Poincaré Recurrence, Cycles and Spurious Equilibria
in Gradient-Descent-Ascent for Non-Convex
Non-Concave Zero-Sum Games

Lampros Flokas* Emmanouil V. Vlatakis-Gkaragkounis*
Department of Computer Science Department of Computer Science
Columbia University Columbia University
New York, NY 10025 New York, NY 10025
lamflokas@cs.columbia.edu emvlatakis@cs.columbia.edu

Georgios Piliouras
Engineering Systems and Design
Singapore University of Technology and Design
Singapore
georgios@sutd.edu.sg

Abstract

We study a wide class of non-convex non-concave min-max games that generalizes
over standard bilinear zero-sum games. In this class, players control the inputs of a
smooth function whose output is being applied to a bilinear zero-sum game. This
class of games is motivated by the indirect nature of the competition in Generative
Adversarial Networks, where players control the parameters of a neural network
while the actual competition happens between the distributions that the generator
and discriminator capture. We establish theoretically, that depending on the specific
instance of the problem gradient-descent-ascent dynamics can exhibit a variety of
behaviors antithetical to convergence to the game theoretically meaningful min-max
solution. Specifically, different forms of recurrent behavior (including periodicity
and Poincaré recurrence) are possible as well as convergence to spurious (non-min-
max) equilibria for a positive measure of initial conditions. At the technical level,
our analysis combines tools from optimization theory, game theory and dynamical
systems.

1 Introduction

Min-max optimization is a problem of interest in several communities including Optimization, Game
Theory and Machine Learning. In its most general form, given an objective function r : R" xR™ — R
and we would like to solve the following problem

(0%, ¢™) = argmin arg maxr(6, @). (1)
fcR™ pER™

This problem is much more complicated compared to classical minimization problems, as
even understanding under which conditions such a solution is meaning-full is far from trivial

[DP18, MPR*17, OSG™'18, JNJ19]. What is even more demanding is understanding what kind
of algorithms/dynamics are able to solve this problem when a solution is well defined.
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Recently this problem has attracted renewed interest motivated by the advent of Generative Adver-
sarial Networks (GANs) and their numerous applications [GPM™ 14, RMC16, IZZE17, GPM™T 14,
ZXL17, ACB17, LTH*17, SGZT16]. A classical GAN architecture mainly revolves around the
competition between two players, the generator and the discriminator. On the one hand, the generator
aims to train a neural network based generative model that can generate high fidelity samples from a
target distribution. On the other hand, the discriminator’s goal is to train a neural network classifier
than can distinguish between the samples of the target distribution and artificially generated samples.
While one could consider each of the tasks in isolation, it is the competitive interaction between
the generator and the discriminator that has lead to the resounding success of GANs. It is the
"criticism" from a powerful discriminator that pushes the generator to capture the target distribution
more accurately and it is the access to high fidelity artificial samples from a good generator that gives
rise to better discriminators. Machine Learning researchers and practitioners have tried to formalize
this competition using the min-max optimization framework mentioned above with great success
[AGL*17, Mal8, GXC*18, YFW*19].

One of the main limitations of this framework however is that to this day efficiently training GANs can
be a notoriously difficult task [SGZ* 16, MPPS17, MPP18, KAHK17]. Addressing this limitation has
been the object of interest for a long line work in the recent years [MGN18, MPPS17, PV16, RMC16,
TGB*17, BSM17, GAAT17]. Despite the intensified study, very little is known about efficiently
solving general min-max optimization problems. Even for the relatively simple case of bilinear games,
the little results that are known have usually a negative flavour. For example, the continuous time
analogue of standard game dynamics such as gradient-descent-ascent or multiplicative weights lead
to cyclic or recurrent behavior [PS14, MPP18] whereas when they are actually run in discrete-time?
they lead to divergence and chaos [BP18, CP19, BP19a]. While positive results for the case of
bilinear games exist, like extra-gradient (optimistic) training ((DISZ18, MLZ*19a, DP19]) and other
techniques [BRMT 18, GHP*19a, GBVT19, ALW19], these results fail to generalize to complex
non-convex non-concave settings [OSG™ 18, LLRY18, SRL18]. In fact, for the case of non-convex-
concave optimization, game theoretic interpretations of equilibria might not even be meaningful
[MR18, JNJ19, ADLH19].

In order to shed some light to this intellectually challenging problem, we propose a quite general
class of min-max optimization problems that includes bilinear games as well as a wide range of
non-convex non-concave games. In this class of problems, each player submits its own decision
vector just like in general min-max optimization problems. Then each decision vector is processed
separately by a (potentially different) smooth function. Each player finally gets rewarded by plugging
in the processed decision vectors to a simple bilinear game. More concretely, there are functions
F:R" - RY and G : R™ — RM and a matrix Uy « s such that

r(6,¢) = F(0) UG(9). 0
We call the resulting class of problems Hidden Bilinear Games.

The motivation behind the proposed class of gamess is actually the setting of training GANS itself.
During the training process of GANs, the discriminator and the generator "submit" the parameters
of their corresponding neural network architectures, denoted as @ and ¢ in our problem formulation.
However, deep networks introduce nonlinearities in mapping their parameters to their output space
which we capture through the non-convex functions F, G. Thus, even though hidden bilinear games
do not demonstrate the full complexity of modern GAN architectures and training, they manage
to capture two of its most pervasive properties: i) the indirect competition of the generator and
the discriminator and ii) the non-convex non-concave nature of training GANs. Both features are
markedly missing from simple bilinear games.

Our results. We provide, the first to our own knowledge, global analysis of gradient-descent-ascent
for a class of non-convex non-concave zero-sum games that by design includes both features of
bilinear zero-sum games as well as of single-agent non-convex optimization. Our analysis focuses
on the (smoother) continuous time dynamics (Section 4,5) but we also discuss the implications for
discrete time (Section 7). The unified thread of our results is that gradient-descent-ascent can exhibit
a variety of behaviors antithetical to convergence to the min-max solution. In fact, convergence to a
set of parameters that implement the desired min-max solution (as e.g. GANSs require), if it actually

*Interestingly, running alternating gradient-descent-ascent in discrete-time results once again in recurrent
behavior [BGP19].



happens, is more of an accident due to fortuitous system initialization rather than an implication of
the adversarial network architecture.

Informally, we prove that these dynamics exhibit conservation laws, akin to energy conservation
in physics. Thus, in contrast to them making progress over time their natural tendencies is to
"cycle" through their parameter space. If the hidden bilinear game U is 2x2 (e.g. Matching Pennies)
with an interior Nash equilibrium, then the behavior is typically periodic (Theorem 3). If it is a
higher dimensional game (e.g. akin to Rock-Paper-Scissors) then even more complex behavior is
possible. Specifically, the system is formally analogous to Poincaré recurrent systems (e.g. many
body problem in physics) (Theorems 6, 7). Due to the non-convexity of the operators F, GG, the system
can actually sometimes get stuck at equilibria, however, these fixed points may be merely artifacts
of the nonlinearities of F, G instead of meaningful solutions to the underline minmax problem U'.
(Theorem 8).

In Section 7, we show that moving from continuous to discrete time, only enhances the disequilibrium
properties of the dynamics. Specifically, instead of energy conservation now energy increases over
time leading away from equilibrium (Theorem 9), whilst spurious (non-minmax) equilibria are still
an issue (Theorem 10). Despite these negative results, there are some positive news, as at least in
some cases we can show that time-averaging over these non-equilibrium trajectories (or equivalently
choosing a distribution of parameters instead of a single set of parameters) can recover the min-
max equilibrium (Theorem 4). Technically our results combine tools from dynamical systems (e.g.
Poincaré recurrence theorem, Poincaré-Bendixson theorem, Liouville’s theorem) along with tools
from game theory and non-convex optimization.

Understanding the intricacies of GAN training requires broadening our vocabulary and horizons
in terms of what type of long term behaviors are possible and developing new techniques that can
hopefully counter them.

The structure of the rest of the paper is as follows. In Section 2 we will present key results from prior
work on the problem of min-max optimization. In Section 3 we will present the main mathematical
tools for our analysis. Sections 4 through 6 will be devoted to studying interesting special cases of
hidden bilinear games. Section 8 will be the conclusion of our work.

SN
e

N
N

ON
\’ ‘\\' \
2

% 2
W (g /79
WA

Figure 1: Trajectories of a single player using gradient-descent-ascent dynamics for a hidden
Rock-Paper-Scissors game with sigmoid activations. The different colors correspond to different ini-
tializations of the dynamics. The trajectories exhibit Poincaré recurrence as expected by Theorem 7.



2 Related Work

Non-equilibrating dynamics in game theory. [KLPT11] established non-convergence for a continuous-
time variant of Multiplicative Weights Update (MWU), known as the replicator dynamic, for a 2x2x2
game and showed that as a result the system converges to states whose social welfare dominates
that of all Nash equilibria. [PPP17] proved the existence of Li-Yorke chaos in MWU dynamics of
2x2 potential games. From the perspective of evolutionary game theory, which typically studies
continuous time dynamics, numerous nonconvergence results are known but again typically for
small games, e.g., [San10]. [PS14] shows that replicator dynamics exhibit a specific type of near
periodic behavior in bilinear (network) zero-sum games, which is known as Poincaré recurrence.
Recently, [MPP18] generalized these results to more general continuous time variants of FTRL
dynamics (e.g. gradient-descent-ascent). Cycles arise also in evolutionary team competition [PS18]
as well as in network competition [NMP18]. Technically, [PS18] is the closest paper to our own
as it studies evolutionary competition between Boolean functions, however, the dynamics in the
two models are different and that paper is strictly focused on periodic systems. The papers in the
category of cyclic/recurrent dynamics combine delicate arguments such as volume preservation
and the existence of constants of motions (“energy preservation"). In this paper we provide a wide
generalization of these type of results by establishing cycles and recurrence type of behavior for a
large class of non-convex non-concave games. In the case of discrete time dynamics, such as standard
gradient-descent-ascent, the system trajectories are first order approximations of the above motion
and these conservation arguments do not hold exactly. Instead, even in bilinear games, the “energy"
slowly increases over time [BP18] implying chaotic divergence away from equilibrium [CP19]. We
extend such energy increase results to non-linear settings.

Learning in zero-sum games and connections to GANs. Several recent papers have shown positive
results about convergence to equilibria in (mostly bilinear) zero-sum games for suitable adapted
variants of first-order methods and then apply these techniques to Generative Adversarial Networks
(GANs) showing improved performance (e.g. [DISZ18, DP19]). [BRM™ 18] made use of conser-
vation laws of learning dynamics in zero-sum games (e.g. [BP19b]) to develop new algorithms for
training GANs that add a new component to the vector field that aims at minimizing this energy
function. Different energy shrinking techniques for convergence in GANs (non-convex saddle point
problems) exploit connections to variational inequalities and employ mirror descent techniques with
an extra gradient step [GBVL18, MLZ™ 19a]. Moreover, adding negative momentum can help with
stability in zero-sum games [GHP™ 19b]. Game theoretic inspired methods such as time-averaging
work well in practice for a wide range of architectures [YFWT19].

3 Preliminaries

3.1 Notation

Vectors are denoted in boldface z,y unless otherwise indicated are considered as column vectors.
We use ||-|| corresponds to denote the ¢3—norm. For a function f : R? — R we use V£ to denote
its gradient. For functions of two vector arguments, f(z,y) : R x R% — R, we use V. f, Vy, f
to denote its partial gradient. For the time derivative we will use the dot accent abbreviation, i.e.,
& = Z[z(t)]. A function f will belong to C" if it is r times continuously differentiable. The term
“sigmoid" function refers to o : R — R such that o(z) = (1 + e¢~*)~!. Finally, we use P (-),
operating over a set, to denote its (Lebesgue) measure.

3.2 Definitions

Definition 1 (Hidden Bilinear Zero-Sum Game). In a hidden bilinear zero-sum game there are two
players, each one equipped with a smooth function F : R™ — RN and G : R™ — RM and a payoff
matrix Uy « pr such that each player inputs its own decision vector @ € R™ and ¢ € R™ and is trying
to maximize or minimize v(0,¢) = F(0) "UG(¢) respectively.

In this work we will mostly study continuous time dynamics of solutions for the problem of Equation
1 for hidden bilinear zero-sum games but we will also make some important connections to discrete
time dynamics that are also prevalent in practice. In order to make this distinction clear, let us define
the following terms.



Definition 2 (Continuous Time Dynamical System). A system of ordinary differential equations
x = f(x) where f : R? — R will be called a continuous time dynamical system. Solutions of the
equation f(x) = 0 are called the fixed points of the dynamical system.

We will call f the vector field of the dynamical system. In order to understand the properties of
continuous time dynamical systems, we will often need to study their behaviour given different initial
conditions. This behaviour is captured by the flow of the dynamical system. More precisely,

Definition 3. If f is Lipschitz-continuous, there exists a continuous map ®(zo,t) : R x R — R?
called flow of the dynamical system such that for all xo € RY we have that ®(z,t) is the unique
solution of the problem {z = f(x),x(0) = xo}. We will refer to ®(x,t) as a trajectory or orbit of
the dynamical system.

In this work we will be mainly study the gradient-descent-ascent dynamics for the problem of
Equation 1. The continuous (discrete) time version of the dynamics (with learning rate ) are based
on the following equations:

O =-Ver(6.9) fOri1 =0, — aVer(Bi, éx)
(CGDA) : {45 = Vyr(0,9) } (DGDA) : {¢k—+&-i = ¢r + OAV¢T(0ka¢k)}

A key notion in our analysis is that of (Poincaré) recurrence. Intuitively, a dynamical system is
recurrent if, after a sufficiently long (but finite) time, almost every state returns arbitrarily close to the
system’s initial state.

Definition 4. A point x € R? is said to be recurrent under the flow ®, if for every neighborhood

U C R?of x, there exists an increasing sequence of times t,, such that lim t, = oo and
n—oo

O(x,t,) € U forall n. Moreover, the flow ® is called Poincaré recurrent in non-zero measure set
A C RY if the set of the non-recurrent points in A has zero measure.

4 Cycles in hidden bilinear games with two strategies

In this section we will focus on a particular case of hidden biinear games where both the generator
and the discriminator play only two strategies. Let U be our zero-sum game and without loss of
generality we can assume that there are functions f : R™ — [0, 1] and g : R™ — [0, 1] such that

ro-(1%)  v=(or w) e (1%%)

Let us assume that the hidden bi-linear game has a unique mixed Nash equilibrium (p, ¢):

Uo,1 — U1,1 UL,0 — U1,1
v=1up0— U1 —Uo0+u,1 #0, ¢g= - € 0,1), p= —— 5 € (0,1)

b= oV i6)(9(6) - q>} 3

Then we can write down the equations of gradient-descent-ascent : < .
¢ =vVyg(8)(f(0) —p)

In order to analyze the behavior of this system, we would like to understand the topology of the

trajectories of 6 and ¢, at least individually. The following lemma makes a connection between the

trajectories of each variable in the min-max optimization system of Equation 3 and simple gradient
ascent dynamics.

Lemma 1. Let k : R? — R be a C? function. Let h : R — R be a C* function and x(t) = p(t)
be the unique solution of the dynamical system 1. Then for the dynamical system Yo the unique
solution is z(t) = p(fot h(s)ds)

{x?()) - Vigm)}:zl {z(zo) - h(t)azk@}:&

By applying the previous result for § with k = f and h(t) = —v(g(¢(t)) — ¢), we get that even
under the dynamics of Equation 3, § remains on a trajectory of the simple gradient ascent dynamics
with initial condition §(0). This necessarily affects the possible values of f and g given the initial
conditions. Let us define the sets of values attainable for each initialization.



Definition 5. For each 0(0), fg(o) is the set of possible values of f(0(t)) can attain under gradient
ascent dynamics. Similarly, we define gy o) the corresponding set for g.

What is special about the trajectories of gradient ascent is that along this curve f is strictly increasing
(For a detailed explanation, reader could check the proof of Theorem 1 in the Appendix) and therefore
each point 8(¢) in the trajectory has a unique value for f. Therefore even in the system of Equation 3,
f(6(t)) uniquely identifies 6(¢). This can be formalized in the next theorem.

Theorem 1. For each 6(0),$(0), under the dynamics of Equation 3, there are C* functions
(XH(O)aXd)(O)) such that XO(O) . fG(O) — R” ,X¢(0) 1 9¢(0) — R"™ and G(t) = Xg(o)(f(t)),

d(t) = Xg0)(g(t)).

Equipped with these results, we are able to reduce this complicated dynamical system of 8 and ¢ to a
planar dynamical system involving f and g alone.

Lemma 2. If0(t) and ¢(t) are solutions to Equation 3 with initial conditions (6(0),$(0)), then we
have that f(t) = f(0(t)) and g(t) = g(¢(t)) satisfy the following equations

f=—=vlIVf(Xo)(/)II*(9 = a)
|

4
g =v[Vg(Xe0)(9)II’(f — p) @

As one can observe both form Equation 3 and Equation 4, fixed points of the gradient-descent-ascent
dynamics correspond to either solutions of f(6) = p and g(¢) = ¢ or stationary points of f and
g or even some combinations of the aforementioned conditions. Although, all of them are fixed
points of the dynamical system, only the former equilibria are game theoretically meaningful. We
will therefore define a subset of initial conditions for Equation 3 such that convergence to game
theoretically meaningful fixed points may actually be feasible:

Definition 6. We will call the initialization (6(0), $(0)) safe for Equation 3 if §(0) and ¢(0) are not
stationary points of f and g respectively and p € fg(0y and q € gg(0)-

For safe initial conditions we can show that gradient-descent-ascent dynamics applied in the class
of the hidden bilinear zero-sum game mimic properties and behaviors of conservative/Hamiltonian
physical systems [BP19b], like an ideal pendulum or an ideal spring-mass system. In such systems,
there is a notion of energy that remains constant over time and hence the system trajectories lie
on level sets of these functions. To motivate further this intuition, it is easy to check that for the
simplified case where |V f|| = ||Vg|| = 1 the level sets correspond to cycles centered at the Nash
equilibrium and the system as a whole captures gradient-descent-ascent for a bilinear 2 x 2 zero-sum
game (e.g. Matching Pennies).

Theorem 2. Let 8(0) and ¢(0) be safe initial conditions. Then for the system of Equation 3, the
following quantity is time-invariant

_ /! 4 z ’ -1 o
H(fvg)—/p IV Koo D +/q NEIE) e

The existence of this invariant immediately guarantees that Nash Equilibrium (p, ¢) cannot be reached
if the dynamical system is not initialized there. Taking advantage of the planarity of the induced
system - a necessary condition of Poincaré-Bendixson Theorem - we can prove that:

Theorem 3. Let 0(0) and ¢(0) be safe initial conditions. Then for the system of Equation 3, the orbit
0(t), p(t)) is periodic.

On a positive note, we can prove that the time averages of f and g as well as the time averages of
expected utilities of both players converge to their Nash equilibrium values.

Theorem 4. Let 0(0) and ¢(0) be safe initial conditions and (P, Q) = <( P, (. )), then for the

1=p/7 \1—¢q
system of Equation 3

GO .
A T = p Jim T

T
PTUQ, Tlggo fO g(?(t))dt - ¢




5 Poincaré recurrence in hidden bilinear games with more strategies

In this section we will extend our results by allowing both the generator and the discriminator to play
hidden bilinear games with more than two strategies. We will specifically study the case of hidden
bilinear games where each coordinate of the vector valued functions F' and G is controlled by disjoint
subsets of the variables @ and ¢, i.e.

][] L [
o= || Fo) =| "7 e=|T| e =" ®
On fn(On) Y gm ()

where each function f; and g; takes an appropriately sized vector and returns a non-negative number.
To account for possible constraints (e.g. that probabilities of each distribution must sum to one), we
will incorporate this restriction using Lagrange Multipliers. The resulting problem becomes

N M
3 T . . — . . —
g ¢€£},3§6RF 0) UG(9) + A (; fi(6:) 1) + p ;gj (¢j) —1 (6)

Writing down the equations of gradient-ascent-descent we get

éi =—Vfi(0:) Zuugj (¢j) + A ‘ﬁj =Vy;(;) (Zuwfl )
)

M ) N
Zgj(%‘) -1 A= (Z f:(6;) — 1)

Once again we can show that along the trajectories of the system of Equation 7, ; can be uniquely
identified by f;(0;) given 6,(0) and the same holds for the discriminator. This allows us to construct
functions Xy, (o) and X4, (o) just like in Theorem 1. We can now write down a dynamical system
involving only f; and g;.

Lemma 3. If0(t) and ¢(t) are solutions to Equation 7 with initial conditions (8(0), $(0), A(0), x(0)),
then we have that f;(t) = f;(0;(t)) and g;(t) = g;(¢;(t)) satisfy the following equations

= *val(XOl(O) fz ZU7 395 + A
(8)

gi = IVg;(Xg;(0)(95)) (Z i fi +u>

Similarly to the previous section, we can define a notion of safety for Equation 7. Let us assume that
the hidden Game has a fully mixed Nash equilibrium (p, q). Then we can define

Definition 7. We will call the initialization (0(0), $(0), A(0), 1(0)) safe for Equation 7 if 6;(0) and
¢,(0) are not stationary points of f; and g; respectively and p; € fiai(o) and q; € g, ()"

Theorem 5. Assume that (0(0),$(0), A(0), 1£(0)) is a safe initialization. Then there exist A, and p.
such that the following quantity is time invariant:

H(F,G,\ p) Z/f S dz—&-Z/gj 24 dzt
IV fi(Xa,(0)(2))1? o 1V9i(Xg,0)(2))?

J
A n
/ (z—)\*)dz—l—/ (z—p*)dz
. -

Given that even our reduced dynamical system has more than two state variables we cannot apply
the Poincaré-Bendixson Theorem. Instead we can prove that there exists a one to one differentiable




transformation of our dynamical system so that the resulting system becomes divergence free.
Applying Louville’s formula, the flow of the the transformed system is volume preserving. Combined
with the invariant of Theorem 5, we can prove that the variables of the transformed system remain
bounded. This gives us the following guarantees

Theorem 6. Assume that (0(0),$(0), A(0), 1(0)) is a safe initialization. Then the trajectory under
the dynamics of Equation 7 is diffeomoprphic to one trajectory of a Poincaré recurrent flow.

This result implies that if the corresponding trajectory of the Poincaré recurrent flow is itself recurrent,
which almost all of them are, then the trajectory of the dynamics of Equation 7 is also recurrent. This
is however not enough to reason about how often any of the trajectories of the dynamics of Equation
7 is recurrent. In order to prove that the flow of Equation 7 is Poincaré recurrent we will make some
additional assumptions

Theorem 7. Let f; and g; be sigmoid functions. Then the flow of Equation 7 is Poincaré recurrent.
The same holds for all functions f; and g; that are one to one functions and for which all initializations
are safe.

It is worth noting that for the unconstrained version of the previous min-max problem we arrive at the
same conclusions/theorems by repeating the above analysis without using the Lagrange multipliers.

6 Spurious equilibria

In the previous sections we have analyzed the behavior of safe initializations and we have proved
that they lead to either periodic or recurrent trajectories. For initializations that are not safe for some
equilibrium of the hidden game, game theoretically interesting fixed points are not even realizable
solutions. In fact we can prove something stronger:

Theorem 8. One can construct functions f and g for the system of Equation 3 so that for a positive
measure set of initial conditions the trajectories converge to fixed points that do not correspond to
equilibria of the hidden game.

The main idea behind our theorem is that we can construct functions f and g that have local optima
that break the safety assumption. For a careful choice of the value of the local optima we can make
these fixed points stable and then the Stable Manifold Theorem guarantees that a non zero measure
set of points in the vicinity of the fixed point converges to it. Of course the idea of these constructions
can be extended to our analysis of hidden games with more strategies.

7 Discrete Time Gradient-Ascent-Descent

In this section we will discuss the implications of our analysis of continuous time gradient-ascent-
descent dynamics on the properties of their discrete time counterparts. In general, the behavior of
discrete time dynamical systems can be significantly different [LY75, BP18, PPP17] so it is critical
to perform this non-trivial analysis. We are able to show that the picture of non-equilibriation persists
for an interesting class of hidden bilinear games.

Theorem 9. Let f; and g; be sigmoid functions. Then for the discretized version of the system of
Equation 7 and for safe intializations, function H of Theorem 5 is non-decreasing.

An immediate consequence of the above theorem is that the discretized system cannot converge to the
equlibrium (p, q) if its not initialized there. For the case of non-safe initializations, the conclusions of
Theorem 8 persist in this case as well.

Theorem 10. One can choose a learning rate o and functions f and g for the discretized version
of the system of Equation 3 so that for a positive measure set of initial conditions the trajectories
converge to fixed points that do not correspond to equilibria of the hidden game.

8 Conclusion

In this work, inspired broadly by the structure of the complex competition between generators and
discriminators in GANs, we defined a broad class of non-convex non-concave min max optimization



games, which we call hidden bilinear zero-sum games. In this setting, we showed that gradient-
descent-ascent behavior is considerably more complex than a straightforward convergence to the
min-max solution that one might at first suspect. We showed that the trajectories even for the
simplest but evocative 2x2 game exhibits cycles. In higher dimensional games, the induced dynamical
system could exhibit even more complex behavior like Poincare recurrence. On the other hand, we
explored safety conditions whose violation may result in convergence to spurious game-theoretically
meaningless equilibria. Finally, we show that even for a simple but widespread family of functions
like sigmoids discretizing gradient-descent-ascent can further intensify the disequilibrium phenomena
resulting in divergence away from equilibrium.

As a consequence of this work numerous open problems emerge; Firstly, extending such recurrence
results to more general families of functions, as well as examining possible generalizations to multi-
player network zero-sum games are fascinating questions. Recently, there has been some progress in
resolving cyclic behavior in simpler settings by employing different training algorithms/dynamics
(e.g., [DISZ18, MLZ*19b, GHP' 19b)). It would be interesting to examine if these algorithms could
enhance equilibration in our setting as well. Additionally, the proposed safety conditions shows
that a major source of spurious equilibria in GANs could be the bad local optima of the individual
neural networks of the discriminator and the generator. Lessons learned from overparametrized
neural network architectures that converge to global optima [DLL* 18] could lead to improved
efficiency in training GANs. Finally, analyzing different simplification/models of GANs where
provable convergence is possible could lead to interesting comparisons as well as to the emergence
of theoretically tractable hybrid models that capture both the hardness of GAN training (e.g. non-
convergence, cycling, spurious equilibria, mode collapse, etc) as well as their power.
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