
The Complexity of Verifying Loop-free Programs
as Differentially Private
Marco Gaboardi
Boston University, USA

Kobbi Nissim
Georgetown University, USA

David Purser
University of Warwick, UK
MPI-SWS, Saarbrücken, Germany

Abstract
We study the problem of verifying differential privacy for loop-free programs with probabilistic choice.
Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal
model to answer two different questions: first, deciding whether a program satisfies a prescribed
level of privacy; second, approximating the privacy parameters a program realizes. We show that
the problem of deciding whether a program satisfies ε-differential privacy is coNP#P-complete. In
fact, this is the case when either the input domain or the output range of the program is large.
Further, we show that deciding whether a program is (ε, δ)-differentially private is coNP#P-hard,
and in coNP#P for small output domains, but always in coNP#P#P

. Finally, we show that
the problem of approximating the level of differential privacy is both NP-hard and coNP-hard.
These results complement previous results by Murtagh and Vadhan [34] showing that deciding the
optimal composition of differentially private components is #P-complete, and that approximating
the optimal composition of differentially private components is in P.

2012 ACM Subject Classification Security and privacy; Theory of computation → Probabilistic
computation

Keywords and phrases differential privacy, program verification, probabilistic programs

Funding M. G. and K. N. were supported by NSF grant No. 1565387 TWC: Large: Collaborative:
Computing Over Distributed Sensitive Data. D. P. was supported by the UK EPSRC Centre for
Doctoral Training in Urban Science (EP/L016400/1).

Acknowledgements Research partially done while M.G. and K.N. participated in the “Data Privacy:
Foundations and Applications” program held at the Simons Institute, UC Berkeley in spring 2019.

1 Introduction

Differential privacy [22] is currently making significant strides towards being used in large
scale applications. Prominent real-world examples include the use of differentially private
computations by the US Census’ OnTheMap project1, applications by companies such as
Google and Apple [24, 37, 4, 18], and the US Census’ plan to deploy differentially private
releases in the upcoming 2020 Decennial [1].

More often than not, algorithms and their implementations are analyzed “on paper”
to show that they provide differential privacy. This analysis—a proof that the outcome
distribution of the algorithm is stable under the change in any single individual’s information—
is often intricate and may contain errors (see [31] for an illuminating discussion about several
wrong versions of the sparse vector algorithm which appeared in the literature). Moreover,

1 https://onthemap.ces.census.gov

ar
X

iv
:1

91
1.

03
27

2v
2

 [c
s.C

C
]

18
 F

eb
 2

02
0

https://orcid.org/0000-0002-6632-8645
https://orcid.org/0000-0003-0394-1634

2 The Complexity of Verifying Loop-free Programs as Differentially Private

even if it is actually differentially private, an algorithm may be incorrectly implemented
when used in practice, e.g. due to coding errors, or because the analysis makes assumptions
which do not hold in finite computers, such as the ability to sample from continuous
distributions (see [33] for a discussion about privacy attacks on naive implementations
of continuous distributions). Verification tools may help validate, given the code of an
implementation, that it would indeed provide the privacy guarantees it is intended to
provide. However, despite the many verification efforts that have targeted differential privacy,
e.g. [38, 9, 41, 25, 7, 45, 6, 2, 14, 15] based on automated or interactive techniques, little is
known about the complexity of some of the basic problems in this area. Our aim is to clarify
the complexity of some of these problems.

In this paper, we consider the computational complexity of determining whether pro-
grams satisfy (ε, δ)-differential privacy. The problem is generally undecidable, and we hence
restrict our attention to probabilistic loop-free programs, which are part of any reasonable
programming language supporting random computations. To approach this question form-
ally, we consider probabilistic circuits. The latter are Boolean circuits with input nodes
corresponding both to input bits and to uniformly random bits (“coin flips”) where the latter
allow the circuit to behave probabilistically (see Figure 1). We consider both decision and
approximation versions of the problem, where in the case of decision the input consists of
a randomized circuit and parameters ε, δ and in the case of approximation the input is a
randomized circuit, the desired approximation precision, and one of the two parameters ε, δ.
In both cases, complexity is measured as function of the total input length in bits (circuit
and parameters).

Previous works have studies the complexity of composing differentially private components.
For any k differentially private algorithms with privacy parameters (ε1, δ1), . . . , (εk, δk) their
composition is also differentially private [22, 23, 34], making composition a powerful design
tool for differentially private programs. However, not all interesting differentially private
programs are obtained by composing differentially private components, and a goal of our
work is to understand what is the complexity of verifying that full programs are differentially
private, and how this complexity differs from the one for programs which result of composing
differentially private components.

Regarding the resulting parameters, the result of composing the k differentially private
algorithms above results in (εg, δg)-differentially private for a multitude of possible (εg, δg)
pairs. Murtagh and Vadhan showed that determining the minimal εg given δg is #P-
complete [34]. They also gave a polynomial time approximation algorithm that computes εg
to arbitrary accuracy, giving hope that for “simple” programs deciding differential privacy or
approximating of privacy parameters may be tractable. Unfortunately, our results show that
this is not the case.

1.1 Contributions
Following the literature, we refer to the variant of differential privacy where δ = 0 as pure
differential privacy and to the variant where δ > 0 as approximate differential privacy. We
contribute in three directions.

Bounding pure differential privacy. We show that determining whether a randomized
circuit is ε-differentially private is coNP#P-complete.2 To show hardness in coNP#P we

2 The class coNP#P is contained in PSPACE and contains the polynomial hierarchy (as, per Toda’s
Theorem, PH ⊆ P#P).

M. Gaboardi, K. Nissim and D. Purser 3

consider a complement to the problem E-Maj-Sat [30], which is complete for NP#P [13].
In the complementary problem, All-Min-Sat, given a formula φ over n+m variables
the task is to determine if for all allocations x ∈ {0, 1}n, φ(x,y) evaluates to true on no
more than 1

2 of allocations to y ∈ {0, 1}m.
Bounding approximate differential privacy. Turning to the case where δ > 0, we
show that determining whether a randomized circuit is (ε, δ)-differentially private is
coNP#P-complete when the number of output bits is small relative to the total size of
the circuit and otherwise between coNP#P and coNP#P#P

.
Approximating the parameters ε and δ. Efficient approximation algorithms exist
for optimal composition [34], and one might expect the existence of polynomial time
algorithms to approximate ε or δ in randomized circuits. We show this is NP-hard and
coNP-hard, and therefore an efficient algorithm does not exist (unless P = NP).

Our results show that for loop-free programs with probabilistic choice directly verifying
whether a program is differentially private is intractable. These results apply to programs in
any reasonable programming language supporting randomized computations. Hence, they
set the limits on where to search for automated techniques for these tasks.

The relation to quantitative information flow.

Differential privacy shares similarities with quantitative information flow [17, 27], which is an
entropy-based theory measuring how secure a program is. Alvim et al. [3] showed that a bound
on pure differential privacy implies a bound on quantitative information flow. So, one could
hope that bounding differential privacy could be easier than bounding quantitative information
flow. Yasuoka and Terauchi [43] have shown that bounding quantitative information flow
for loop free boolean programs with probabilistic choice is PP-hard (but in PSPACE).
In contrast, our results show that bounding pure differential privacy is coNP#P-complete.
Chadha et al. [11] showed the problem to be PSPACE-complete for boolean programs with
loops and probabilistic choice (notice that this would be not true for programs with integers).
We leave the analogous question for future works.

2 Preliminaries

Numbers.

By a number given as a rational we mean a number of the form x
y where x, y are given as

binary integers.

2.1 Loop-free Probabilistic Programs
We consider a simple loop-free imperative programming language built over Booleans, and
including probabilistic choice.

x ::= [a−z]+ (variable identifiers)
b ::= true | false | random | x | b ∧ b | b ∨ b | ¬b (boolean expressions)
c ::= SKIP | x := b | c; c | if b then c else c (commands)
t ::= x | t, x (list of variables)
p ::= input(t); c; return(t) (programs)

Probabilistic programs [29] extend standard programs with the addition of coin tosses;
this is achieved by the probabilistic operation random, which returns either true or false

4 The Complexity of Verifying Loop-free Programs as Differentially Private

Boolean Circuit
Randomized Circuit

O
ut

pu
t

In
pu

t

C
oi

n
fli

ps

Figure 1 Example randomized circuit

with equal probability. A standard operation, sometimes denoted by c⊕ c, which computes
one of the two expressions with probability 1

2 each is achieved with if random then c else c.
The notation c⊕ c is avoided as ⊕ refers to exclusive or in this paper.

The semantics of the programming language are standard and straight forward. Without
loss of generality, each variable assignment is final, that is, each assignment must go to a fresh
variable. Looping behaviour is not permitted, although bounded looping can be encoded by
unrolling the loop.

I Remark 1. The language is equally expressive as if it were also handle standard integer
operations, where the integers are of bounded size. Further details are given in Appendix A.

2.2 Probabilistic Circuits

I Definition 2. A Boolean circuit ψ with n inputs and ` outputs is a directed acyclic graph
ψ = (V,E) containing n input vertices with zero in-degree, labeled X1, . . . , Xn and ` output
vertices with zero out-degree, labeled O1, . . . , O`. Other nodes are assigned a label in {∧,∨,¬},
with vertices labeled ¬ having in-degree one and all others having in-degree two. The size of
ψ, denoted |ψ|, is defined to be |V |. A randomized circuit has m additional random input
vertices labeled R1, . . . , Rm.

Given an input string x = (x1, . . . , xn) ∈ {0, 1}n, the circuit is evaluated as follows.
First, the values x1, . . . , xn are assigned to the nodes labeled X1, . . . , Xn. Then, m bits
r = (r1, . . . , rm) are sampled uniformly at random from {0, 1}m and assigned to the nodes
labeled R1, . . . , Rm. Then, the circuit is evaluated in topological order in the natural way.
E.g., let v be a node labeled ∧ with incoming edges (u1, v), (u2, v) where u1, u2 were assigned
values z1, z2 then v is assigned the value z1 ∧ z2. The outcome of ψ is (o1, . . . , o`), the
concatenation of values assigned to the ` output vertices O1, . . . , O`.

For input x ∈ {0, 1}n and event E ⊆ {0, 1}` we have

Pr[ψ(x) ∈ E] = |{r ∈ {0, 1}
m : ψ(x, r) ∈ E}|

2m .

I Remark 3. The operators, ∧,∨ and ¬ are functionally complete. However, we will also use
⊕ (exclusive or), such that p⊕ q ⇐⇒ (p ∨ q) ∧ ¬(p ∧ q).

M. Gaboardi, K. Nissim and D. Purser 5

2.3 Equivalence of Programs and Circuits
I Lemma 4. A loop-free probabilistic program can be converted into an equivalent probabilistic
boolean circuit in linear time in the size of the program (and vice-versa).

Proof sketch. It is clear that a probabilistic circuit can be expressed as a probabilistic
program using just boolean operations by expressing a variable for each vertex after sorting
the vertices in topological order.

To convert a probabilistic Boolean program into a probabilistic circuit, each of the
commands can be handled using a fixed size sub-circuit, each of which can be composed
together appropriately. J

Given the established equivalence between loop-free probabilistic programs and probabil-
istic circuits, the remainder of the paper will use probabilistic circuits.

2.4 Differential Privacy in Probabilistic Circuits
Let X be any input domain. An input to a differentially private analysis would generally be
an array of elements from X, i.e., x = (x1, . . . , xn) ∈ Xn.

The definition of differential privacy depends on adjacency between inputs, we define
neighboring inputs.

I Definition 5. Inputs x = (x1, . . . , xn) and x′ = (x′1, . . . , x′n) ∈ Xn are called neighboring
if there exist i ∈ [n] s.t. for all j 6= i then xj = x′j.

In this work, we will consider input domains with finite representation. Without loss
of generality we set X = {0, 1}k and hence an array x = (x1, . . . , xn) can be written as a
sequence of nk bits, and given as input to a (randomized) circuit with nk inputs. Our lower
bounds work already for for k = 1 and our upper bounds are presented using k = 1 but
generalise to all k.

I Definition 6 (Differential Privacy [22, 21]). A probabilistic circuit ψ is (ε, δ)-differentially
private if for all neighboring x,x′ ∈ Xn and for all E ⊆ {0, 1}`,

Pr[ψ(x) ∈ E] ≤ eε · Pr[ψ(x′) ∈ E] + δ.

Following common use, we refer to the case where δ = 0 as pure differential privacy and
to the case where δ > 0 as approximate differential privacy. When omitted, δ is understood
to be zero.

2.5 Problems of deciding and approximating differential privacy
We formally define our three problems of interest.

I Definition 7. The problem Decide-ε-DP asks, given ε and ψ, if ψ is ε-differentially
private. We assume ε is given by the input eε as a rational number.

I Definition 8. The problem Decide-ε, δ-DP asks, given ε, δ and ψ, if ψ is (ε, δ)-
differentially private. We assume ε is given by the input eε as a rational number.

I Definition 9. Given an approximation error γ > 0, the Approximate-δ problem and the
Approximate-ε problem, respectively, ask:

Given ε, find δ̂ ∈ [0, 1], such that 0 ≤ δ̂ − δ ≤ γ, where δ is the minimal value such that
ψ is (ε, δ)-differentially private.
Given δ, find ε̂ ≥ 0, such that 0 ≤ ε̂− ε ≤ γ, where ε is the minimal value such that ψ is
(ε, δ)-differentially private.

6 The Complexity of Verifying Loop-free Programs as Differentially Private

2.6 The class coNP#P

A language L is in coNP#P if its problem membership can be refuted using a polynomial
time non-deterministic Turing machine with access to a #P oracle. Alternatively, x ∈ L
iff all branches of the non-deterministic Turing machine accept. It is easy to see that
coNP#P = coNPPP. Finally, PH ⊆ coNP#P ⊆ PSPACE, where PH ⊆ coNP#P

follows by Toda’s theorem (PH ⊆ P#P) [40].
The following decision problem is complete for NP#P [13]:

I Definition 10. E-Maj-Sat asks, given φ a quantifier free formula over n+m variables if
there exist an allocation x ∈ {0, 1}n such that there are strictly greater than 1

2 of allocations
to y ∈ {0, 1}m where φ(x,y) evaluates to true.

The complementary problem All-Min-Sat, is complete for coNP#P: a formula φ is
All-Min-Sat, if φ is not E-Maj-Sat. That is, φ a quantifier free formula over n + m

variables is All-Min-Sat if for all allocations x ∈ {0, 1}n there are no more than 1
2 of

allocations to y ∈ {0, 1}m where φ(x,y) evaluates to true.

3 The complexity of deciding pure differential privacy

In this section we classify the complexity of deciding ε-differential privacy, for which we show
the following theorem:

I Theorem 11. Decide-ε-DP is coNP#P-complete.

It will be convenient to consider the well-known simpler reformulation of the definition of
pure differential privacy in finite ranges to consider specific outcomes o ∈ {0, 1}` rather than
events E ⊆ {0, 1}`.

I Reformulation 1 (Pure differential privacy). A probabilistic circuit ψ is ε-differentially
private if and only if for all neighboring x,x′ ∈ Xn and for all o ∈ {0, 1}`,

Pr[ψ(x) = o] ≤ eε · Pr[ψ(x′) = o].

3.1 Decide-ε-DP is in coNP#P

We show a non-deterministic Turing machine which can ‘refute’ ψ being ε-differentially
private in polynomial time with a #P oracle. A circuit ψ is shown not to be ε-differentially
private by exhibiting a combination x,x′,o such that Pr[ψ(x) = o] > eε ·Pr[ψ(x′) = o]. The
witness to the non-deterministic Turing machine would be a sequence of 2n bits parsed as
neighboring inputs x,x′ ∈ {0, 1}n and ` bits describing an output o ∈ {0, 1}`. The constraint
can then be checked in polynomial time, using the #P oracle to compute Pr[ψ(x) = o] and
Pr[ψ(x′) = o].

To compute Pr[ψ(x) = o] in #P we create an instance to #CircuitSat, which will
count the number of allocations to the m probabilistic bits consistent with this output. We
do this by extending ψ with additional gates reducing to a single output which is true only
when the input is fixed to x and the output of ψ was o.

3.2 coNP#P-hardness of Decide-ε-DP
To show coNP#P-hardness of Decide-ε-DP we show a reduction from All-Min-Sat in
Lemma 12; together with the inclusion result above, this entails that Decide-ε-DP is
coNP#P-complete (Theorem 11).

M. Gaboardi, K. Nissim and D. Purser 7

3.2.1 Randomized Response
Randomized response [42] is a technique for answering sensitive Yes/No questions by flipping
the answer with probability p < 0.5. Setting p = 1

1+eε gives ε-differential privacy.

I Lemma 12. All-Min-Sat reduces in polynomial time to Decide-ε-DP.

Proof. We will reduce from All-Min-Sat to Decide-ε-DP using randomized response. We
will take a boolean formula φ and create a probabilistic circuit that is ε-differentially private
if and only if φ is All-Min-Sat.

Consider the circuit ψ which takes as input the value z ∈ {0, 1}. It probabilistically
chooses a value of x ∈ {0, 1}n and y ∈ {0, 1}m and one further random bit p1 and computes
b = z ⊕ ¬(p1 ∨ φ(x,y)). The circuit outputs (x, b).

B Claim 13. ψ is ln(3)-differentially private if and only if φ is All-Min-Sat.

Suppose φ ∈ All-Min-Sat then, no matter the choice of x,

0 ≤ Pr
y

[φ(x,y) = 1] ≤ 1
2 ,

and hence
1
4 ≤ Pr

y,p1
[¬(p1 ∨ φ(x,y)) = 1] ≤ 1

2 .

We conclude the true answer z is flipped between 1
4 and 1

2 of the time, recall this is exactly
the region in which randomized response gives us the most privacy. In the worst case
p = 1

4 = 1
1+eε , gives eε = 3, so ln(3)-differential privacy.

In the converse, suppose φ ∈ E-Maj-Sat, then for some x

1
2 < Pr

y
[φ(x,y) = 1] ≤ 1,

and then
Pr
y,p1

[¬(p1 ∨ φ(x,y)) = 1] < 1
4 ,

in which case the randomized response does not provide ln(3)-differential privacy. J

I Remark 14. We skew the result so that in the positive case (when φ ∈ All-Min-Sat)
the proportion of accepting allocations is between 1

4 and 1
2 , resulting in the choice of ln(3)-

differentially privacy. Alternative skews, using more bits akin to p1, shows hardness for other
choices of ε.

3.2.2 Hardness by circuit shape
In our proof of the upper-bound we use coNP to resolve the non-deterministic choice of
both input and output. We show this is necessary in the sense coNP is still required for
either large input or large output. The hardness proof used in Lemma 12 shows that when
|ψ| = n the problem is hard for Ω(1)-bit input and Ω(n)-bit output.

We can also prove (Lemma 24 in Appendix B) this is hard for Ω(n)-bit input and Ω(1)-bit
output. Intuitively a counter example to differential privacy has two choices: a pair of
adjacent input and a given output upon which the relevant inequality will hold. So to “refute”
All-Min-Sat the counterexample of the All choice (i.e. x) can be selected in the input,
rather than the output as in our case. Since the input is now non-trivial we must take care
of what happens when the adjacent bit is in the choice of x.

8 The Complexity of Verifying Loop-free Programs as Differentially Private

Further the problem is in P#P for O(log(n))-bit input and O(log(n))-bit output, as in
this case, the choices made by coNP can instead be checked deterministically in polynomial
time. In this case we show PP-hardness, which applies even when there is 1-bit input and
1-bit output.

4 On the complexity of deciding approximate differential privacy

It is less clear whether deciding (ε, δ)-differential privacy can be done in coNP#P. First we
consider restrictions to the shape of the circuit so that coNP#P can be recovered, and then
show that in general the problem is in coNP#P#P

.
Recall that in the case of ε-differential privacy it was enough to consider singleton events

{o} where o ∈ {0, 1}`, however in the definition of (ε, δ)-differential privacy we must quantify
over output events E ⊆ {0, 1}`. If we consider circuits with one output bit (` = 1), then
the event space essentially reduces to E ∈ {∅, {0}, {1}, {0, 1}} and we can apply the same
technique.

We expand this to the case when the number of outputs bits is logarithmic ` ≤ log(|ψ|).
To cater to this, rather than guessing a violating E ∈ {0, 1}`, we consider a violating subset
of events E ⊆ {0, 1}`. Given such an event E we create a circuit ψE on ` inputs and a
single output which indicates whether the input is in the event E. The size of this circuit is
exponential in `, thus polynomial in |ψ|. Composing ψE ◦ ψ, we check the conditions hold
for this event E, with just one bit of output.

B Claim 15. Decide-ε, δ-DP, restricted to circuits ψ with ` bit outputs where ` ≤ log(|ψ|),
is in coNP#P (and hence coNP#P-complete).

The claim trivially extends to ` ≤ c · log(|ψ|) for any fixed c > 0.

4.1 Decide-ε, δ-DP is in coNP#P#P

We now show that Decide-ε, δ-DP in the most general case can be solved in coNP#P#P
.

We will assume eε = α is given as a rational, with α = u
v for some integers u and v. While

we will use non-determinism to choose inputs leading to a violating event, unlike in Section 3
it would not be used for finding a violating event E, as an (explicit) description of such an
event may be of super-polynomial length. It would be useful for us to use a reformulation of
approximate differential privacy, using a sum over potential individual outcomes.

I Reformulation 2 (Pointwise differential privacy [7]). A probabilistic circuit ψ is (ε, δ)-
differentially private if and only if for all neighboring x,x′ ∈ Xn and for all o ∈ {0, 1}`,∑

o∈{0,1}`

δx,x′(o) ≤ δ,

where
δx,x′(o) = max (Pr[ψ(x) = o]− eε · Pr[ψ(x′) = o], 0) .

We defineM, a non-deterministic Turing Machine with access to a #P-oracle, and where
each execution branch runs in polynomial time. On inputs a probabilistic circuit ψ and
neighboring x,x′ ∈ Xn the number of accepting executions ofM would be proportional to∑

o∈{0,1}` δx,x′(o).

M. Gaboardi, K. Nissim and D. Purser 9

In more detail, on inputs ψ, x and x′, M chooses o ∈ {0, 1}` and an integer C ∈
{1, 2, . . . , 2m+dlog(v)e} (this requires choosing l +m+ dlog(v)e bits). Through a call to the
#P oracle,M computes

a = |{r ∈ {0, 1}m : ψ(x, r) = o}|

and
b = |{r ∈ {0, 1}m : ψ(x′, r) = o}| .

Finally,M accepts if v · a− u · b ≥ C and otherwise rejects.

I Lemma 16. Given two inputs x,x′ ∈ Xn,M(ψ,x,x′) has exactly v ·2m
∑

o∈{0,1}` δx,x′(o)
accepting executions.

Proof. Let 1{X} be the indicator function, which is one if the predicate X holds and zero
otherwise.

v · 2m
∑

o∈{0,1}`

δx,x′(o) =
∑

o∈{0,1}`

v · 2m max (Pr[ψ(x) = o]− αPr[ψ(x′) = o], 0)

=
∑

o∈{0,1}`

v2m max

 1
2m

∑
r∈{0,1}m

1{ψ(x, r) = o} − α 1
2m

∑
r∈{0,1}m

1{ψ(x′, r) = o}, 0


=

∑
o∈{0,1}`

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − vα
∑

r∈{0,1}m

1{ψ(x′, r) = o}, 0


=

∑
o∈{0,1}`

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1{ψ(x′, r) = o}, 0


=

∑
o∈{0,1}`

2dlog(v)e+m∑
C=1

1

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1{ψ(x′, r) = o}, 0

 ≥ C


= number of accepting executions in M̂ J

We can now describe our coNP#P#P
procedure for Decide-ε, δ-DP. The procedure

takes as input a probabilistic circuit ψ.
1. Non-deterministically choose neighboring x and x′ ∈ {0, 1}n (i.e., 2n bits).
2. LetM be the non-deterministic Turing Machine with access to a #P-oracle as described

above. Create a machine M̂ with no input that executesM on ψ,x,x′.
3. Make an #P#P oracle call for the number of accepting executions M̂ has.
4. Reject if the number of accepting executions is greater than v ·2m · δ and otherwise accept.

By Lemma 16, there is a choice x,x′ on which the procedure rejects if and only if ψ is
not (ε, δ)-differentially private.

4.2 Hardness
Theorem 11 shows that Decide-ε-DP is coNP#P-complete, in particular coNP#P-hard
and since Decide-ε-DP is a special case of Decide-ε, δ-DP, this is also coNP#P-hard.
Nevertheless the proof is based on particular values of ε and we provide an alternative proof
of hardness based on δ (Theorem 29 in Appendix C). This proof result will apply for any ε
(even for ε = 0) and for a large range of δ (but not δ = 0).

10 The Complexity of Verifying Loop-free Programs as Differentially Private

The proof proceeds by first considering the generalisation of All-Min-Sat to the version
where minority, i.e. less than 1

2 of the assignments, is replaced with another threshold. This
problem is also coNP#P-hard for a range of thresholds. Note however, if this threshold is
exactly 1 the problem is true for all circuits, and if the threshold is 0 the problem is simply
asks if the formula is unsatisfiable (a coNP problem).

This generalised problem can then be reduced to deciding Decide-ε, δ-DP, where the
threshold corresponds exactly to δ. It will turn out in the resulting circuit ε does not change
the status of differential privacy, i.e. it is (ε, δ)-differentially private for all ε, or not.

The proof shows hardness for Ω(n)-input bits and 1-output bit; the case in which there
also exists a coNP#P upper-bound. To show hardness in a higher complexity class, e.g.,
coNP#P#P

, it would be required to use a circuit with more output bits.

5 Inapproximability of the privacy parameters ε, δ

Given the difficulty of deciding if a circuit is differentially private, one might naturally
consider whether approximating ε or δ could be efficient. We show that these tasks are both
NP-hard and coNP-hard.

We show that distinguishing between (ε, δ), and (ε′, δ′)-differential privacy is NP-hard,
by reduction from a problem we call Not-Constant which we also show is NP-hard. A
boolean formula is in Not-Constant if it is satisfiable and not also a tautology.

I Lemma 17. Not-Constant is NP-hard. (hence Constant is coNP-hard).

Proof. Clearly, Not-Constant ∈ NP, the witness being a pair of satisfying and non-
satisfying assignments. We reduce 3-SAT to Not-Constant. Given a Boolean formula
φ over variables x1, . . . , xn let φ′(x1, . . . , xn, xn+1) = φ(x1, . . . , xn) ∧ xn+1. Note that φ′ is
never a tautology as φ′(x1, . . . , xn, 0) = 0. Furthermore, φ′ is satisfiable iff φ is. J

In Section 3.2.1 we used randomized response in the pure differential privacy setting. We
now consider the approximate differential privacy variant RRε,δ : {0, 1} → {>,⊥} × {0, 1}
defined as follows:

RRε,δ(x) =


(>, x) w.p. δ
(⊥, x) w.p. (1− δ) α

1+α

(⊥,¬x) w.p. (1− δ) 1
1+α

where α = eε

I.e., with probability δ, RRε,δ(x) reveals x and otherwise it executes RRε(x). The former
is marked with “>” and the latter with “⊥”. This mechanism is equivalent to the one
described in [34] and is (ε, δ)-differentially private.

I Definition 18. Let 0 ≤ ε ≤ ε′, 0 ≤ δ ≤ δ′ ≤ 1, with either ε < ε′ or δ < δ′. The
problem Distinguish-(ε, δ), (ε′, δ′)-DP takes as input a circuit ψ, guaranteed to be either
(ε, δ)-differentially private, or (ε′, δ′)-differentially private. The problem asks whether ψ is
(ε, δ)-differentially private or (ε′, δ′)-differentially private.

I Lemma 19. Distinguish-(ε, δ), (ε′, δ′)-DP is NP-hard (and coNP-hard).

Proof. We reduce Not-Constant to Distinguish-(ε, δ), (ε′, δ′)-DP. Given the boolean
formula φ(x) on n bits, we create a probabilistic circuit ψ. The input to ψ consists of the
n bits x plus a single bit y. The circuit ψ has four output bits (o1, o2, o3, o4) such that
(o1, o2) = RRε,δ(y) and (o3, o4) = RRε′,δ′(φ(x)).

M. Gaboardi, K. Nissim and D. Purser 11

Observe that (o1, o2) = RRε,δ(y) is always (ε, δ) differentially private. As for (o3, o4) =
RRε′,δ′(φ(x)), if φ ∈ Not-Constant then there are adjacent x,x′ such that φ(x) 6= φ(x′).
In this case, (o3, o4) = RRε′,δ′(φ(x)) is (ε′, δ′)-differentially private, and, because (ε, δ) <
(ε′, δ′), so is ψ . On the other hand, if φ 6∈ Not-Constant then φ(x) does not depend on x

and hence (o3, o4) does not affect privacy, in which case we get that ψ is (ε, δ) differentially
private.

The same argument also gives coNP-hardness. J

Notice that the above theorem holds when δ = δ′ and ε < ε′ (similarly, ε = ε′ and δ < δ′),
which entails the following theorem:

I Theorem 20. Assuming P 6= NP, for any approximation error γ > 0, there does not
exist a polynomial time approximation algorithm that given a probabilistic circuit ψ and δ
computes some ε̂, where |ε̂− ε| ≤ γ and ε is the minimal such that ψ is (ε, δ)-differentially
private within error γ. Similarly, given ε, no such δ̂ can be computed polynomial time where
|δ̂ − δ| ≤ γ and δ is minimal.

I Remark 21. The result also applies when approximating within a given ratio ρ > 1 (e.g.
in the case of approximating ε, to find ε̂ such that ε̂

ε ≤ ρ). Moreover, the result also holds
when approximating pure differential privacy, that is when δ = 0.

6 Related work

Differential privacy was introduced in [22]. It is a definition of privacy in the context of data
analysis capturing the intuition that information specific to an individuals is protected if
every single user’s input has a bounded influence on the computation’s outcome distribution,
where the bound is specified by two parameters, usually denoted by ε, δ. Intuitively, these
parameters set an upperbound on privacy loss, where the parameter ε limits the loss and the
parameter δ limits the probability in which the loss may exceed ε.

Extensive work has occurred in the computer-assisted or automated of verification of
differential privacy. Early work includes, PINQ [32] and Airavat [39] which are systems that
keep track of the privacy budgets (ε and δ) using trusted privacy primitives in SQL-like
and MapReduce-like paradigms respectively. In other work, programming languages were
developed, that use the type system to keep track of the sensitivity and ensure the correct
level of noise is added [38, 9, 16, 8]. Another line of work uses proof assistants to help prove
that an algorithm is differentially private [7]; although much of this work is not automated,
recent work has gone in this direction [2, 45].

These techniques focuses on ‘soundness’, rather than ‘completeness’ thus are not amenable
to complexity analysis. In the constrained case of verifying differential privacy on probabilistic
automata and Markov chains there are bisimulation based techniques [41, 12]. Towards
complexity analysis; [15] shows that computing the optimal value of δ for a finite labelled
Markov chain is undecidable. Further [14] and [15] provides distances, which are (necessarily)
not tight, but can be computed in polynomial time with an NP oracle and a weaker bound in
polynomial time. Recent works have focused on developing techniques for finding violations
of differential privacy [19, 10]. The methods proposed so far have been based on some form
of testing. Our result limits also the tractability of these approaches. Finally, [5] proposes
an automated technique for proving differential privacy or finding counterexamples. This
paper studies a constrained class of programs extending the language we presented here, and
provides a ‘complete’ procedure for deciding differential privacy for them. The paper does

12 The Complexity of Verifying Loop-free Programs as Differentially Private

not provide any complexity guarantee for the proposed method and we expect our results to
apply also in their setting.

As we already discussed, Murtagh and Vadhan [34] showed that finding the optimal
values for the privacy parameters when composing different algorithms in a black-box way is
#P-complete, but also that approximating the optimal values can be done efficiently. In
contrast, our results show that when one wants to consider programs as white-box, as often
needed to achieve better privacy guarantees (e.g. in the case of the sparse vector technique),
the complexity is higher.

Several works have explored different property testing related to differential privacy [20,
28, 26], including verification [26]. In the standard model used in property testing, a user
has only black-box access to the function and the observable outputs are the ones provided
by a privacy mechanism. In contrast, our work is based on the program description and
aim to provide computational limits to the design of techniques for program analyses for
differential privacy.

We already discussed some works on quantitative information flow. In addition to those,
it was shown that comparing the quantitative information flow of two programs on inputs
coming from the uniform distribution is #P-hard [44]. However, when quantifying over all
distributions the question is coNP-complete [44].

7 Conclusions and future work

Verifying differential privacy of loop-free probabilistic boolean programs.

We have shown the difficulty of verifying differential privacy in loop-free probabilistic
boolean programs through their correspondence with probabilistic circuits. Deciding ε-
differential privacy is coNP#P-complete and (ε, δ)-differential privacy is coNP#P-hard and
in coNP#P#P

(a gap that we leave for future work). Both problems are positioned in the
counting hierarchy, in between the polynomial hierarchy PH and PSPACE.

Verifying differential privacy of probabilistic boolean programs.

One interesting question that our work leaves open is the characterization of the complexity
of deciding differential privacy problems for probabilistic boolean programs, including loops.
Similarly to the works on quantitative information flow [11], we expect these problems to
be decidable and we expect them to be in PSPACE. However, this question requires some
further investigation that we leave for future work.

Solvers mixing non-determinism and counting.

Returning to our motivation for this work—developing practical tools for verifying differential
privacy—our results seem to point to a deficiency in available tools for model checking. The
model checking toolkit includes well established Sat solvers for NP (and coNP) problems,
solvers for further quantification in PH, solvers for #Sat (and hence for #P problems3).
However to the best of our knowledge, there are currently no solvers that are specialized for
mixing the polynomial hierarchy PH and counting problems #P, in particular coNP#P

and coNP#P#P
.

3 See, for example, http://beyondnp.org/pages/solvers/, for a range of solvers

http://beyondnp.org/pages/solvers/

M. Gaboardi, K. Nissim and D. Purser 13

Approximating the differential privacy parameters.

We show that distinguishing (ε, δ)-differential privacy from (ε′, δ′) differential privacy where
(ε, δ) < (ε′, δ′) is both NP- and coNP-hard. We leave refining the classification of this
problem as an open problem.

References
1 John M Abowd. The us census bureau adopts differential privacy. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2867–2867. ACM, 2018.

2 Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of differential privacy. Pro-
ceedings of the ACM on Programming Languages, 2(POPL):58, 2017.

3 Mário S Alvim, Miguel E Andrés, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
On the relation between differential privacy and quantitative information flow. In International
Colloquium on Automata, Languages, and Programming, pages 60–76. Springer, 2011.

4 Apple. Apple differential privacy technical overview. URL: https://www.apple.com/privacy/
docs/Differential_Privacy_Overview.pdf.

5 Gilles Barthe, Rohit Chadha, Vishal Jagannath, A Prasad Sistla, and Mahesh Viswanathan.
Automated methods for checking differential privacy. arXiv preprint arXiv:1910.04137, 2019.

6 Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and
Pierre-Yves Strub. Higher-order approximate relational refinement types for mechanism design
and differential privacy. In POPL, pages 55–68, 2015. doi:10.1145/2676726.2677000.

7 Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving
differential privacy via probabilistic couplings. In 2016 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–10. IEEE, 2016.

8 Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin Pierce. Programming language
techniques for differential privacy. ACM SIGLOG News, 3(1):34–53, 2016.

9 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Beguelin. Probabilistic
relational reasoning for differential privacy. ACM SIGPLAN Notices, 47(1):97–110, 2012.

10 Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Martin T. Vechev.
Dp-finder: Finding differential privacy violations by sampling and optimization. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 508–524, 2018. doi:10.1145/3243734.
3243863.

11 Rohit Chadha, Dileep Kini, and Mahesh Viswanathan. Quantitative information flow in
boolean programs. In International Conference on Principles of Security and Trust, pages
103–119. Springer, 2014.

12 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized
bisimulation metrics. In CONCUR, pages 32–46. Springer, 2014.

13 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate counting in smt
and value estimation for probabilistic programs. Acta Informatica, 54(8):729–764, 2017.

14 Dmitry Chistikov, Andrzej S Murawski, and David Purser. Bisimilarity distances for approxim-
ate differential privacy. In International Symposium on Automated Technology for Verification
and Analysis, pages 194–210. Springer, 2018.

15 Dmitry Chistikov, Andrzej S Murawski, and David Purser. Asymmetric distances for approx-
imate differential privacy. In 30th International Conference on Concurrency Theory (CONCUR
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

16 Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen, and Ben-
jamin Pierce. Sensitivity analysis using type-based constraints. In Proceedings of the 1st
annual workshop on Functional programming concepts in domain-specific languages, pages
43–50. ACM, 2013.

17 Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1145/3243734.3243863

14 The Complexity of Verifying Loop-free Programs as Differentially Private

18 Differential Privacy Team, Apple. Learning with privacy at scale. 2017. URL:
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/
appledifferentialprivacysystem.pdf.

19 Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer. Detecting
violations of differential privacy. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 475–489, 2018. doi:10.1145/3243734.3243818.

20 Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta. Testing the
lipschitz property over product distributions with applications to data privacy. In Theory of
Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March
3-6, 2013. Proceedings, pages 418–436, 2013. doi:10.1007/978-3-642-36594-2_24.

21 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 486–503. Springer, 2006.

22 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

23 Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 51–60, 2010. doi:10.1109/FOCS.2010.12.

24 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067. ACM, 2014.

25 Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: A new approach
for analyzing privacy properties. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), page 42. ACM, 2014.

26 Anna C Gilbert and Audra McMillan. Property testing for differential privacy. In 2018 56th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
249–258. IEEE, 2018.

27 J. W. Gray. Probabilistic interference. In Proceedings. 1990 IEEE Computer Society Symposium
on Research in Security and Privacy, pages 170–179, May 1990. doi:10.1109/RISP.1990.
63848.

28 Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz functions with
applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013. doi:10.1137/110840741.

29 Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350,
1981. doi:10.1016/0022-0000(81)90036-2.

30 Michael L Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity
of probabilistic planning. Journal of Artificial Intelligence Research, 9:1–36, 1998.

31 Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector technique for differential
privacy. PVLDB, 10(6):637–648, 2017. URL: http://www.vldb.org/pvldb/vol10/p637-lyu.
pdf, doi:10.14778/3055330.3055331.

32 Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of data, pages 19–30. ACM, 2009.

33 Ilya Mironov. On significance of the least significant bits for differential privacy. In CCS.
ACM, 2012.

34 Jack Murtagh and Salil Vadhan. The complexity of computing the optimal composition of
differential privacy. In Theory of Cryptography Conference, pages 157–175. Springer, 2016.

35 Roelof Maarten Marie Oberman. Digital circuits for binary arithmetic. Macmillan International
Higher Education, 1979.

https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1007/978-3-642-36594-2_24
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1109/RISP.1990.63848
https://doi.org/10.1109/RISP.1990.63848
https://doi.org/10.1137/110840741
https://doi.org/10.1016/0022-0000(81)90036-2
http://www.vldb.org/pvldb/vol10/p637-lyu.pdf
http://www.vldb.org/pvldb/vol10/p637-lyu.pdf
https://doi.org/10.14778/3055330.3055331

M. Gaboardi, K. Nissim and D. Purser 15

36 Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter
Katoen, and Annabelle McIver. Conditioning in probabilistic programming. ACM Trans.
Program. Lang. Syst., 40(1):4:1–4:50, 2018. doi:10.1145/3156018.

37 Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

38 Jason Reed and Benjamin C Pierce. Distance makes the types grow stronger: a calculus for
differential privacy. In ACM Sigplan Notices, volume 45, pages 157–168. ACM, 2010.

39 Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel. Airavat:
Security and privacy for mapreduce. In NSDI, volume 10, pages 297–312, 2010.

40 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

41 Michael Carl Tschantz, Dilsun Kaynar, and Anupam Datta. Formal verification of differential
privacy for interactive systems. ENTCS, 276:61–79, 2011.

42 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

43 Hirotoshi Yasuoka and Tachio Terauchi. On bounding problems of quantitative information
flow. In European Symposium on Research in Computer Security, pages 357–372. Springer,
2010.

44 Hirotoshi Yasuoka and Tachio Terauchi. Quantitative information flow-verification hardness
and possibilities. In 2010 23rd IEEE Computer Security Foundations Symposium, pages 15–27.
IEEE, 2010.

45 Danfeng Zhang and Daniel Kifer. Lightdp: towards automating differential privacy proofs. In
ACM SIGPLAN Notices, volume 52, pages 888–901. ACM, 2017.

A Equivalence and expressivity of circuits and programs

This section will prove Lemma 4, but first let us expand on Remark 1 to prove Lemma 4 for
an apparently more general language. We observe in Remark 22 that they are equivalent.

Let us consider the following consider programs expressed by the following language. This
is an extension to the language defined in Section 2.1, supporting integer operations.

x ::= [a−z]+ (variable identifiers)
i ::= 0 | 1 | . . . | 2k − 1 (constants)
b ::= true | false | random | x | b ∧ b | b ∨ b | ¬b (boolean expressions)

| e > e | e ≥ e | e = e

e ::= i | x | e+ e | e× e | e− e | (e) | b | sample (integer expressions)
c ::= SKIP | x := e | c; c | if b then c else c (commands)
t ::= x | t, x (list of variables)
p ::= input(t); c; return(t) (programs)

We define the programming language to operate over integers of a fixed size, parametrised
by k. Integer expressions, denoted e, take on values from the field F2k = {0, . . . , 2k−1}, where
each integer can be represented with k bits. Formally we consider the operations working on
unsigned integers, where overflows wrap around. Similarly one could equally consider signed
integers operating over {−2k−1, . . . , 2k−1 − 1}. Boolean values can also be interpreted as
the integers 0 and 1. The sample command uniformly chooses from {0, . . . , 2k − 1}; this is
syntactic sugar for 2k−1 × random + · · ·+ 20 × random.
I Remark 22. This language is equally expressive without integers, as Boolean operations
can be used to simulated them—although programming in such a language may be somewhat
tedious. To see this note that the following proof shows that programs in these extended

https://doi.org/10.1145/3156018

16 The Complexity of Verifying Loop-free Programs as Differentially Private

language can be converted into probabilistic circuits, and similarly converted back into the
Boolean fragment of the program. Both of these conversions occur in linear time.

Proof of Lemma 4. As noted in the proof sketch, it is clear that probabilistic boolean
circuits can be converted into probabilistic loop-free Boolean programs.

For the reverse conversion, we show any probabilistic loop-free program with Booleans
and bounded integers can be converted into a probabilistic Boolean circuit by showing that
every expression can be constructed as a fixed sub-circuit.

Boolean operations ∧,∨,¬ are built into the circuit.
random is achieved by introducing a fresh random input to the circuit for each call to
random.
In the evaluation of expressions e, the value of each sub-expression can be stored as the
output at most k gates. The standard operations +,×,−,≥, >,= can each be computed
in a circuit (see e.g. [35]). Multiplication of two k-bit numbers may require 2k-bits; since
the language is defined over the field, these are renormalised back into the field by taking
the k least significant bits. Similarly adding two k-bit numbers results in k+ 1-bits, which
must similarly be transformed back into the field. Note that it is acceptable to have up
to 2k bits temporarily in the circuit.
Assignment x := e. Denote the k gates as the output of expression e as the variable x.
References to x then use these k output bits.
Branching if b then cL else cR simulated in the following way: Create a circuit for each
branch, taking two copies of each variable that can be assigned in either cL or cR. At the
end the true copy of each variable can be set. Let (x)i be the ith bit of variable x then
set x by (x)i ← ((xL)i ∧ b) ∨ ((xR)i ∧ (¬b)), so that x = xL if b is true and x = xR if b is
false.
Constants are achieved by expressing the number in binary and using k gates to represent
the value. Any gate can be forced to be one by x ∨ ¬x and forced to be zero by x ∨ ¬x
for any input or random bit.
return(x1, . . . , xm) is achieved by dedicating the m× k gates as output gates. J

I Example 23. Consider the following loop-free probabilistic program, with k = 4. It can
be transformed into the circuit shown in Figure 2 through the procedure given in the proof
of Lemma 4.

input(a,b)
x = 3 × a
y : = x + b
if random then z := x else z := y
return (z)

B Hardness of Decide-ε-DP by number of input/output bits

I Lemma 24. Given a circuit ψ, we show the the following hardness results for large and
small number of input and output bits:

Input Bits # Output Bits Hardness
Ω(n) 1 coNP#P-hard
1 Ω(n) coNP#P-hard
1 1 PP-hard

M. Gaboardi, K. Nissim and D. Purser 17

z

3

neg

MULTIPLIER

8 TO 4 FIELD OPERATOR

ADDER

5 TO 4 FIELD OPERATOR

neg

a b

x

y

Figure 2 Example Circuit Transformation from Example 23

18 The Complexity of Verifying Loop-free Programs as Differentially Private

I Remark 25. Note that the hardness results entail hardness for any larger number of
input and output bits; for example Θ(log n)-input,Θ(log n)-output is PP-hard and Θ(n)-
input,Θ(n)-output is coNP#P-hard.

Proof for large input small output. Given φ(x,y), we reduce φ ∈ All-Min-Sat to Decide-ε-DP.
Our resulting circuit ψ will have 1 output bit but n+ 1 input bits

Let ψ(x, z) = (z ∨ p1) ∧ (¬z ∨ (p2 ∨ (p3 ∧ p4 ∧ φ(x, r)))), with p1, . . . , p4, r determined
randomly. This circuit has the property:

If z = 0 return 1 w.p. 1
2 .

If z = 1 return 1 w.p. 1
2 + 1

4 Pr[φ(x) = 1]

B Claim 26. φ ∈ All-Min-Sat ⇐⇒ ln(4
3)-differential privacy holds.

If φ 6∈ All-Min-Sat then for some x with Pr[φ(x) = 1] > 1
2 , Pr[φ(x) = 0] < 1

2

Pr[ψ(x, 0) = 0]
Pr[ψ(x, 1) = 0] =

1
2

1− 1
2 −

1
4 Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 −
1
4 Pr[φ(x) = 1])

==
1
2

1
4 + 1

4 (1− Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 (1− Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 (Pr[φ(x) = 0])

>
1
2

1
4 + 1

4
1
2

= 4
3 ≈ 1.3

If φ ∈ All-Min-Sat then for all x we have Pr[φ(x) = 1] ≤ 1
2 , Pr[φ(x) = 0] ≥ 1

2

Pr[ψ(x, 0) = 0]
Pr[ψ(x, 1) = 0] ≤

4
3 ≈ 1.3

Pr[ψ(x, 1) = 0]
Pr[ψ(x, 0) = 0] =

1− 1
2 −

1
4 Pr[φ(x) = 1]

1
2

=
1
4 + 1

4 Pr[φ(x) = 0]
1
2

≤ 1

Pr[ψ(x, 1) = 1]
Pr[ψ(x, 0) = 1] =

1
2 + 1

4 Pr[φ(x) = 1]
1
2

≤
1
2 + 1

4
1
2

1
2

= 1.25

Pr[ψ(x, 0) = 1]
Pr[ψ(x, 1) = 1] =

1
2

1
2 + 1

4 Pr[φ(x) = 1]
≤ 1

Pr[ψ(x, 0) = 1]
Pr[ψ(x′, 0) = 1] =

1
2
1
2

= 1

Pr[ψ(x, 1) = 1]
Pr[ψ(x′, 1) = 1] =

1
2 + 1

4 Pr[φ(x) = 1]
1
2 + 1

4 Pr[φ(x′) = 1]
≤

1
2 + 1

4
1
2

1
2 + 1

4 0
= 1.25

M. Gaboardi, K. Nissim and D. Purser 19

Pr[ψ(x, 1) = 0]
Pr[ψ(x′, 1) = 0] =

1− 1
2 −

1
4 Pr[φ(x) = 1]

1− 1
2 −

1
4 Pr[φ(x′) = 1]

≤
1
2 + 1

4 0
1
2 −

1
4

1
2

= 4
3

J

Proof for small input large output. Given φ(x,y), we reduce φ ∈ All-Min-Sat to Decide-ε-DP.
Our resulting circuit ψ will have 1 input bit but n+ 1 output bits.

Let ψ(z) = (x, (z ∨ p1)∧ (¬z ∨ (p2 ∨ (p3 ∧ p4 ∧ φ(x, r))))), with p1, . . . , p4,x, r all chosen
randomly. Then the circuit has the property:

Choose and output some x and,
If z = 0 return 1 w.p. 1

2 .
If z = 1 return 1 w.p. 1

2 + 1
4 Pr[φ(x) = 1]

B Claim 27. φ ∈ All-Min-Sat ⇐⇒ ln(4
3)-differential privacy holds.

If φ 6∈ All-Min-Sat then for some x with Pr[φ(x) = 1] > 1
2 , Pr[φ(x) = 0] < 1

2

Pr[ψ(0) = (x, 0)]
Pr[ψ(1) = (x, 0)] =

1
2

1− 1
2 −

1
4 Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 −
1
4 Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 (1− Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 (1− Pr[φ(x) = 1])

=
1
2

1
4 + 1

4 (Pr[φ(x) = 0])

>
1
2

1
4 + 1

4
1
2

= 4
3 ≈ 1.3

If φ ∈ All-Min-Sat then for all x we have Pr[φ(x) = 1] ≤ 1
2 , Pr[φ(x) = 0] ≥ 1

2

Pr[ψ(0) = (x, 0)]
Pr[ψ(1) = (x, 0)] ≤

4
3 ≈ 1.3

Pr[ψ(1) = (x, 0)]
Pr[ψ(0) = (x, 0)] =

1− 1
2 −

1
4 Pr[φ(x) = 1]

1
2

=
1
4 + 1

4 Pr[φ(x) = 0]
1
2

≤ 1

Pr[ψ(1) = (x, 1)]
Pr[ψ(0) = (x, 1)] =

1
2 + 1

4 Pr[φ(x) = 1]
1
2

≤
1
2 + 1

4
1
2

1
2

= 1.25

Pr[ψ(0) = (x, 1)]
Pr[ψ(1) = (x, 1)] =

1
2

1
2 + 1

4 Pr[φ(x) = 1]
≤ 1

J

Proof for small input small output. Given φ(x), we reduce φ ∈Maj-Sat to Decide-ε-DP.
Our resulting circuit ψ will have 1 output bit and 1 input bits

Let ψ(z) = (p1 ∧ z) ∨ (¬p1 ∧ (z ⊕ φ(r))), where p1 and r are chosen randomly. Then the
circuit has the property:

20 The Complexity of Verifying Loop-free Programs as Differentially Private

probability 1
2 output z.

probability 1
2 output z ⊕ φ(r). (Output z, flipped proportionally to the number of

accepting allocations to φ.)

B Claim 28. φ ∈Maj-Sat ⇐⇒ ψ is ln(3)-differentially private

The probabilities behave as follows, where each case is also bound by 1
2 in the direction

consistent with the probability shown.
Output ↓ Input → 1 0 Max-Ratio

0 Maj > 1
4 < 3

4 > 3
Min ≤ 1

4 ≥ 3
4 ≤ 3

1 Maj < 3
4 > 1

4 > 3
Min ≥ 3

4 ≤ 1
4 ≤ 3

Then in the either Maj case we have the ratio is greater than 3 (violating privacy) and
for both Min case the ratio is bounded by 3 (satisfying privacy). J

C Direct Proof that Decide-ε, δ-DP is coNP#P-hard

We prove that Decide-ε, δ-DP is coNP#P-hard, even when there is just one output bit
and for every ε.

I Theorem 29. Decide-ε, δ-DP is coNP#P-hard.

We could show Decide-ε, δ-DP by reduction from All-Min-Sat, which would entail
that (ε, 1

2)-differential privacy is coNP#P-hard. To show hardness for a large range of δ we
first generalise All-Min-Sat to All-Frac-f-Sat, showing this is also hard. We will then
reduce All-Frac-f-Sat to All-Min-Sat.

C.1 Generalising All-Min-Sat
Let us first generalise All-Min-Sat to All-Frac-f-Sat, which rather than requiring that
the minority (half) of allocations to y give true, rather no more than a fraction f . Similarly
we generalise E-Maj-Sat to E-Frac-f-Sat.

I Definition 30. A formula φ(x,y), x ∈ {0, 1}n,y ∈ {0, 1}m and f ∈ [0, 1] ∩ Q is All-
Frac-f-Sat if for every x ∈ {0, 1}n

|{y ∈ {0, 1}m | φ(x,y) is true}|
2m ≤ f

I Remark 31. For f = 0, we require that for all x, no input of y gives true, therefore we
require φ is unsatisfiable. For f = 1, we have essentially no restriction and for f = 2m−1

2m we
require that φ is not a tautology. All-Min-Sat is then when f = 1

2 .

I Definition 32. A formula φ is E-Frac-f-Sat if it is not All-Frac-f-Sat.

This means a formula φ(x,y), x ∈ {0, 1}n,y ∈ {0, 1}n and f ∈ [0, 1] ∩ Q is E-Frac-f-
Satif there exists an allocation x that more than f fraction of allocations to y result in
φ(x,y) being true. That is there exists x ∈ {0, 1}n such that |{y∈{0,1}

m | φ(x,y) is true}|
2m > f.

Towards showing All-Frac-f-Sat is coNP#P-hard, we show E-Frac-f-Satis NP#P-
hard, entailing Corollary 34.

I Lemma 33. E-Frac-f-Satis NP#P-hard for f ∈ [1
2m ,

2m−1
2m).

M. Gaboardi, K. Nissim and D. Purser 21

I Corollary 34. All-Frac-f-Sat is coNP#P-hard for f ∈ [1
2m ,

2m−1
2m).

Proof of Lemma 33 for f of the form 1
2k+1 . We reduce E-Maj-Sat, given a formula φ(x,y)

to E-Frac- 1
2k+1 -Sat.

(We assume 1
2k+1 takes O(k) bits.)

Define a formula φ′(x,w), with w ∈ {0, 1}m+k. Let w = (y1, . . . , ym, z1 . . . zk), where
y = (y1, . . . , ym).

φ′(x,w) = z1 ∧ · · · ∧ zk ∧ φ(x, y1, . . . , ym)
For x fixed if g allocations to y1, . . . , ym satisfy φ then each of these satisfy φ′ only when

z1 = · · · = zk = 1. All remaining times are unsatisfied.
Suppose g

2m of y’s satisfy φ(x,y) then g
2m·2k w’s satisfy φ′(x,w).

That is we have:
g

2m · 2k >
1

2k+1 ⇐⇒
g

2m >
1
2 . J

Proof of Lemma 33 for f of the form a
2k+1 . We reduce E-Maj-Sat, given a formula φ(x,y)

to E-Frac- 1
2k+1 -Sat. Assume a odd (otherwise, half and take a/2

2k) and greater than 1
(otherwise use above).

Define a formula φ′(x,w), with w ∈ {0, 1}m+k. Let w = (y1, . . . , ym, z1 . . . zk), where
y = (y1, . . . , ym). Let b = a−1

2 (b is always between 1 and 2k − 1).
Let χ b

2k
(z1, . . . , zk)) be a circuit on k bits, which is true for b

2k of its inputs of z1 . . . zk,
but not true for z1 = · · · = zk = 1 when b < 2k. 4

Then we let φ′(x,w) = (z1 ∧ · · · ∧ zk ∧ φ(x, y1, . . . , ym)) ∨ χ b

2k
(z1, . . . , zk).

That is the formula φ′ is true whenever z1 = · · · = zk = 1 and φ is true, or on the b
2k

choices of z1 . . . zk.
Suppose g

2m of y’s satisfy φ(x,y) then g
2m·2k + b

2k = g
2m·2k + a−1

2k+1 w’s satisfy φ′(x,w).
That is we have:

g

2m · 2k + a− 1
2k+1 >

a

2k+1 ⇐⇒
g

2m · 2k >
1

2k+1 ⇐⇒
g

2m >
1
2 J

Proof of Lemma 33 for f of the form a
b . Let m be the number such that y ∈ {0, 1}m,

the number of y bits of the formula, or the number of ‘MAJ’ bits. Let z be such that
z

2m < a
b < z+1

2m . We reduce E-Frac- z
2m -Sat to E-Frac-ab -Sat, by simply taking φ

unchanged.
Suppose g

2m of y’s satisfy φ(x,y) then

g

2m >
z

2m ⇐⇒ g

2m ≥
z + 1
2m ⇐⇒ g

2m >
a

b
. J

C.2 Main Proof of Theorem 29
Proof. Assume we are given an instance of All-Frac-f-Sat, a formula φ(x,y) for x ∈
{0, 1}n,y ∈ {0, 1}m and f ∈ [0, 1].

We define a circuit ψ, with inputs x ∈ {0, 1}n+1, we write as (z,x1, . . . ,xn); matching
the inputs x and an additional bit z. There are m probabilistic bits r ∈ {0, 1}m, matching y.

4 Given b, k such that 0 < b
2k < 1, we create a formula, over 2k bits, which given two k-bit integers m,n,

return whether m ≤ n (such a formula is of size polynomial in k). By fixing n to b, we have a circuit
on m input bits which decides if m ≤ b. Instead sample over the m bits of m producing a circuit χ b

2k

which is true on b
2k of its inputs.

22 The Complexity of Verifying Loop-free Programs as Differentially Private

There is one output bit o ∈ {0, 1}1. The circuit ψ will behave like φ when z = 1 and simply
output 0 when z = 0; i.e. o1 = z ∧ φ(x1, . . . ,xn, r1, . . . , rm).

B Claim 35. φ ∈ All-Frac-f-Sat if and only if ψ is (ε, δ)-differentially private, for δ = f

and any choice of ε (including zero).

Direction: if φ 6∈ All-Frac-f-Sat then not (ε, δ)-differentially private.

Given φ 6∈ All-Min-Sat then there exists x ∈ {0, 1}n such that φ(x,y) is on more than f
portion of y ∈ {0, 1}m. We show the differential privacy condition is violated exactly using
this x, let x = (1,x1, . . . ,xn) and x′ = (0,x1, . . . ,xn). Let us consider the probability of
the event o1 = 1.

Then we have Pr[ψ(1,x1, . . . ,xn) = 1] > f and Pr[ψ(0,x1, . . . ,xn) = 1] = 0. Violating
differential privacy since,

Pr[ψ(1,x1, . . . ,xn) = 1]− eε Pr[ψ(0,x1, . . . ,xn) = 1] > f − 0 = δ.

Direction: if φ ∈All-Frac-f-Sat then (ε, δ)-differentially private.

Since φ ∈ All-Frac-f-Sat then for all x ∈ {0, 1}n we have φ(x,y) true for less or equal f
proportion of the allocations to y ∈ {0, 1}m. Equivalently the more than f of y ∈ {0, 1}m
with φ(x,y) false.

To show privacy we consider all adajcent inputs and all output event. The output events
are E ⊆ {0, 1}1, giving {}, {0}, {1}, {0, 1}. The probability of ‘no output’ {} is zero for all
inputs, so cannot violate differential privacy. The probability of ‘output anything’ {0, 1} is
one for all inputs, so does cannot violate differential privacy. Thus we argue that events {0}
and {1} do not violate differential privacy, for all adjacent inputs.

Inputs take the form x = (z,x1, . . . ,xn), and x,x′ can be adjacent either with fixed x

and differing z or, fixed z and x differing in one position; in each case we show Pr[ψ(x) =
E]− eε Pr[ψ(x′) = E] ≤ δ and Pr[ψ(x′) = E]− eε Pr[ψ(x) = E] ≤ δ

Let z be fixed to zero.

Hence we have x,x′ with x’s differing in one position. For z = 0 the circuit outputs zero in
all cases, independently of x, thus does not violate differential privacy since Pr[ψ(x) = E] =
Pr[ψ(x′) = E].

Let z be fixed to one.

Hence we have x,x′ with x’s differing in one position. Without loss of generality suppose
the difference is xj .

For the event E = {1} we have the probability being ≤ f for each input; that is regardless
of x we have Pr[ψ(x) = 1] ≤ f . So Pr[ψ(x) = E]−eε Pr[ψ(x′) = E] ≤ Pr[ψ(x) = E] ≤ f = δ

and Pr[ψ(x′) = E]− eεpr[ψ(x) = E] ≤ Pr[ψ(x′) = E] ≤ f = δ.
For the event E = {0} we have the probability being ≥ 1 − f for each input; that is

regardless of x we have Pr[ψ(x) = 0] ≥ 1 − f . So Pr[ψ(x) = E] − eε Pr[ψ(x′) = E] ≤
1−Pr[ψ(x′) = E] ≤ f = δ and Pr[ψ(x′) = E]−eε Pr[ψ(x) = E] ≤ 1−Pr[ψ(x) = E] ≤ f = δ.

M. Gaboardi, K. Nissim and D. Purser 23

Let x1, . . . ,xn be fixed.

We have x1, . . . ,xn fixed and the case z = 0 and z = 1, hence we have x = (1,x1, . . . ,xn)
and x′ = (0,x1, . . . ,xn).

For the event {1}, when z = 1, we have Pr[ψ(x) = 1] ≤ f , but for z = 0 the circuit is
always 0, thus Pr[ψ(x′) = 1] = 0.

Then Pr[ψ(x) = 1] − eε Pr[ψ(x′) = 1] = Pr[ψ(x) = 1] ≤ f = δ and Pr[ψ(x′) =
1]− eε Pr[ψ(x) = 1] ≤ 0 ≤ δ.

For the event {0} we have then Pr[ψ(x) = 0] ≥ 1 − f and Pr[ψ(x′) = 0] = 1 Then
Pr[ψ(x) = 0] − eε Pr[ψ(x′) = 0] ≤ 1 − eε ≤ 0 ≤ δ and Pr[ψ(x′) = 0] − eε Pr[ψ(x) = 0] ≤
1− Pr[ψ(x) = 0] ≤ f = δ. J

D Conditioning

Conditioning allows the run of a program to fail, so that the probability associated with failing
runs is renormalised over all other runs (see e.g. [36]). We show our decision procedures
are robust to this notion, for which we simulate failure with an additional output bit and
incorporate the renationalisation into our decision procedures. Naturally our lower bounds
apply to this more general notion.

Conditioning can be encoded in a circuit by assuming a bit which indicates whether
the run has succeeded; in the case of failure we can assume all other output bits are false
(denoted 0). Thus for ‘proper’ events in {0, 1}`, the circuit formally outputs from {0, 1}`+1.
We redefine our probability of an event as

Pr[ψ(x) ∈ E] = |{r ∈ {0, 1}
m | ψ(x, r) = (>,o) with o ∈ E}|

|{r ∈ {0, 1}m | ψ(x, r) 6= (⊥,0)}| .

Note that |{r ∈ {0, 1}m | ψ(x, r) 6= (⊥,0)}| is independent of the choice of E.

D.1 Decide-ε-DP
We generalise the procedure for Decide-ε-DP, maintaining coNP#P.
1. Guess x,x′ ∈ {0, 1}n,o ∈ {0, 1}l

a. Compute a = |{r ∈ {0, 1}m | ψ(x, r) = (>,o)}|
b. Compute b = |{r ∈ {0, 1}m | ψ(x′, r) = (>,o)}|
c. Compute D1 = |{r ∈ {0, 1}m | ψ(x, r) 6= (⊥,0)}|
d. Compute D2 = |{r ∈ {0, 1}m | ψ(x′, r) 6= (⊥,0)}|
e. Reject if D1 or D2 is zero.
f. Accept if a ·D2 ≤ exp(ε) · b ·D2 and otherwise reject.

B Claim. ψ is ε-differentially private ⇐⇒ Decide-ε-DP accepts on all branches

D.2 Decide-ε, δ-DP

We generalise the procedure for Decide-ε, δ-DP, maintaining coNP#P#P
. Recall eε = α =

u
v . In more detail, on inputs ψ, x and x′,M does the following:
1. Choose o ∈ {0, 1}` and an integer C ∈ {1, 2, . . . , 22m+dlog(v)e} (this requires choosing

l + 2m+ dlog(v)e bits).
2. Through a call to the #P oracle,M computes

a = |{r ∈ {0, 1}m : ψ(x, r) = (>,o)}|
b = |{r ∈ {0, 1}m : ψ(x′, r) = (>,o)}| .

24 The Complexity of Verifying Loop-free Programs as Differentially Private

D1 = |{r ∈ {0, 1}m | ψ(x, r) 6= (⊥,0)}|
D2 = |{r ∈ {0, 1}m | ψ(x′, r) 6= (⊥,0)}|

3. M accepts if v · a ·D2 − u · b ·D1 ≥ C and otherwise rejects.

I Lemma 36. Given two inputs x,x′ ∈ Xn,M(ψ,x,x′) has exactly v·D1·D2
∑

o∈{0,1}` δx,x′(o)
accepting executions.

Proof. Let 1{X} be the indicator function, which is one if the predicate X holds and zero
otherwise.

vD1D2
∑

o∈{0,1}`

δx,x′(o) =
∑

o∈{0,1}`

vD1D2 max (Pr[ψ(x) = o]− αPr[ψ(x′) = o], 0)

=
∑

o∈{0,1}`

vD1D2 max

 1
D1

∑
r∈{0,1}m

1{ψ(x, r) = (>,o)} − α 1
D2

∑
r∈{0,1}m

1{ψ(x′, r) = (>,o)}, 0


=

∑
o∈{0,1}`

max

vD2
∑

r∈{0,1}m

1{ψ(x, r) = (>,o)} − vαD1
∑

r∈{0,1}m

1{ψ(x′, r) = (>,o)}, 0


=

∑
o∈{0,1}`

max

vD2
∑

r∈{0,1}m

1{ψ(x, r) = (>,o)} − uD1
∑

r∈{0,1}m

1{ψ(x′, r) = (>,o)}, 0


=

∑
o∈{0,1}`

22m+dlog(v)e∑
C=1

1

max

vD2
∑

r∈{0,1}m

1{ψ(x, r) = (>,o)} − uD1
∑

r∈{0,1}m

1{ψ(x′, r) = (>,o)}, 0

 ≥ C


= number of accepting executions in M̂ J

We can now describe our coNP#P#P
procedure for Decide-ε, δ-DP. The procedure

takes as input a probabilistic circuit ψ.
1. Non-deterministically choose neighboring x and x′ ∈ {0, 1}n (i.e., 2n bits)
2. LetM be the non-deterministic Turing Machine with access to a #P-oracle as described

above. Create a machine M̂ with no input that executesM on ψ,x,x′
3. Make an #P#P oracle call for the number of accepting executions M̂ has.
4. Make an #P oracle call for

D1 = |{r ∈ {0, 1}m | ψ(x, r) = (⊥,0)}|
D2 = |{r ∈ {0, 1}m | ψ(x′, r) = (⊥,0)}|

5. Reject if D1 or D2 is zero.
6. Reject if the number of accepting executions of M̂ is greater than v · D1 · D2 · δ and

otherwise accept.

B Claim. ψ is (ε, δ)-differentially private ⇐⇒ Decide-ε, δ-DP accepts on all branches

	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Loop-free Probabilistic Programs
	2.2 Probabilistic Circuits
	2.3 Equivalence of Programs and Circuits
	2.4 Differential Privacy in Probabilistic Circuits
	2.5 Problems of deciding and approximating differential privacy
	2.6 The class coNP^#P

	3 The complexity of deciding pure differential privacy
	3.1 Decide epsilon DPis in coNP^#P
	3.2 coNP^#P-hardness of Decide epsilon DP
	3.2.1 Randomized Response
	3.2.2 Hardness by circuit shape

	4 On the complexity of deciding approximate differential privacy
	4.1 Decide epsilon delta DP is in coNP^#P^#P
	4.2 Hardness

	5 Inapproximability of the privacy parameters epsilon, delta
	6 Related work
	7 Conclusions and future work
	A Equivalence and expressivity of circuits and programs
	B Hardness of Decide epsilon DP by number of input/output bits
	C Direct Proof that Decide epsilon delta DP is coNP^#P-hard
	C.1 Generalising All-Min-Sat
	C.2 Main Proof of Theorem ??

	D Conditioning
	D.1 Decide epsilon DP
	D.2 Decide epsilon delta DP

