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Abstract 
 
The next generation intelligent infrastructures mandates ubiquitous sensing, monitoring, and 
assessment for maintenance, structural health status evaluation, and initiation of preventive actions 
for impending dangers. The massive scale of sensor data from an infrastructure creates a burden 
to the property owner to process and extract the meaningful information. To tackle this challenge, 
a sensor level analog computational platform is proposed in this work using an oscillatory neural 
network (ONN) for its increased computational efficiency. In this work, an array of sensors is 
considered for structural health monitoring and the sensor outputs affect the coupling weights of 
the ONN. The beauty of ONN structure is, it can store a pattern (i.e. sensor output) through the 
coupling weights and exhibits a synchronized output for a close-in-match input pattern or sensor 
data. Any predefined deviation of sensor outputs result in desynchrony in ONN and indicate the 
anomaly in structural health. The inherent computational power in ONN obviates the power-
hungry digital processor and facilitates data reduction and reduced computational burden for the 
central data center. In this work, a Kuramoto model based ONN consisting of 10 oscillating nodes 
is designed and simulated. An array of 10 strain sensors is considered to affect the coupling weights 
of the oscillating nodes, and demonstrate network level computation. Based on MATLAB 
simulations, the proposed ONN architecture can successfully detect the close-in-match pattern 
through synchronization, and differentiate the far-out-match pattern through loss of 
synchronization in the oscillating nodes.   
 
1. Introduction 
 
The state of art of the communication technology is constantly evolving benefit from the increased 
communication bandwidth and frequency, the scale of the Internet of Things (IoT) has shifted from 
a single point-to-point communication to a mesh communication between sensors. [3] However, 
the massive sensors serving in the infrastructures create the burden in the energy harvesting, real-
time monitoring, self-calibrating and even in the data analyzing. 
  
Sensors act as significant role in intelligent infrastructures for health monitoring, status evaluation 
and assessment for maintenance. In conventional sensor detection technology, whether it is an 
active sensor or a passive sensor, the sensor works independently in the monitoring scenario. In 
the process of rapid development of the IoT, a large number of different sensors communicate as 
sensor networks, so the kind of point-to-point sensors has great limitations in redundant data 
processing, energy harvesting, and efficiency decreasing [1]. 
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Where the 𝜑𝑖 ,⁡𝑓𝑖  are the phase and intrinsic frequency of ith oscillator. The oscillator coupling 
weight between two different oscillators represented by Kij ∈ K. The weight between the 
oscillator i to j is generated form sensor i and j output. The coupling weight Kij which forms the 
weight matrix K is equal to 

𝐾𝑖𝑗 = 𝑘𝑖𝑗 ∗ 𝐴𝑖 ∗ 𝐴𝑗
                                                                                       (2) 

 
A is the coupling strength which is affected by the sensor, kij is the coupling constant. In this 
proposed ONN system, there are two stimulus oscillators O1 and O2, and eight recognition 
oscillators O3, O4, O5, O6, O7, O8, O9, and O10. In this paper, the sensing data 𝜀 comes from the 
accelerometer. The values of coupling strength A comes from the sensing data which are 
normalized to the range of 1 to 4. 
 

𝜀 = √Δx2 + Δy2 + Δz2                                                                                             (3) 
 

Δx  , Δy  , Δz  are the difference between the current sensing coordinates values and the stored 
coordinates values. The coupling constant between oscillators is kij(i ≠ j). In the stored pattern we 
set kij = 1, except k12 = k21 = 0, A = [4, 4, 1, 1, 1, 1, 1, 1, 1, 1]T, the weight matrix K is shown 
below, 
 

K = 

[
 
 
 
 
 
 
 
 
 
0 0 4 4 4 4 4 4 4 4
0 0 4 4 4 4 4 4 4 4
0 0 0 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 1 1
0 0 1 1 1 1 1 0 1 1
0 0 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 0]

 
 
 
 
 
 
 
 
 

 

 
3. Simulation Results  
 
Matlab simulation is designed to simulate the proposed ONN system. The intrinsic frequencies of 
the oscillator are chosen from 10 to 30 Hz low frequency to simulate infrastructures. The 
simulation result for a stored pattern and two recognition patterns are shown in the top images in 
Fig. 2-4. In the bottom of the images in Fig. 2-4, the different color represent the different coupling 
strength for each oscillator. The ten oscillators are arranged in 2 rows and 5 columns. The vertical 
& horizontal axes are the position of each oscillator. 
 
3.1 Stored Pattern  

The stored pattern simulation result is shown in Fig.2. The coupling strength vector is A = [4, 4, 
1, 1, 1, 1, 1, 1, 1, 1]T , the intrinsic frequency vector of the oscillators f0 = [14, 21, 12, 15, 18, 27.5, 
10, 17.5, 17.5, 22.5].  
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Fig.2 Synchronous time, frequency (top) and coupling strength diagram for stored pattern (bottom) 

 
As shown in Fig.2, the convergence time of the store pattern is 0.1829 seconds and the synchronous 
frequency is 17 Hz. The color diagram is a 2 by 5 matrix represents the weight vector k. Color bar 
from blue to yellow represent the coupling strength value from 1 to 4.  

 
3.2 Asynchronous Pattern 

As the coupling strength values are normalized to a range of 1 to 4 when a detorted pattern is 
performed which means the sensor sensed a significant change compared to the stored pattern. The 
ONN system will be involved in a different pattern as shown in Fig.3. When the coupling strength 
vector is  A = [4, 4, 1, 1, 1, 2, 1, 1, 1, 1]T, the intrinsic frequency vector of the oscillators f0 = [14, 
21, 12, 15, 18, 27.5, 10, 17.5, 17.5, 22.5]. 
 

 
Fig.3 Asynchronous time, frequency (top) and coupling strength diagram (bottom) 
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Fig.3 shows an asynchronous pattern, which ONN is under an asynchronous situation with no 
synchronous time and frequency due to the significant change of sensor output.  
 
3.3 Robustness simulation 

Robustness detection is one of main detection indicator for ONN anti-interference performance. 
In practical scenarios, the excellent robust performance of the system is not only the resistance to 
noise signals but also the recognition efficiency of the overall system and the reduction of energy 
consumption which is important in a sensor network. In the simulation, a white noise signal vector 
is added at the store weight vector k = [4.0498, 4.0960, 1.0340, 1.0585, 1.0224, 1.0751, 1.0255, 
1.0506, 1.0699, 1.0891]T, the intrinsic frequency vector of the oscillators f0=[14, 21, 12, 15, 18, 
27.5, 10, 17.5, 17.5, 22.5]. 

 
Fig.4 Synchronous time, frequency (top) and coupling strength diagram in robustness (bottom) 

 
As shown in Fig.4, the convergence time and synchronous frequency under the coupling strength 
added a noise signal is 0.26185 second and 17.2Hz separately. This explains when the sensing data 
has a small change, the system is able to restore to steady. This has proved the robustness of this 
system. 
 
4. Discussion and Conclusion  
 
In intelligence infrastructures with sensor network applications, quickly and accurately identify 
the various states of the sensors to provide a fundament for the recognition of the life state of the 
basic facilities. An ONN system based on the Kuramoto model is designed and simulated in this 
paper. We showed a coupled approach using Kuramoto model to exhibit the synchronization for 
pattern recognition. The convergence time and frequency to synchronization were considered as 
the indicator of recognition. Based on MATLAB simulations, the proposed ONN architecture can 
successfully detect the close-in-match pattern through synchronization, and differentiate the far-
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out-match pattern through loss of synchronization in the oscillating nodes. In wireless sensor 
network, transmission units are the largest energy consumers. By only transmitting the data with  
lossing of synchronization, ONN have been shown to have a big benefit on low power 
comsumption though data reduction. 
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