recall that the
elements of S (and in particular the elements of S`) are sorted in a non-decreasing order according
to their yi ’s. Now fix 8α2m ≤ i ≤ αm−8α2m. By our simplifying assumption (that the distribution
Db does not put a lot of mass on any single point), we may assume that all the yi ’s in S are distinct,
which happens with probability at least 1 − β. In that case, we have that #S (y`,i) = max{0, ` − 1} ·
αm+ i, and hence,

max{0, ` − 1} ·α + 8α2 ≤ 1
m

#S (y`,i) ≤max{0, ` − 1} ·α +α − 8α2.

By Event E1 we get that

max{0, ` − 1} ·α + 4α2 ≤ q(y`,i) ≤max{0, ` − 1} ·α +α − 4α2,

and so,
⌈
q(y`,i )
α

⌉
= `. That is, for all but at most 16α2m elements of the block S` we get that

h(x`,i , y`,i) = 〈x`,i ◦ 1, k`〉 = Park`(x`,i ,y`,i ). Recall that Park` errs on at most α2m elements of S`,
and so the hypothesis h errs on at most 17α2m elements of the block S`. That is, h errs on at most
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17α2m elements of every block S` for ` , `∗, and might err on all of S`∗ which is of size αm. So,
h errs on at most 1

α · 17α2m + αm = 18αm elements of S . Standard generalization bounds now
state that, except with probability at most β, we get that errorD(h,f k∗,t∗

b,c ) ≤O(α) (in particular, this
follows from the generalization properties of differential privacy; see Section 2.4 for more details).
Overall, with probability at least 1−O(β) the resulting hypothesis has generalization error at most
O(α).

It remains to show that Event E1 occurs with high probability. First, for n ≥O
(

b3

α4ε2 · log
(

b
αβε

))
,

Theorem 2.15 ensures that with probability at least 1 − β the function q is such that ∀w ∈ {0,1}b
it holds that

∣∣∣q(w)− 1
n#D̂(w)

∣∣∣ ≤ α2, where #D̂(w) = |{y ∈ D̂ : y ≤ w}|. Second, by standard general-
ization arguments, assuming that n and m are big enough, we would also have that 1

n#D̂(w) and
1
m#S (w) are both within α2 from Pry∼Db

[y ≤ w]. Specifically, by the Dvoretzky-Kiefer-Wolfowitz

inequality [23, 45], assuming that n and m are at least Ω
(

1
α4 log( 1

β )
)
, this happens with probability

at least 1−β. Assuming that this is the case, by the triangle inequality we have that Event E1 holds.
This shows that Event E1 happens with probability at least 1− 3β, and completes the proof.

We remark that it is possible to design a more efficient learner for ParityThresh (in terms of
sample complexity) by constructing a protocol in which there are multiple rounds of communi-
cation between the referee and the local agents (but this communication is still independent from
the message that the curator sends to the referee). This will be illustrated in Appendix A. We sum-
marize our possibility and impossibility results w.r.t. learning ParityThresh in the next theorem
(which follows from Lemma 3.1 and Lemma 3.2 and from Lemma 3.3).

Theorem 3.4. Let c ∈ N and b = c2. Then there is a non-interactive 1
4 -differentially private (1

4 ,
1
4 )-PAC

learner for ParityThreshb,c in the (m,n)-hybrid model with m = O(c) samples for the curator and n =
O(c6 logc) local agents. However, every such learner in the local model with o(2(n/ logn)1/6

) local agents
requires 2Ω((n/ logn)1/6) rounds, and every such learner in the curator model requires Ω(m2) samples.

4 The 1-out-of-2d-parity task

In this section we describe a task that cannot be privately solved neither in the curator model nor
in the local model with sub-exponential number of rounds. In the hybrid model, this task can only
be solved with interaction, first with the local agents and then with the curator. In this task there
are many instances of the parity problem and the referee needs to solve only one instance, which
is determined by the inputs. The local agents can determine this instance (using a heavy hitters
protocol) and the curator can now solve this instance. The curator cannot solve all instances since
this will exceed its privacy budget, and by the definition of the task the curator will not have
enough information to determine the instance; thus interaction with both the local agents and the
curator is required.

Definition 4.1 (The 1-out-of-2d-parity task). The inputs in the 1-out-of-2d-parity task are generated
as follows:

1. Input: 2d strings (rj )j∈{0,1}d , where rj ∈ {0,1}c for every j ∈ {0,1}d , and m+1 elements s1, . . . , sm+1 ∈
{0,1}d .
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2. Set s = s1 ⊕ · · · ⊕ sm+1.4

3. Each sample x1, . . . ,xm and y1, . . . , yn is generated independently as follows:

• with probability half choose x ∈R {0,1}c with uniform distribution and output (x, (〈x,rj〉)j∈{0,1}d )

(that is, every point contains a string x of length c and 2d bits which are the inner products
of x and each of the rj ’s).

• with probability half choose t ∈R [m+ 1] with uniform distribution and output (t, st) (that is,
every point contains a number t and the t-th string st).

The goal of the referee in the 1-out-of-2d-parity task is for every (rj )j∈{0,1}d and s1, . . . , sm+1 to recover rs
with probability at least 1 − β, where the probability is over the generation of the inputs in Step 3 and
the randomness of the parties in the protocol.

We start by describing a protocol for this task.

Lemma 4.2. Let β > 1/m and assume that m = Ω
(
c log(1/β)

ε

)
and n = Ω

(
m2

ε2 log(m2d

β )
)
. The 1-out-of-

2d-parity task can be solved in the (m,n)-hybrid model by an ε-differentially private protocol with three
rounds, where in the first round each local agent sends one message to the referee (without seeing any
other messages), in the second round the referee sends one message to the curator, and in the third round
the curator sends one message to the referee.

Proof. The protocol is as follows: In the first round the local agents send messages according to
the ε-differentially private heavy hitters protocol of Theorem 2.18 (from [16]) with the inputs
(t, st) and β/3, that is, a protocol that returns with probability at least 1 − β/3 all values that are
inputs of “many” agents. If the input of a local agent is not (t, st) for some t, then it executes the
protocol with some default input ⊥. The referee reconstructs the m + 1 strings s1, . . . , sm+1 (with
probability at least 1− 2β/3), computes s = s1 ⊕ · · · ⊕ sm+1, and sends it to the curator. The curator
privately solves the parity task with inputs (x,〈x,rs〉) using the algorithm of Theorem 2.17 (from
[43]) with α = 1/4 and β/3. Since we use ε-differentially private algorithms, each operating on
different inputs, the resulting protocol is ε-differentially private.

We next argue that with probability at least 1 − β, the referee reconstructs rs. Note that for a
fixed t ∈ [m+1], the expected number of times that (t, st) is an input of agents P1, . . . ,Pn is n/2(m+1).
By a simple Chernoff bound, with probability 1−β/3 for all t, the value (t, st) is an input of at least
n/4(m+1) parties. By Theorem 2.18, with probability at least 1−β/3, each value that is an input of

at least O
(
1/ε

√
n log(m2d

β/3 )
)

agents will appear in the list computed by the referee. By the assertion

of the lemma, O
(
1/ε

√
n log(m2d

β/3 )
)
< n

4(m+1) . Thus, with probability at least 1 − 2β/3, the referee

reconstructs all st’s and reconstructs the correct value s. Furthermore, as m = Ω( c log(3/β)
ε ), the

algorithm of Theorem 2.17 returns, with probability at least 1−β/3, a string r such that Pr[〈x,r〉 ,
〈x,rs〉] ≤ 1/4 under the uniform distribution on x ∈ {0,1}c. Since for r , rs this probability is exactly
1/2, we get that r = rs with probability at least 1− β.

4The strings s1, . . . , sm+1 are an m + 1-out-of-m + 1 secret sharing of s, that is, together they determine s, but every
subset of them gives no information on s.
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We next prove that, unless the database is big, the 1-out-of-2d-parity task requires interac-
tion. To prove this result, we first convert a protocol for the 1-out-of-2d-parity task to a private
algorithm in the trusted curator model that recovers all strings (rj )j∈{0,1}d . We then prove, us-
ing a simple packing argument, that, unless the database is “big”, such algorithm cannot exist.
For our proof, we define the all-2d-parity task as the task in which all inputs are of the form
(x, (〈x,rj〉)j∈{0,1}d ) and the goal of the referee is to reconstruct all strings (rj )j∈{0,1}d .

Claim 4.3. Let m < n. If there is an ε-differentially private protocol for the 1-out-of-2d-parity problem
in the (m,n)-hybrid model in which the curator and the referee can exchange many messages and then the
referee simultaneously sends one message to each local agent and gets one answer from each agent, then
there is an ε-differentially private algorithm in the trusted curator model for the all-2d-parity problem
for a database of size O(nd).

Proof. Let Π be an ε-differentially private protocol with the above interaction pattern for the
1-out-of-2d-parity task in the (m,n)-hybrid model in which the referee reconstructs rs with prob-
ability at least 1− β. We construct, in three steps, an algorithm A for the all-2d-parity task in the
trusted curator.

First, we construct from Π a protocol Π′ in the (O(md),O(dn))-hybrid model that reconstructs
rs with error probability at most β/2d (e.g., execute Π with disjoint inputs O(d) times and take the
value rs that is returned in the majority of the executions).

Next, we construct from Π′ a protocol Π′′ for the the all-2d-parity task in the (O(md),O(nd))-
hybrid model (with error probability at most β). In Π′′, the parties holding inputs of the all-2d-
parity problem simulate Π′ on inputs for the 1-out-of-2d-parity task as follows:

• The curator on input (xi , (〈xi , rj〉)j∈{0,1}d )mi=1:

– Chooses random s1, . . . , sm+1 ∈R {0,1}d .

– For each i ∈ [m], with probability 1/2 replaces its i-th input by (ti , sti ) for a uniformly
distributed ti ∈R [m+ 1].

– Exchanges messages with the referee as specified by Π′ on the new input. In addition
it sends to the referee s1, . . . , sm+1 and an index ` such that (`, s`) does not appear in its
new input.

• The referee after getting the message from the curator:

– Chooses a set A ⊆ [n] with uniform distribution.

– For every i < A, sends its message in Π′ to the i-th agent and gets an answer Mi from
the agent.

– For every i ∈ A, chooses a random qi ∈R [m+ 1]. Let B = {i ∈ A : qi = `}.
– For every i ∈ A\B, computes (without any interaction) its message in Π′ to agent Pi and

the answer Mi of agent Pi with input (qi , sqi ).

– For every i ∈ B and s ∈ {0,1}d , computes (without any interaction) its message in Π′ to
agent Pi and the answer Mi,s of agent Pi with input (`, s⊕

⊕
k,` sk).

– For every s ∈ {0,1}d , reconstructs rs from the messages of the curator in Π′, (Mi)i<B, and
(Mi,s)i∈B.
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As the curator holds m samples and there are m + 1 values s1, . . . , sm+1, there exists an index
` such that (`, s`) does not appear in the new input of the curator. Thus, the referee for every
s ∈ {0,1}d can choose a value s′` such that it is consistent with the messages of the curator in Π′ and
s = s′` ⊕

⊕
k,` sk . Furthermore, each of x1, . . . ,xm, y1, . . . , yn is replaced with probability half with

a value (t, st) for a uniformly distributed t, thus, these inputs are distributed as required for the
1-out-of-2d-parity task. This implies that for every s ∈ {0,1}d the referee reconstructs rs from the
messages of the curator in Π′, (Mi)i<B, and (Mi,s)i∈B with probability at least 1−β/2d . By the union
bound, the referee correctly reconstructs all (rj )j∈{0,1}d with probability at least 1− β.

Finally, we construct the desired algorithm A from Π′′. The trusted curator simply simulates
the referee, the curator, and the agent in Π′′, that is, it take its database with O((m+n)d) samples
and partitions it to (x1, . . . ,xO(md)) (the input of the curator) and y1, . . . , yO(nd), computes without
any interaction a random transcript of Π′′ on these inputs, and reconstructs the output (rj )j∈{0,1}d .
Since the transcript preserves ε-differential privacy and computing the output is post-processing,
algorithm A is ε-differential private.

Claim 4.4. If there is exists an ε-differentially private algorithm in the trusted curator model for the

all-2d-parity task with strings of length c, then n = Ω

(
c2d+ln(1−β)

ε

)
.

Proof. The proof is by a simple packing argument. For every strings (rj )j∈{0,1}d , with probability at
least 1−β, the algorithm returns (rj )j∈{0,1}d when the samples are generated with (rj )j∈{0,1}d . By the
group privacy of ε-differential privacy, with probability at least e−nε(1− β) the algorithm returns
(rj )j∈{0,1}d when the samples are generated with (0c)j∈{0,1}d . As there are 2c2d

options for (rj )j∈{0,1}d

and the above events are disjoint, 2c2d
e−nε(1− β) ≤ 1, i.e., n = Ω

(
c2d+ln(1−β)

ε

)
.

Lemma 4.5. Let m < n. If there is an ε-differentially private protocol for the 1-out-of-2d-parity task in
the (m,n)-hybrid model with β = 1/4 in which the curator and the referee can exchange many messages
and then the referee simultaneously sends one message to each local agent and gets one answer from each
agent, then n = Ω(c2d/dε).

Proof. By Claim 4.3, if there exists an ε-differentially protocol in the (m,n)-hybrid model for the
1-out-of-2d-parity task, then there exists an ε-differentially private algorithm in trusted curator
model for the all-2d-parity task with database of size O(dn). Thus, by Claim 4.4 with β = 1/4,
dn = Ω( c2

d

ε ).

Lemma 4.5 is valid also if the local agents are allowed to hold a shared (public) random string
as this string can be sent by the referee to each agent as part of its message (without adding extra
rounds of communication).

We summarize the possibility and impossibility results for the 1-out-of-2d-parity task in the
following theorem, where, for convenience, we choose specific parameters that highlight these
results.

Theorem 4.6. Let ε = 1/4, β = 1/4. For every integer c, there are d = Θ(logc), m = Θ(c), and n =
Θ(c2 logc) such that

1. There exists an ε-differentially private protocol for the 1-out-of-2d-parity task with strings of
length c in the (m,n)-hybrid model where first each local agent sends one message to the referee
and then the referee exchanges one message with the curator.
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2. There does not exist an ε-differentially private protocol for this task in the (m,n)-hybrid model
in which the referee first exchanges messages with the curator and then simultaneously exchanges
one message with the local agents.

3. In any ε-differentially private protocol for this task in the local model with n agents the number of

rounds is 2Ω(c) = 2Ω(
√
n/ logn).

4. There is no algorithm in the trusted curator model that solves this task with m examples.

Proof. Item 1 follows directly from Lemma 4.2. For Item 2, by Lemma 4.5, with ε = 1/4, β = 1/4,
and d = 2logc+ loglogc

n = Ω

(
c2d

dε

)
= Ω(c3),

contradicting the choice of n = Θ(c2 logc).
For the impossibility result in Item 3, recall that by Fact 2.13 the number of messages sent to

the referee in an ε-differentially private learning protocol in the local model for parity of strings of
length c with respect to the uniform distribution is 2Ω(c). By simple simulation, an ε-differentially
private protocol in the local model for the 1-out-of-2d-parity task implies an ε-differentially pri-
vate protocol in the local model for learning parity with respect to the uniform distribution (with
the same number of messages). Specifically, since the number of agents is n = O(c2 logc), the

number of rounds is 2Ω(c)/(c2 logc) = 2Ω(
√
n/ logn).

For Item 4, observe that a curator receiving m input points obtains less than m+ 1 shares of s
and hence obtains no information about rs. Hence, such a curator cannot solve the 1-out-of-2m-
parity task alone, even without privacy constraints.

5 The parity-chooses-secret task

We now present another task that cannot be privately solved neither in the curator model nor in
the local model with sub-exponential number of rounds. This task can be solved in the hybrid
model; however, it requires interaction, this time first with the curator and then with the local
agents. This task (as well as 1-out-of-2d-parity task) highlights both the information and private-
computation gaps between the curator and the local model agents. The local model agents receive
enough information to solve the task, but lack the ability to privately solve an essential sub-task.
The curator does not receive enough information to solve the task (even non-privately), however
the curator can be used to privately solve the hard sub-task. Once the hard sub-task is solved, this
information is forwarded to the local agents, which now can solve the task.

Definition 5.1 (The parity-chooses-secret task). The inputs in the parity-chooses-secret task are gen-
erated as follows:

1. Input: A string r ∈ {0,1}c and 2c vectors of m + 1 bits: a vector (sj,1, . . . , sj,m+1) ∈ {0,1}m+1 for
every j ∈ {0,1}c.

2. Set sj = sj,1⊕ · · ·⊕ sj,m+1 for every for j ∈ {0,1}c, i.e., sj is a random bit shared via an m+ 1-out-of-
m+ 1 secret-sharing scheme, with the shares being sj,1, . . . , sj,m+1.

3. Each sample x1, . . . ,xm and y1, . . . , yn is generated independently as follows:

18



• Choose x ∈R {0,1}c and t ∈R [m + 1] and output (x,〈x,r〉, t, (sj,t)j∈{0,1}c ) (that is, every point
contains a string of length c, its inner product with r, an integer t, and the t-th share of each
sj).

The goal of the referee in the parity-chooses-secret task is for every r and every
(
(sj,1, . . . , sj,m+1)

)
j∈{0,1}c

to recover sr with probability at least 1− β, where the probability is over the generation of the inputs in
Step 3 and the randomness of the parties.

We start by describing a protocol for the parity-chooses-secret task.

Lemma 5.2. Let β > 1/m and assume that m = Ω
(
c log(1/β)

ε

)
and n = Ω

(
m2

ε2 log(nε )
)
. The parity-chooses-

secret task can be solved in the (m,n)-hybrid model by an ε-differentially private protocol with three
rounds, where in the first round the curator sends one message to the referee, in the second round the
referee sends one message to the local agents, and in the third round each local agent sends one message
to the referee.

Proof. The protocol is as follows: First, the curator learns r by executing the ε-differentially private
algorithm for learning parity of [43] (see Theorem 2.17) with α = 1/4 , β/3, and the m inputs
(x,〈x,r〉). The curator sends r to the referee, which forwards it to the local agents. Next each local
agent sends a messages according to the ε-differentially private heavy hitters protocol of [16]
(see Theorem 2.18) with the input (t, sr,t) and β/3. The referee recovers (1, sr,1), . . . , (m + 1, sr,m+1)
from the messages of the heavy-hitters protocol, and outputs ysr = sr,1 ⊕ · · · ⊕ sr,m+1. Since we use
ε-differentially private algorithms, each operating on different inputs, the resulting protocol is
ε-differentially private.

We next argue that with probability at least 1−β, the referee reconstructs sr . As m = Ω( c log(1/β)
ε ),

the algorithm of [43] (see Theorem 2.17) returns, with probability at least 1− β/3, a string r ′ such
that Pr[〈x,r ′〉 , 〈x,r〉] ≤ 1/4 under the uniform distribution on x ∈ {0,1}c. Since for r , r ′ this
probability is exactly 1/2, we get that r = r ′ with probability at least 1 − β/3. We complete the
proof by showing that, once the local agents and the referee know r, the referee reconstructs with
probability at least 2β/3 all values (1, sr,1), . . . , (m + 1, sr,m+1). Note that for a fixed t ∈ [m + 1], the
expected number of times that (t, sr,t) is an input of agents P1, . . . ,Pn is n/(m+ 1). By a simple Cher-
noff bound, with probability 1 − β/3, for all t the value (t, sr,t) is an input of at least n/2(m + 1)
parties. The protocol of [16] (see Theorem 2.18) guarantees that, with probability at least 1− β/3,

each value that is an input of at least O
(
1/ε

√
n log( n

β/3 )
)

agents will appear in the list computed

by the referee. By the assertion of the lemma, O
(
1/ε

√
n log( n

β/3 )
)
< n

2(m+1) . Thus, with probability

at least 1− β, the referee reconstructs sr,1, . . . , sr,m+1 and reconstructs the correct value sr .

We next prove that, unless the database is big, the parity-chooses-secret task requires inter-
action. Furthermore, we rule-out protocols in which first the referee simultaneously sends one
message to each local agent, then receives an answer from each local agent, and finally exchanges
(possibly many) messages with the curator. In particular, we rule-out the communication pattern
used in Lemma 4.2 for the 1-out-of-2d-parity task. To prove this result, we first convert a proto-
col Π for the parity-chooses-secret task with the above communication pattern to a protocol Π′

in the hybrid model with the same communication pattern for a similar task (which we call the
parity-chooses-secret’ task, defined below). We then convert the protocol Π′ to a non-interactive
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protocol Π′′ in the local model for another related task, and complete the proof by showing an
impossibility result for the related task.

We define the parity-chooses-secret’ task as the task in which the input of the curator is gen-
erated as in the parity-chooses-secret task and the input of each local agent only contains shares,
that is, it is of the form (t, (sj,t)j∈{0,1}c ). The goal of the referee in remains the same – to recover sr .

Claim 5.3. Assume that m = Ω
(
c log(1/β)

ε

)
. If there is an ε-differentially private protocol for the parity-

chooses-secret task in the (m,n)-hybrid model with error at most β in which in the first round the referee
simultaneously sends one message to each local agent, in the second round gets an answer from each
agent, and then the referee and the curator exchange (possibly many) messages, then there is a 2ε-
differentially private protocol for the parity-chooses-secret’ task in the (m,n)-hybrid model with error at
most 2β with the same communication pattern.

Proof. Let Π be an ε-differentially private protocol for the parity-chooses-secret task in the (m,n)-
hybrid model with the communication pattern as in the claim in which the referee reconstructs sr
with probability at least 1 − β. We construct from Π a 2ε-differentially private protocol Π′ with
the same communication pattern for the the parity-chooses-secret’ task in which the referee re-
constructs sr with probability at least 1− 2β. In Π′, each agent Pi , holding an input (t, (sj,t)j∈{0,1}c ),
chooses with uniform distribution a string xi ∈R {0,1}c and sends two messages of Π, one mes-
sage, denoted Mi,0, for the input (xi ,0, t, (sj,t)j∈{0,1}c ) and one message, denoted Mi,1, for the input
(xi ,1, t, (sj,t)j∈{0,1}c ). In addition, the agent sends xi to the referee. The referee sends the messages
that it gets from the local agents (i.e., (xi ,Mi,0,Mi,1)i∈[n]) and its random string to the curator. The
curator does as follows:

• Privately learns r by executing the ε-differentially private algorithm of [43] (see Theorem 2.17)
for learning parity with α = 1/4, β, and the m inputs (x,〈x,r〉).

• For each agent Pi , computes bi = 〈xi , r〉 and Mi = Mi,bi (that is, the curator chooses the correct
message from the two messages the agent sends).

• Simulates the communication between the curator and the referee in Π assuming that the
curator gets the messages (Mi)i∈[n] in the first round and reconstructs sr as the referee recon-
structs it in Π.

• Sends sr to the referee.

As each party executes two ε-differentially private algorithm on its input, the resulting protocol
is 2ε-differentially private. Each agent Pi chooses xi with uniform distribution (as in the parity-
chooses-secret task). Furthermore, as m is big enough, with probability at least 1− β, the curator
computes the correct value r. Thus, (xi ,bi , t, (sj,t)j∈{0,1}c ) is an input distributed as required in the
parity-chooses-secret task, and the curator reconstructs sr with probability at most 1− 2β.

We recall a result of [46] showing that the mutual information between an the input and output
of a differential private algorithm is low. Recall that the entropy H(X) of a random variable X is
defined as

H(X) , −
∑

x,Pr[X=x]>0

Pr[X = x] logPr[X = x].
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It can be proved that 0 ≤ H(X) ≤ log(|support(X)|), where |support(X)| is the size of the support
of X (the number of values with probability greater than zero). The upper bound |support(X)| is
obtained if and only if the distribution of X is uniform and the lower bound is obtained if and only
if X is deterministic. Given two random variables X and Y (possibly dependent), the conditioned
entropy of X given Y is defined as H(X |Y ) ,H(XY )−H(Y ). From the definition of the conditional
entropy, the following properties can be proved:

H(XY ) ≤H(X) +H(Y ),

and for 3 random variables X,Y ,Z
H(X |YZ) ≤H(X |Y ).

The mutual information between X and Y is defined as

I(X;Y ) ,H(X)−H(X |Y ) = H(X) +H(Y )−H(XY ).

Theorem 5.4 (Differential privacy implies low mutual information [46]). Let A : Xn → Y be an
ε-differentially private mechanism. Then for every random variable V distributed on Xn, we have
I(V ;A(V )) ≤ 1.5εn.

Lemma 5.5. Assume that m = Ω
(
c log(1/β)

ε

)
. If there is an ε-differentially private protocol for the parity-

chooses-secret task in the (m,n)-hybrid model with error at most β in which in the first round the referee
simultaneously sends one message to each local agent, in the second round gets an answer from each
agent, and then the referee and the curator exchange (possibly many) messages, then n ≥ (1−2β)2c

3ε .

Proof. We convert the protocol for the parity-chooses-secret task to a protocol Π′′ in the local
model with n agents, where the input of each agent contains 2c bits (sj )j∈{0,1}c . If the inputs of all
agents are equal, then for every r ∈ {0,1}c the referee should output the bit sr with probability at
least 1− β. We will show at the end of the proof that such protocol can exist only if n is big.

By Claim 5.3, under the assumption of the lemma there is a 2ε-differentially private protocol
Π′ for the parity-chooses-secret’ task in the (m,n)-hybrid model with error at most 2β and com-
munication pattern is as in the lemma. We construct the following protocol Π′′ in the local model
with n agents:

• Input of each agent Pi : (sj )j∈{0,1}c .

• The referee chooses with uniform distribution 2c vectors of m+1 bits: a vector (sj,1, . . . , sj,m+1) ∈R

{0,1}m+1 for every j ∈ {0,1}c.

• The referee chooses with uniform distribution m indices t1, . . . , tm ∈R [m + 1]m. Let ` be an
index that does not appear in this list.

• The referee chooses with uniform distribution m strings (x1, . . . ,xm) ∈R ({0,1}c)m.

• The referee sends ((sj,1, . . . , sj,m+1))j∈{0,1}c and ` to each agent.

• Each agent Pi chooses with uniform distribution an index t ∈ [m+ 1]. If t , `, it sends to the
referee its message in Π′ on input t, (sj,t)j∈{0,1}c . If t = `, it sends to the referee its message in

protocol Π′ on input `,
(
sj ⊕

⊕
k,` sj,k

)
j∈{0,1}c

. Denote the message of Pi by Mi .
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• For every r ∈ {0,1}c, the referee does the following:

– Computes (without interaction) the communication exchanged in Π′ between the ref-
eree and the curator with input

(x1,〈x1, r〉, t1, (sj,t1)j∈{0,1}c ), . . . , (xm,〈xm, r〉, tm, (sj,tm)j∈{0,1}c ).

Denote this communication by MC,r .

– The referee reconstructs sr from the messages MC,r ,M1, . . . ,Mn using the reconstruction
function of Π′.

Protocol Π′′ is 2ε-differentially private, since Π′ is 2ε-differentially private. Furthermore, if
all the inputs of the local agents are equal, then MC,r ,M1, . . . ,Mn are distributed as in Π′, thus, for
every r ∈ {0,1}c, the referee reconstructs sr with probability at least 1− β.

We complete the proof by showing that n must be large enough in Π′′ (hence, also in Π). As-
sume we execute protocol Π′′ when (sj )j∈{0,1}c is choosen with uniform distribution and denote its
input by (sj )j∈{0,1}c and its output by (s′j )j∈{0,1}c . As the output in Π′′ is computed from the tran-
script of Π′, the post-processing property of differential privacy implies that the algorithm that
first executes protocol Π′ and then computes the output from the transcript is 2ε-differentially
private. By Theorem 5.4,

I
(
(sj )j∈{0,1}c ; (s

′
j )j∈{0,1}c

)
≤ 3εn. (1)

On the other hand, Pr[sj0 = s′j0] ≥ 1− 2β for a given j0 ∈ {0,1}c, thus

H(sj0 |(s
′
j )j∈{0,1}c ) ≤H(sj0 |s

′
j0

) ≤ 2β,

and
H

(
(sj )j∈{0,1}c |(s′j )j∈{0,1}c

)
≤

∑
j0∈{0,1}c

H
(
sj0 |(s

′
j )j∈{0,1}c

)
≤ 2β2c.

Thus,

I
(
(sj )j∈{0,1}c ; (s

′
j )j∈{0,1}c

)
= H

(
(sj )j∈{0,1}c

)
−H

(
(sj )j∈{0,1}c |(s′j )j∈{0,1}c

)
≥ 2c − 2β2c = (1− 2β)2c. (2)

Inequalities (1) and (2) imply that (1− 2β)2c ≤ 3εn.

We summarize the possibility and impossibility results for the parity-chooses-secret task in
the next theorem.

Theorem 5.6. Let ε = 1/4, β = 1/4. For every integer c, there are m = Θ(c) and n = Θ(c2 logc) such
that

1. There exists an ε-differentially private protocol for the parity-chooses-secret task with strings of
length c in the (m,n)-hybrid model where first the curator sends one message to the referee and
then the referee simultaneously exchanges one message with each local agent.

2. There does not exist an ε-differentially private protocol for this task in the (m,n)-hybrid model
in which the referee first simultaneously exchanges one message with the local agents and then
exchanges messages with the curator.
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3. In any ε-differentially private protocol for this task in the local model with n agents the number of
rounds is 2Ω(c).

4. There is no algorithm in the trusted curator model that solves this task with m examples.

Proof. Item 1 follows directly from Lemma 5.2. Item 2 is implied by Lemma 5.5, since n � 2c.
Item 3 follows from Fact 2.13 as in the proof of Theorem 4.6.

For Item 4, observe that a curator receiving m input points obtains less than m + 1 shares of
(s1, . . . , sj ) and hence obtains no information about sr . That is, such a curator cannot solve the
parity-chooses-secret task alone, even without privacy constraints.

6 A Negative Result: Basic hypothesis testing

Here, we show that for one of the most basic tasks, differentiating between two discrete distribu-
tions D0 and D1, the hybrid model gives no significant added power.

Definition 6.1 (The simple hypothesis-testing task). Let 0 < β < 1 be a parameter, X be a finite
domain, andD0 andD1 be two distributions over X. The input of the hypothesis-testing task is composed
of i.i.d. samples from Dj for some j ∈ {0,1} and the goal of the referee is to output ĵ s.t. Pr[ĵ = j] ≥ 1−β.

Theorem 6.2. If there exists an ε-differentially private protocol in the (m,n)-hybrid model for testing be-
tween distributionsD0 andD1 with success probability 1/2+γ , then either there exists an ε-differentially
private protocol for this task in the curator model that uses m samples and succeeds with probability at
least 1/2 + γ/4 or there exists an ε-differentially private protocol for this task in the local model with n
agents that succeeds with probability at least 1/2 +γ/4.

Proof. Let Π be a protocol guaranteed by the lemma, that is, when the inputs of the curator and
the local agents are drawn from Dj , the referee in Π returns j with probability at least 1/2 + γ .
Consider an execution of the protocol when the inputs of the curator are drawn from D0 and the
inputs of the local agents are drawn from D1 and let p be the probability that the referee in Π

returns 1 in this case.
We first assume that p ≥ 1/2 and show that there exists an ε-differentially private protocol

Πlocal for this task in the local model with n agents that succeeds with probability at least 1/2+γ/4.
The referee in protocol Πlocal with probability γ/2 outputs 1 and with probability 1 − γ/2 draws
m samples from D0, executes protocol Π, where the referee simulates the messages of the curator
using the m samples, and returns the output of Π.

We next analyze this protocol. If the inputs of the local agents are drawn from D1, then the
probability that the referee in protocol Π returns 1 is at least 1/2 and the probability that the
referee in Πlocal returns 1 is at least γ/2 + (1 − γ/2) · 1/2 = 1/2 + γ/4. If the inputs of the local
agents are drawn from D0, then the probability that the referee in Πlocal returns 0 is at least
(1−γ/2) · (1/2 +γ) ≥ 1/2 +γ/4 (since γ ≤ 1/2).

For the case that p < 1/2, it can be shown, using an analogous construction, that there exists
an ε-differentially private protocol Πcurator for this task in the curator model with m samples that
succeeds with probability at least 1/2 +γ/4.
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Notation. The total variation distance (also known as the statistical distance) of two discrete dis-
tributions D0,D1 over a domain X is dTV(D0,D1) = supT⊂X |D1(T )−D0(T )| = 1

2
∑

x∈X |D1(x)−D0(x)|.
The squared Hellinger distance between two distributions D0,D1 over a domain X is defined as

dH2(D0,D1) = 1
2
∑

x∈X
(√
D0(x)−

√
D1(x)

)2
.

For the rest of the discussion in this section, fix the domain X = {0,1}, and some α > 0. We
define two distributions D0 and D1 where under D1 we have Prx∼D1

[x = 1] = 1
2 (1 + α) and under

D0 we have Prx∼D0
[x = 1] = 1

2 (1−α). It is a fairly simple calculation to see that dTV(D0,D1) = α and
α2

2 ≤ dH2(D0,D1) ≤ α2. We prove that for some setting of the parameters n and m, the hypothesis-
testing task between D0 and D1 is impossible in the (m,n)-hybrid model.

Next, we cite two known results regarding differentially private simple hypothesis testing. The
work of Joseph et al. [40] discusses sample complexity bounds for simple hypothesis testing the
in local-model.

Fact 6.3 ([40, Theorem 5.3]). Let Π be an ε-differentially private protocol in the local model for
distinguishing between a setting where the input of the n local agents is drawn i.i.d. from D0
vs. the input drawn i.i.d. from D1. Let Πj denote the view of the protocol under n input point
drawn i.i.d. from Dj for j ∈ {0,1}. Then dTV(Π1,Π0) ≤ 50nε2dTV(D0,D1) = 50nε2α2.

The work of Cannone et al. [18] gives tight sample complexity bounds for private hypothesis
testing in the curator model. Although their result for general distributions is rather technical to
state, doing so for the result for distributions supported on precisely two elements is fairly simple.

Fact 6.4 ([18, Theorem 3.5] reworded). There exists a constant C > 0 such that any ε-DP algorithm
for distinguishing w.p. ≥ 0.55 between a setting where the input of m datapoints is drawn i.i.d.
from D0 vs. the input drawn i.i.d. from D1 requires

m ≥ C

(
1

dH2(D0,D1)
+

1
ε · dTV(D0,D1)

)
= Ω(

1
α2 +

1
ε ·α

)

Combining the above two facts with Theorem 6.2 we obtain the following as an immediate
corollary.

Theorem 6.5. There exists two constants c0, c1 such that in the (m,n)-hybrid model, with m ≤ c0

(
1
α2 + 1

εα

)
and n ≤ c1 · 1

ε2α2 , there does not exists an ε-differentially private protocol that succeeds in determining
whether all m+n input points are drawn from D0 vs. D1 w.p. ≥ 0.75.

Proof. Assume towards a contradiction that such a protocol Π exists. By Theorem 6.2, there is an
ε-differentially private protocol that succeeds in determining whether all input points are drawn
from D0 vs. D1 w.p. ≥ 0.5625 either in the trusted curator model with sample complexity m or in
the local model with n agents. The former yields an immediate contradiction with Fact 6.4 and
the latter yields an immediate contradiction with Fact 6.3 for a sufficiently small c1.
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A Learning parity and threshold

We now define a problem which, due to known results regarding sample complexity lower bounds,
cannot be privately learned neither in the curator model nor in the local model with sub-exponential
number of rounds and yet can be learned in the hybrid model. Specifically, we make use of exist-
ing impossibility results for learning threshold functions in the curator model (see Fact 2.12) and
for learning parity functions in the local model (see Fact 2.13). The learning problem we define
is fairly natural – it is the concatenation of the two problems, resulting in a two-tuple label. All
that is left is to set parameters so that either the curator or the local model agents fail to learn the
suitable part of the problem.

For integers b,c, we define a concept class

Cb,c =
{
ck,t : {0,1}c × {0,1}b→ {0,1}2 : k ∈ {0,1}c , t ∈ {0,1}b

}
,

where ck,t(x,y) = (Park(x),Thrt(y)).

Theorem A.1. Let b be an integer and 0 < ε,α,β < 1 s.t. 8 · 105b log(b/βα)/(α3ε2) < 2
√
b/4 and let

c =
√
b, m = 1000

√
b log(1/β)/εα, and n = 8 · 105b log(b/βα)/(α3ε2). The task of PAC-learning Cb,c

with ε-differentially privacy can be solved in the (m,n)-hybrid model yet cannot be learned neither in
the curator model with m samples nor in the local agents model with n agents and at most 2Ω(

√
b)/n =

α3ε22Ω(
√
b)

log1/βα rounds.

Proof. We begin with the latter part of the theorem. Assume towards contradiction that there
exists an ε-differentialy private PAC-learnerA for Cb,c in the curator model with a sample size of at
most m. As we explain below, this implies that there exists an ε-differentialy private algorithm A′
in the curator model for PAC-learning a Threshold problem that has access to at most m examples,
contradicting Fact 2.12. The construction ofA′ fromA is as follows: AlgorithmA′, given m inputs
to the Threshold problem, picks k ∈ {0,1}c arbitrarily and pads each example with a x ∈ {0,1}c
chosen with uniform distribution and the label 〈x,k〉 and then feeds the concatenated inputs to
A. By definition, the m input points are legal inputs to A and thus w.p. ≥ 1 − β the algorithm
produces a good h. Projecting h onto its second coordinate yields an hypothesis h′ whose error in
comparison to Thrt is at most α. The proof that no differentialy private protocol in the local model
with at most 2c/3/n rounds can learn such h on its own is symmetric and follows from Fact 2.13.

We now show that there exists a protocol in the (m,n)-hybrid model that is capable of privately
learning Cb,c. The protocol itself is very straight-forward: the curator (α2 ,

β
2 )-learns the parity

portion of h (its second coordinate) and the local agents (α2 ,
β
2 )-learn the threshold portion (h’s

first coordinate). In this protocol, the interaction of the referee with the curator is independent
from the interaction of the referee with the local agents.

We use the Parity learning algorithm of Theorem 2.17 (from [43]), and, not surprisingly, m is
set s.t. it sufficiently large to learn a good hypothesis w.p.≥ 1− β

2 . The differentialy-private protocol
in the local model for learning Threshold is folklore, so for completion we detail it here. Basically,
it is composed of two steps: first finding all quantiles of {α4 ,

2α
4 , 3α

4 , . . . ,1 − α
4 } of the distribution,

and then figuring out in which of the quantiles there is a flip of the labels from 0 to 1.
In more details, here is the differentialy-private protocol in the local model for learning the

threshold function. We partition the n agents into two sets. The first set is then further equiparti-
tioned into d 4

α e −1 sets, where in set i we find the i · α4 -quantile of the distribution over the y’s, up
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to an error of at most α
10 using, say, the ε-differentialy-private binary-search protocol for quantiles

in the local model of Theorem 2.19 (from [31]). In our setting, with a discrete distribution taking
values between 0 and 2b, we set Qmax = 2b and Qmin = 0, τdist = 1/4, βconf = βα

16 , and λquant = α
10

as discussed above; hence a sample of size 105 b
ε2α2 log(8b/βconf) is sufficient for a single quantile

approximation w.p. ≥ 1 − βconf. We have set n such that a sample complexity of (n/2)/(d4/αe − 1)
suffices for finding the suitable quantile with an error probability of at most βα

16 . Once all quantiles
of the form i · α4 have been published, we turn to the latter half of the n local agents. We apply the
heavy-hitters algorithm of Theorem 2.18 (from [16]) for the agents with 1-label, that is, the input
of an agent with 1-label to the heavy-hitters protocol is its quantile and the input of an agent with
1-label is 0. Note again that n/2 is sufficiently large s.t. w.p. ≥ 1 − β

4 we can assess the fraction of
1-labels in all bins. Furthermore, by definition of the threshold problem, any bin that contains
only values ≥ t must be all 1-labeled. The agents then find the first quantile from which all agents
have 1-label and output it as the suggested threshold. By definition, w.p. ≥ 1− β

2 we have that the
error of this threshold is the worst-case width of any bin, i.e. at most α

4 +2 · α10 < α
2 . Thus we have a

ε-differentialy private protocol in the local model for (α2 ,
β
2 )-learning thresholds with n agents.

We remark that it is possible to design a non-interactive protocol in the hybrid model for PAC
learning Cb,c, at the expense of increasing the sample complexity of the protocols. See Section 3.

B The select-then-estimate task

Select-then-estimate is an example of a task that cannot be privately solved in the curator model
or in the local model but can be solved (with interaction) in the hybrid model. We do not know
whether the interaction is essential.

Definition B.1 (The select-then-estimate task). Let X = {−1,1}d , and let P ∈ ∆(X) be an unknown
distribution over X. Define µ = Ex∼P [x]. Note that µ = (µ1, . . . ,µd) ∈ [−1,1]d . The inputs in the select-
then-estimate task are x1, . . . ,xn sampled i.i.d. from P.

For parameters α < α′, the goal of the referee in the select-then-estimate task is to output (i, µ̂i) such
that µi ≥maxj(µj )−α and

∣∣∣µ̂i −µi ∣∣∣ ≤ α′.

We focus on the case when α′ < α, that is, the selection i is done with the lesser accuracy α,
and the estimation µ̂i is with the better accuracy α′. In the following discussion, we omit the
dependency on the allowed failure probability for the task, β.

A number of sample complexity bounds are relevant for this problem for non-interactive pro-
tocols. Selecting a coordinate i such that µi ≥ maxj µj − α requires Θ( logd

α2 + logd
αε ) samples in the

trusted curator model under pure differential privacy [47, 4, 58], and Θ(d logd
α2ε2 ) samples in the

local model [61].5 Once i is selected, estimating µi up to an error α′ (i.e., computing µ̂i so that
|µ̂i − µi | ≤ α′) requires Ω( 1

α′2 ) samples regardless of privacy, and O( 1
α′2ε2 ) samples suffice in the

local model (using the randomized respond protocol of Warner [66]).
To exemplify the many settings where the hybrid model provides a solution for the task but

neither curator alone nor the local model parties alone can solve it, consider the case where ε = 0.1,

5The bound in [61] is for non-interactive local model protocols. In Appendix C we show that for interactive local
model protocols n = Ω( d

αε ).
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α < 0.1, and α/
√
d < α′ < α/ logd. With this choice of parameters, m = O(logd/α2) samples suffice

for the curator to identify i, but not to perform the estimate because m = o(1/α′2) as 1/α′2 =
Ω(log2d/α2). Likewise, a choice of n = O(1/α′2) allows for performing the estimate in the local
model, but not for performing the selection, as 1/α′2 = O(d/α2).

The (m,n)-hybrid model with the above parameter choices, however, allows for a solution
where the curator first identifies i such that µi ≥maxj µj −α and then the estimation of µi within
accuracy α′ is performed by the local model parties.

By our analysis above, for the case ε = 0.1,α < 0.1 we get that the greater the ratio n/m is, the
better the improvement in accuracy as

α
α′
∼

√
logd/m
√

1/n
=

√
n logd
m

.

Another way to look at it is to get a sense of how small the size of the curator contributors m
can be in comparison to n in order to be helpful. It depends on the ratio of desired accuracies α′

α ,

as m
n ∼ (α

′

α )2 logd, i.e., logd
d < m

n < 1
logd .

The analysis can be repeated for other values of ε and α as well. For example, the (m,n) hybrid
model can privately solve the select-then-estimate task when ε = 1,α = 1

d0.25 ,α
′ = 1

d0.75−0.5t ,m =√
d logd,n = d1.5−t logd, for any choice of 0.5 < t < 1, and neither the local model nor the curator

can solve it to the same accuracies separately.
In the high-dimensional problems that are of interest for the select-then-estimate task, when

often the dimension of the data d exceeds the number of data points available n, the parameter
values for when the model is helpful illustrate its considerable potential.

C A lower bound for the selection function

We next present a simple lower bound of the number of messages sent in an ε-differentially private
protocol for the selection problem.

Definition C.1 (The selection problem). The input for the selection problem is n i.i.d. samples Y =
(y1, . . . , yn) from an unknown distributionD over {0,1}d with mean µ = (µ1, . . . ,µd). The goal is to output
a coordinate j such that

EY ,j [µj ] ≥max
k

µk −α.

Ullman [61] proved that in any ε-differentially private non-interactive protocol in the local
model for the selection problem, the number of agents is Ω

(
d logd
α2ε2

)
. We prove a lower bound of

Ω(d1/3) on the number messages sent to the referee in any 1-differentially private protocol for
this task, even if interaction is allowed. For example, if each agent sends one message, then the
number of agents is Ω(d1/3) (even if the protocol is interactive, e.g., the referee sends a message
to P1, gets a message from P1, based on this message computes a message and sends it to P2,
and so on). As another example, if there are only O(d1/6) agents, then the number of rounds
in any 1-differentially private protocol for the selection problem is Ω(d1/6). To summarize, our
lower bound applied to a larger family of protocols than the result of [61]; however, our bound is
weaker.
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The idea of our proof is simple: We show a reduction from private learning in the local model
to privately solving the selection problem and use a known lower bounds for the parity prob-
lem [43] to obtain the lower bound.

Claim C.2. Let C = {c1, . . . , cd} be a class of functions and n be such that n ≥ 64
α (VC(C) ln(128

α )+ln(8)). If
there is an ε-differentially private protocol M in the local model for the selection problem with n agents,
then there is an ε-differentially private proper (4α,1/4)-PAC learning protocol in the local model for the
class C with n agents and the same number of messages.

Proof. We convert a labeled example for C to an input for the selection problem: Given a labeled
example (x,b), construct the input convert(x,b) = (y[1], . . . , y[d]), where if ci(x) = b then y[i] = 1,
else y[i] = 0. Given ((x1,b1), . . . , (xn,bn)) – examples labeled by the some concept ci – we construct
Y = (convert(x1,b1), . . . ,convert(xn,bn)), execute M on Y , and return cj , where j is the output of M .

Notice that if the samples are labeled by ci , then the i-th coordinate in all points in Y is 1.
Thus, M returns a coordinate j such that EY ,j [µj ] ≥ 1 −α; in particular, the probability that µj is
less than 1−4α is at most 1/4. Thus, with probability at least 3/4, the learning algorithm has error
at most 4α on the sample. By standard VC arguments, with probability at least 1/2 the concept cj
has error at most 8α on the distribution D.

Theorem C.3. Suppose there is a 1-differentially private local protocol M in the local model for the
selection problem with α = 1/10. Then, the number of messages sent by the agents to the referee is
Ω

(
d1/3

)
.

Proof. Let r be the number of messages in the protocol M on inputs of size d. We consider the class
of parity functions of strings of length c. We apply Claim C.2 to this class, where the examples are
taken with uniform distribution. The length of the inputs for the selection problem is d = 2c, the
number of parity functions. This results in a 1-differentially private local protocol for learning the
class of parity functions under the uniform distribution with r messages. By Fact 2.13 (from [43]),
the number of messages in such protocol is Ω(2c/3) = Ω(d1/3).
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