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Abstract: With the increase in communication bandwidth and frequency, the development level of communication technology 

is also constantly developing. The scale of the Internet of Things (IoT) has shifted from single point-to-point communication to 

mesh communication between sensors. However, the large sensors serving the infrastructure place a burden on real-time 

monitoring, data transmission, and even data analysis. The information processing method is experimentally demonstrated with a 

non-linear Schmitt trigger oscillator. A neuronally inspired concept called reservoir computing has been implemented. The 

synchronization frequency prediction tasks are utilized as benchmarks to reduce the computational load. The oscillator's 

oscillation frequency is affected by the sensor input, further affecting the storage pattern of the oscillatory neural network. This 

paper proposes a method of information processing by training and modulating the weights of the intrinsic electronic neural 

network to achieve the next step prediction. The effects on the frequency of a single oscillator in a coupled oscillatory neural 

network are studied under asynchronous and synchronization modes. Principle Component Analysis (PCA) is used to reduce the 

data dimension, and Support Vector Machine (SVM) is used to classify the synchronous and asynchronous data. We define that 

oscillator with stronger coupling weight (lower coupling resistance) as a leader oscillator. From the spice simulation, when 

OSC1 and OSC2 work as leader oscillator, the ONN almost always achieve synchronization; and the synchronization frequency is 

close to the average value of the leader oscillators. By training the emerging synchronous and asynchronous data, we can predict 

the synchronization status of an unknown dataset. Weight retrieval can be achieved by adjusting the slope and bias of the 

separation boundary. 
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1. Introduction 

Recent trends in information processing place high 

demands on a complex dynamical system in a small area and 

still reduce power consumption [1-5]. Since the 1980s, with 

the development of Complementary 

metal-oxide-semiconductor (CMOS) technology, the 

convergence of learning rules and very large scale integration 

(VLSI) technologies, the size of the device channel has 

entered a dozen or even a few nanometers and transistor 

integration density has grown tremendously which made it is 

possible to simulate the nervous system better to validate the 

model and cultivate new biologically inspired ideas [6]. 

Considering the limitation of improvement in CMOS 

technology on device scaling, memory capacity, and power 

consumption in the near future, the CMOS based oscillatory 

neural network for analog or non-Boolean computing 

applications has aroused interest among researchers for 

energy-efficient computational units. In comparison with 

digital computing (Boolean operation) [7], the potential of 

using CMOS technology to perform analog computing 

(non-Boolean computation) remains an opportunity because 

of its energy efficiency [8-9]. Further, the coupled oscillatory 

neural network provided the possibility of performing 

computations in reduced power consumption without 

changing the device scale. The paradigm known as reservoir 

computing has been the focus of considerable increasingly 

interested in the field of the complex dynamic system, 

including photonics [10-11], electronics [12], and chaotic 

systems [13]. Since there are a large number of random 
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weights and freely connected neurons in the reservoir layer, 

theoretically, any complex non-linear system can achieve 

infinite approximation, which makes it possible for the 

complex net-works to perform computation efficiently [14]. 

One of these concepts is known as Echo State Network by 

Wolfgang Maass [15] and Liquid State Machine by Herbert 

Jaeger [16] or more generally as a neurally inspired referred 

to as Reservoir Computing for non-linear system 

identification, prediction, and classification. 

For general neural networks, we start adapting the weight 

of all the connections when we are training the weight [17], 

in which the training process is very difficult for non-linear 

complex dynamical systems [18]. However, in reservoir 

computing, we are going to have random, fixed weight 

connections. Instead of changing the existing connections, 

we fit the existing weight connection in the reservoir layer by 

changing the weight connection between the reservoir layer 

and the output layer. The benefit of training the weight 

externally is that we can substitute the existing system to 

another system that fulfills the specific property. The training 

makes it possible to solve the problem of the complex 

dynamical system, which poses non-linearity and 

high-dimensional mapping. However, in the real world, 

non-linear oscillators are more usual than linear cases [19]. 

While the hysteresis of the Schmitt trigger oscillator is 

challenging to take account in a theoretical model, reservoir 

computing provides a workable approach for realizing 

pattern recognition by analyzing the properties of 

synchronization of the Schmitt trigger oscillators. 

In this paper, we demonstrate the nanoscale frequency 

storable oscillator using Schmitt trigger with resistive sensor 

devices connected in bus topology to store information as an 

oscillation frequency. We implement an input signal and feed 

it into a fixed dynamical system called a reservoir and the 

dynamics of the reservoir map the input to a higher 

dimension. Then the weight is trained to read the state of the 

reservoir and map it to the known output, further predict the 

unknown output. 

2. Reservoir Computing 

Reservoir Computing, also known as the Echo state 

network, is considered an extension of the Neural Network. A 

reservoir computer consists of the following three parts: an 

input layer, reservoir layer, and output layer. Input layer: it can 

be composed of one or more nodes and belongs to a kind of 

feed-forward neural network. Reservoir layer: consists of 

multiple nodes belonging to the recurrent neural network. 

Output layer: a weighted summer. Figure 1 shows the most 

general case of the reservoir computing schematic. In which ���� � ∑ �� 	�                 (1) 

In our reservoir computing architecture, the input layer is 

providing an input signal to our reservoir. There are different 

input channels so that we can send a different input signal to 

our actual oscillatory neural network. The reservoir layer is a 

network of recurrently and randomly connected nonlinear 

nodes [21-22]. It is for transforming the non-linearly separable 

to linearly separable. The difference between the input layer 

and the reservoir layer is that the former only allows signals to 

pass from the input layer to the output layer. The signal 

transmission is unidirectional, and there is no loop at all. The 

output of any layer cannot be data that affects the layer itself 

and is therefore typically used for pattern recognition. On the 

other hand, by introducing loops, the signals could be allowed 

to pass in both directions. The output layer is the layer we are 

training. 

The advantage of reservoir computing is that the middle 

layer's reservoir connection is randomly generated and 

remains unchanged after it is generated. We only need to train 

the weight in the output layer, which makes it much faster than 

the traditional method. This is a unique part of reservoir 

computing. 

 

Figure 1. Schematic of Reservoir Computing Architecture. 

3. Application to Electronic Networks 

There is a wide choice of designs for electronic oscillators 

[23]. Since non-linear oscillators are more usual than linear 

cases, a Schmitt trigger oscillator is used as CMOS neuron in 

our oscillatory neural network circuit to perform as a 

non-linear oscillator. 

3.1. Introduction of Schmitt Trigger Oscillator Model 

 

Figure 2. Schmitt Trigger Oscillator Using UA741 Op-Amp. 
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The Schmitt trigger is a digital transmission gate with 

hysteresis characteristics. Its output state depends on the 

input state and will change only when the input voltage 

crosses a certain predefined voltage. When the input is 

between the high-level and low-level threshold voltages, 

the output does not change. This indicating that the Schmitt 

trigger has memory. In this paper, by utilizing this 

hysteresis property, a relaxation oscillator will be formed, 

and later on, by coupling a series of oscillators, an 

oscillatory neural network will be established for 

computation. In this section, we describe the basic building 

block of the proposed device is Schmitt trigger oscillator 

architecture, as shown in Figure 2. 

3.2. Hardware Implementation of the System 

The four oscillators are considered synchronized if they 

oscillate with the same frequency and are phase-locked 

[24-25]. The architecture of a Schmitt trigger oscillator, as 

shown in Figure 3, the resistor R and capacitor C is used to 

determine the frequency of the oscillator. 

In this work, the coupling weight for the reservoir 

computing architecture is introduced by resisters, which are 

connected in parallel between each oscillator. In the 

reservoir, the oscillators are interconnected with a fixed 

connection. In our work, we connect the input of OSC1 and 

the input of OSC2. The output of all four oscillators is 

connected to a central node called bus topology. This 

topology needs only n connections between each oscillator 

and a common communication channel to service all 

oscillators in the network [26]. A bus topology-based 

neural network called neurocomputer was proposed by 

Hoppensteadt and Izhikevich [27]. An oscillatory 

neurocomputer with dynamic connectivity imposed by the 

external input. The neurocomputer can store and retrieve 

given patterns in the form of synchronized between the 

oscillators as a benchmark [28-29]. Figure 3 shows 

interconnected four Schmitt trigger oscillators with the 

central bus through resistors. The value of the coupled 

resistance will affect the output synchronization frequency. 

 

Figure 3. Coupled Oscillator. 

4. Experiments and Simulation 

4.1. Sampled Data from Spice Testing 

The input frequencies for each oscillator after the 

reservoir layer are measured before the parallel connection, 

as shown in Figure 4. The output coupling frequency is 

measured after the coupled oscillators achieve 

synchronization. Figure 5 and Figure 6 are the testing data 

from Figure 3 through Spice simulation with the same input 

frequencies (R��� =100 kΩ, R��� =500 kΩ, R��� =100 

kΩ, R��� =300 kΩ) and different coupling weights 

(coupling resistance). The coupled oscillators synchronize 

in Figure 5 but fail to synchronize in Figure 6. 

 

Figure 1. The input frequencies of each oscillator for training weight come from the output of the coupled Schmitt trigger based oscillatory neural network after 

the reservoir layer. �����, i=1, 2, 3, 4 is corresponding to the resistance of R in Figure 2. �����=100 kΩ, �����=500 kΩ, �����=100 kΩ, �����=300 kΩ. 
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Figure 2. The output of the coupled Schmitt trigger based oscillatory neural network under real-time information. The coupled oscillators are synchronized 

completely. R1, R2, R3, R4 are the Resistors from Figure 3, R1 = 1 kΩ, R2= 1 kΩ, R3= 100 kΩ, R4= 100 kΩ. 

From the simulation result, we find that the smaller the 

coupling resistance value, the stronger the coupling 

strength. On the contrary, the larger the coupling resistance 

value, the weaker the coupling strength. When the coupling 

resistance value of one oscillator is under a very small value 

(< 10 kΩ), and it is much smaller than the other oscillators, 

we define that oscillator with stronger coupling weight as 

leader oscillator. In this paper, we choose the fixed R1 = R2 

= 1 kΩ R3 = R4 = 100 kΩ. R1 and R2 are the two leaders, and 

R3 and R4 are the two followers. The simulation result tells 

us that when OSC1 and OSC2 work as leader oscillator, the 

ONN almost always achieve synchronization and the 

synchronization frequency is close to the average value of 

the leader oscillators. 

 

Figure 3. The output of the coupled Schmitt trigger based oscillatory neural network under real-time information. The coupled oscillators are not synchronized. 

R1, R2, R3, R4  are the Resistors from Figure 3. R1 = 100 kΩ, R2= 200 kΩ, R3= 300 kΩ, R4= 500 kΩ. 

4.2. Weight Training 

When we are ready to train weight to make predictions, we 

take the input signal and the output signal as our original data. 

The more training data we use, the more accurate we get for a 

longer period. And then we compare the original data in the 

prediction. 

The input and output frequency of the Schmitt trigger 

oscillator can be expanded using Fourier series in this 
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following equation for MATLAB simulation:  ���� � �� ∑ �� �!��!�"#�$����!%"#&%'# � �� �sin���� + #, �sin�3��� + #. �sin�5����                 (2) 

Where ω=2πf. 

4.2.1. Weight Training Method 

The weight training matrix is shown as, 

0 �#��#� �!��#� �,��#� ����#��#��!� �!��!� �,��!� ����!�…�#��2� �!��2� �,��2� ����2�3 04#4!…42
3 + 05#5!…52

3 � 06#6!…62
3   (3) 

Where f (t) is the first three harmonics of the Fourier series of 

each Schmitt trigger oscillator. w1,...,wn are the training weights, 

b1,..., bn are the thresholds, which are unknown getting from the 

training process, and y is the first three harmonics of the Fourier 

series of the synchronized frequency tested from the 

corresponding input. 

We now show an example of how we can use the measured 

data from Spice simulation to train the weight. We start with the 

one-step learning performance of a 4-oscillator network. In our 

analysis, we use the following procedures. 

1. Measure each oscillator's frequency before coupling and 

the frequency at the central bus after synchronization from 

Spice simulation. 

2. Export the frequency data to Excel and transfer the data 

from Excel to MATLAB workspace, then compute the 

first three harmonic frequency for each oscillator and 

coupled oscillators in MATLAB. Data should be 

transposed as columns to be rows. 

3. We are using the MATLAB Neural Network Toolbox to 

train the weight. Define the input as the first three 

harmonic frequency of each oscillator before coupling, the 

target as the first three harmonic frequency after 

synchronization. From the network type, we can choose 

the desired network type. In this example, we choose 

feed-forward with backpropagation. Select the training 

function as trainlm, adaption learning function as learngdm, 

and performance function as MSE (Mean Squared Error). 

4. Repeat the previous step to find the best fitting. The weight 

matrix can be read from MATLAB after fitting. 

5. During the hardware simulation, we keep the coupling 

strength unchanged. We repeat step 1 by changing the 

R-value, as shown in Figure 3 in Spice. In a real 

experiment, R-value can be affected by the detected sensor 

value for pattern recognition in further study. 

4.2.2. Performance of the Training 

 

Figure 4. The performance of neural network training regression. 
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In our network, the input-output curve fitting with 70 

percent of Training data, 15 percent of validation data, 

and 15 percent of testing data. Figure 7 shows the 

performance of neural network training regression. The 

role of nntool is to train the neural network and output 

the final network parameters: updated activations, errors, 

weights, and biases, (nn.a, nn.e, nn.W, nn.b) and training 

error: the sum squared error for each training mini-batch. 

Here, we perform a feed-forward backpropagation 

network. The more collected data from Spice simulation 

applying to the system, the better matching weights will 

be obtained, and more accuracy will be for the 

prediction. 

4.3. Weight Retrieving 

The simulation result above tells us that the regression 

process tries to predict a real number. While the training 

weight will vary every single time of the training. To 

improve the performance of the weight retrieving, and 

make simulation data better mapped to the hardware 

system, we use the classifier to predict a category to find 

the boundary of synchronization and non-synchronization. 

By defining the synchronization regions merging from 

the four coupled oscillators to varying frequencies of 

each oscillator to classify the status of synchronization 

and non-synchronization. 

4.3.1. Dimensionality Reduction with PCA 

In many fields of research and application, it is usually 

necessary to observe data containing multiple variables, 

collect large amounts of data, and analyze to find the law. 

Multi-variate big data sets will undoubtedly provide a 

wealth of information for research and application, but 

also increase the workload of data collection to some 

extent. More importantly, in many cases, there may be 

correlations between many variables, which increases the 

complexity of problem analysis. If each indicator is 

analyzed separately, the analysis is often isolated, and 

the information in the data cannot be fully utilized. 

Therefore, blindly reducing the indicator will lose a lot of 

useful information and lead to erroneous conclusions. 

Therefore, it is necessary to find a reasonable method 

to reduce the loss of information contained in the original 

indicator while reducing the indicators that need to be 

analyzed, to achieve a comprehensive analysis of the 

collected data. Since there is a certain correlation 

between variables, it can be considered to change the 

closely related variables into as few new variables as 

possible, so that these new variables are irrelevant so that 

they can be represented by fewer comprehensive 

indicators. Various types of information that exist in each 

variable. PCA is a frequently used dimensionality 

reduction algorithm. 

 

Figure 8. The mapping of the four oscillator frequencies in two dimensions. 

The green star represents the state in which the four oscillators are coupled 

and synchronized. The red cross represents the state in which the four 

oscillators are coupled and not synchronized. 

In this sampled data set, we change the frequency of the 

oscillator by changing the resistance of each oscillator while 

keeping the value of the coupling weight un-changed. We 

collected twelve sets of oscillator frequencies that can be 

synchronized and twelve sets of oscillator frequencies that 

cannot be synchronized. Each set of data has four frequency 

values corresponding to four oscillators, meaning that we are 

collecting a set of four-dimensional data. After dimension 

reduction by PCA to a 2D plane, as shown in Figure 8. 

4.3.2. Classification and Bound Search 

To detect the boundary of the sampled data set after 

dimensionality reduction, we adopt an algorithm called 

Support Vector Machine (SVM), which was first proposed by 

Cortes and Vapnik in 1995 [30]. It shows many unique 

advantages in solving small sample, nonlinear, and 

high-dimensional pattern recognition and can be applied to 

function fitting and other machine learning problems. 

The SVM method is based on the VC dimension theory 

and structural risk minimization principle of statistical 

learning theory. According to the limited sample information, 

we are seeking the best compromise between the complexity 

of the model (i.e., the accuracy of learning for specific 

training samples) and learning ability (i.e., the ability to 

identify any sample without error), to get the best promotion 

ability (or generalization ability). In general, if a linear 

function can separate the samples correctly, the data is said to 

be linearly separable. Otherwise, it is called the nonlinearly 

separable. 

In this work, the synchronization regions emerging from a 

four-oscillator network response to the varying frequencies of 

each oscillator using SVM to classify. The reduced 

dimension data set can be considered as linear separable. 

After classification, the synchronization sample and 

non-synchronization sample are separated, as shown in 

Figure 9. 

The mathematical expression of the separation line can be 
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Figure 9. Two categories are being distinguished, and their samples are 

mapped in the two-dimensional plane. The middle line is a classification 

function that separates the two types of samples. The green star represents the 

state that the four coupled oscillators are synchronized. The red cross 

represents the state that the four coupled oscillators are not synchronized. 

Expressed as 

y � wx + b                  (4) 

In which, w and b we can get from the MATLAB simulation. 

In this sample, the expression is y �  ;0.5735x +  0.0677          (5) 

4.3.3. Mapping the Boundary to the Hardware 

The simulation result above gives us the boundary of 

synchronization and non-synchronization corresponding to �����  = 100 kΩ, �����= 200 kΩ, �����  = 300 kΩ, �����= 

500 kΩ. When we train the classifier, we need to choose 

whether it is linear or nonlinear. The nonlinear problem needs 

to be mapped to the high-dimensional space to find the 

hyperplane. In this simulation, our sampled data is linearity 

separable, so we use linear classification and calculate the 

error. It also simplifies the calculation of the retrieval back to 

hardware. The following table summarizes the error of the 

linear classification of this work. As Table 1 shows, the 

sampled data are almost fit into the separation boundary. 

Table 1. Nodes visited in boundary search. 

 Total nodes Synchronization nodes Non-synchronization nodes 

Expected number 24 12 12 

Separation number 24 11 11 

Error 0 0.0833 0.0833 

 

When given a set of non-synchronized data, by adjusting 

the slope and the bias of the separation line, which is also the 

w and b of a mathematical expression, we can fit it back to 

synchronize. Each slope and bias represents a set of coupling 

weights, which in the hardware is the coupling resistor. By 

simulating a couple of data and find the separation boundary, 

we can retrieve the separation boundary back to the hardware 

coupling resistance. 

5. Discussion 

Several data from hardware simulations are needed for 

training weights to get better performance with our system. 

We have demonstrated that a simple non-linear dynamical 

system--Schmitt trigger oscillatory neural network with 

simple external linear training weight can efficiently perform 

information processing in both hardware and software 

simulation. Therefore, as a result, our simple external scheme 

can replace the complex networks used in traditional Schmitt 

trigger based oscillatory neural networks. In comparison to 

mainstream digital computing paradigms, analog computing 

performs higher energy efficiency. 

Besides, as far as we know, this experiment represents the 

hardware implementation of Schmitt trigger oscillatory 

neural network with results comparable to those obtained 

with linear regression using MATLAB Neural Network 

Toolbox. The sampled data includes four oscillators' 

frequencies, which represent a four-dimensional data set. The 

sampled data is linearity separable after using PCA to reduce 

the four-dimensional data set to the 2D plane. SVM is used to 

classify the synchronization and non- synchronization of 

sampled data. Retrieving the separation boundary back to the 

hardware coupling resistance can be achieved by adjusting 

the slope and the bias of the separation line to match the 

coupling weight. 

6. Conclusion 

In this paper, a reservoir computing platform was studied to 

solve fitting problems in the non-linear complex dynamical 

system. Since the hysteresis of Schmitt trigger oscillator is 

challenging to model with conventional math model, instead of 

modeling the Schmitt trigger oscillator directly with math 

function, reservoir computing provides a solvable solution by 

keeping the existing non-linear complex dynamic connections 

and fitting the weight from outside between the reservoir layer 

and the output layer. In the process of training weights, we 

ignore the complicated relationships among the inputs 

generated by the harmonic outputs of the Schmitt trigger 

oscillators’ square wave signals. The advantage of training the 

weights externally is that we can use the existing system and 

substitute with another system that meets specific attributes. 

The training makes it possible for non-linear and high 

dimensional mapping substitutes with a simple linear 

algorithm. In this paper, we can predict the synchronization 

status of the unknown data set using SVM to find the boundary. 

Weight retrieving can be achieved by adjusting the slop and 

bias of the separation boundary. 
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