
Rethinking Generative Mode Coverage:

A Pointwise Guaranteed Approach

Peilin Zhong∗ Yuchen Mo∗ Chang Xiao∗ Pengyu Chen Changxi Zheng

Columbia University
{peilin, chang, cxz}@cs.columbia.edu
{yuchen.mo, pengyu.chen}@columbia.edu

Abstract

Many generative models have to combat missing modes. The conventional wis-
dom to this end is by reducing through training a statistical distance (such as
f -divergence) between the generated distribution and provided data distribution.
But this is more of a heuristic than a guarantee. The statistical distance measures
a global, but not local, similarity between two distributions. Even if it is small,
it does not imply a plausible mode coverage. Rethinking this problem from a
game-theoretic perspective, we show that a complete mode coverage is firmly
attainable. If a generative model can approximate a data distribution moderately
well under a global statistical distance measure, then we will be able to find a
mixture of generators that collectively covers every data point and thus every mode,
with a lower-bounded generation probability. Constructing the generator mixture
has a connection to the multiplicative weights update rule, upon which we propose
our algorithm. We prove that our algorithm guarantees complete mode coverage.
And our experiments on real and synthetic datasets confirm better mode coverage
over recent approaches, ones that also use generator mixtures but rely on global
statistical distances.

1 Introduction

A major pillar of machine learning, the generative approach aims at learning a data distribution from
a provided training dataset. While strikingly successful, many generative models suffer from missing
modes. Even after a painstaking training process, the generated samples represent only a limited
subset of the modes in the target data distribution, yielding a much lower entropy distribution.

Behind the missing mode problem is the conventional wisdom of training a generative model.
Formulated as an optimization problem, the training process reduces a statistical distance between the
generated distribution and the target data distribution. The statistical distance, such as f -divergence
or Wasserstein distance, is often a global measure. It evaluates an integral of the discrepancy
between two distributions over the data space (or a summation over a discrete dataset). In practice,
reducing the global statistical distance to a perfect zero is virtually a mission impossible. Yet a
small statistical distance does not certify the generator complete mode coverage. The generator may
neglect underrepresented modes—ones that are less frequent in data space—in exchange for better
matching the distribution of well represented modes, thereby lowering the statistical distance. In
short, a global statistical distance is not ideal for promoting mode coverage (see Figure 1 for a 1D
motivating example and later Figure 2 for examples of a few classic generative models).

This inherent limitation is evident in various types of generative models (see Appendix A for the
analysis of a few classic generative models). Particularly in generative adversarial networks (GANs),
mode collapse has been known as a prominent issue. Despite a number of recent improvements
toward alleviating it [1, 2, 3, 4, 5, 6], none of them offers a complete mode coverage. In fact, even the

∗equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

With this equality realized, our agenda in the rest of the analysis is as follows. First, we show a lower
bound of the left-hand side of (2), and then we use the right-hand side to reach the lower-bound
of g(x) as in (1), for Alice’s generator G. To this end, we need to depart off from the current
game-theoretic analysis and discuss the properties of existing generative models for a moment.

Existing generative models such as GANs [9, 1, 10] aim to reproduce arbitrary data distributions.
While it remains intractable to have the generated distribution match exactly the data distribution,
the approximations are often plausible. One reason behind the plausible performance is that the data
space encountered in practice is “natural” and restricted—all English sentences or all natural object
images or all images on a manifold—but not a space of arbitrary data. Therefore, it is reasonable to
expect the generators in G (e.g., all GANs) to meet the following requirement3 (without conflicting
the no-free-lunch theorem [11]): for any distribution Q over a natural data space X encountered
in practice, there exists a generator G 2 G such that the total variation distance between G and Q
is upper bounded by a constant γ, that is, 1

2

R

X
|q(x)� g(x)| dx  γ, where q(·) and g(·) are the

probability densities on Q and the generated samples of G, respectively. Again as a concrete example,
we use γ = 0.1. With this property in mind, we now go back to our game-theoretic analysis.

Back to the first situation described above. Once Bob’s distribution Q (over X) and Alice’s generator
G are identified, then given a target distribution P over X and an x drawn by Bob from Q, the
probability of having Alice’s G cover P (i.e., g(x) � 1

4p(x)) at x is lower bounded. In our current
example, we have the following lower bound:

Pr
x∼Q

[g(x) � 1/4 · p(x)] � 0.4. (3)

Here 0.4 is related to the total variation distance bound (i.e., γ = 0.1) between G and Q, and this
lower bound value is derived in Appendix D. Next, notice that on the left-hand side of (2), the
expected value, Ex∼Q[v(G, x)], is equivalent to the probability in (3). Thus, we have

min
Q

max
G∈G

E
x∼Q

[v(G, x)] � 0.4. (4)

Because of the equality in (2), this is also the lower bound of its right-hand side, from which we know
that there exists a distribution RG of generators such that for any x 2 X , we have

E
G∼RG

[v(G, x)] = Pr
G∼RG

[g(x) � 1/4 · p(x)] � 0.4. (5)

This expression shows that for any x 2 X , if we draw a generator G from RG , then with a probability
at least 0.4, G’s generation probability density satisfies g(x) � 1

4p(x). Thus, we can think RG as a
“collective” generator G∗, or a mixture of generators. When generating a sample x, we first choose
a generator G according to RG and then sample an x using G. The overall probability g∗(x) of
generating x satisfies g∗(x) > 0.1p(x)—precisely the pointwise lower bound that we pose in (1).

Takeaway from the analysis. This analysis reveals that a complete mode coverage is firmly viable.
Yet it offers no recipe on how to construct the mixture of generators and their distribution RG using
existing generative models. Interestingly, as pointed out by Arora et al. [12], a constructive version
of von Neumann’s minimax theorem is related to the general idea of multiplicative weights update.
Therefore, our key contributions in this work are i) the design of a multiplicative weights update
algorithm (in Sec. 3) to construct a generator mixture, and ii) a theoretical analysis showing that
our generator mixture indeed obtains the pointwise data coverage (1). In fact, we only need a small
number of generators to construct the mixture (i.e., it is easy to train), and the distribution RG for
using the mixture is as simple as a uniform distribution (i.e., it is easy to use).

2 Related Work

There exists a rich set of works improving classic generative models for alleviating missing modes,
especially in the framework of GANs, by altering objective functions [13, 14, 15, 10, 16, 17],
changing training methods [18, 19], modifying neural network architectures [2, 20, 21, 22, 23], or
regularizing latent space distributions [4, 24]. The general philosophy behind these improvements is
to reduce the statistical distance between the generated distribution and target distribution by making

3This requirement is weaker than the mainstream goal of generative models, which all aim to approximate a
target data distribution as closely as possible. Here we only require the approximation error is upper bounded.

3

the models easier to train. Despite their technical differences, their optimization goals are all toward
reducing a global statistical distance.

The idea of constructing a mixture of generators has been explored, with two ways of construction.
In the first way, a set of generators are trained simultaneously. For example, Locatello et al. [25]
used multiple generators, each responsible for sampling a subset of data points decided in a k-means
clustering fashion. Other methods focus on the use of multiple GANs [26, 27, 28]. The theoretical
intuition behind these approaches is by viewing a GAN as a two-player game and extending it to
reach a Nash equilibrium with a mixture of generators [26]. In contrast, our method does not depend
specifically on GANs, and our game-theoretic view is fundamentally different (recall Sec. 1.1).

Another way of training a mixture of generators takes a sequential approach. This is related to boosting
algorithms in machine learning. Grnarova et al. [29] viewed the problem of training GANs as finding
a mixed strategy in a zero-sum game, and used the Follow-the-Regularized-Leader algorithm [30]
for training a mixture of generators iteratively. Inspired by AdaBoost [31], other approaches train a
“weak” generator that fits a reweighted data distribution in each iteration, and all iterations together
form an additive mixture of generators [32, 33] or a multiplicative mixture of generators [34].

Our method can be also viewed as a boosting strategy. From this perspective, the most related is
AdaGAN [33], while significant differences exist. Theoretically, AdaGAN (and other boosting-like
algorithms) is based on the assumption that the reweighted data distribution in each iteration becomes
progressively easier to learn. It requires a generator in each iteration to have a statistical distance
to the reweighted distribution smaller than the previous iteration. As we will discuss in Sec. 5,
this assumption is not always feasible. We have no such assumption. Our method can use a weak
generator in each iteration. If the generator is more expressive, the theoretical lower bound of our
pointwise coverage becomes larger (i.e., a larger ψ in (1)). Algorithmically, our reweighting scheme
is simple and different from AdaGAN, only doubling the weights or leaving them unchanged in each
iteration. Also, in our mixture of generators, they are treated uniformly, and no mixture weights are
needed, whereas AdaGAN needs a set of weights that are heuristically chosen.

To summarize, in stark contrast to all prior methods, our approach is rooted in a different philosophy
of training generative models. Rather than striving for reducing a global statistical distance, our
method revolves around an explicit notion of complete mode coverage as defined in (1). Unlike other
boosting algorithms, our algorithm of constructing the mixture of generators guarantees complete
mode coverage, and this guarantee is theoretically proved.

3 Algorithm

A mixture of generators. Provided a target distribution P on a data domain X , we train a mixture
of generators to pursue pointwise mode coverage (1). Let G∗ = {G1, . . . , GT } denote the resulting
mixture of T generators. Each of them (Gt, t = 1...T) may use any existing generative model such
as GANs. Existing methods that also rely on a mixture of generators associate each generator a
nonuniform weight αt and choose a generator for producing a sample randomly based on the weights.
Often, these weights are chosen heuristically, e.g., in AdaGAN [33]. Our mixture is conceptually and
computationally simpler. Each generator is treated equally. When using G

∗ to generate a sample, we
first choose a generator Gi uniformly at random, and then use Gi to generate the sample.

Algorithm overview. Our algorithm of training G
∗ can be understood as a specific rule design in

the framework of multiplicative weights update [12]. Outlined in Algorithm 1, it runs iteratively.
In each iteration, a generator Gt is trained using an updated data distribution Pt (see Line 6-7 of
Algorithm 1). The intuition here is simple: if in certain data domain regions the current generator fails
to cover the target distribution sufficiently well, then we update the data distribution to emphasize
those regions for the next round of generator training (see Line 9 of Algorithm 1). In this way, each
generator can focus on the data distribution in individual data regions. Collectively, they are able to
cover the distribution over the entire data domain, and thus guarantee pointwise data coverage.

Training. Each iteration of our algorithm trains an individual generator Gt, for which many existing
generative models, such as GANs [9], can be used. The only prerequisite is that Gt needs to be
trained to approximate the data distribution Pt moderately well. This requirement arises from our
game-theoretic analysis (Sec. 1.1), wherein the total variation distance between Gt’s distribution and
Pt needs to be upper bounded. Later in our theoretical analysis (Sec. 4), we will formally state this
requirement, which, in practice, is easily satisfied by most existing generative models.

4

Algorithm 1 Constructing a mixture of generators

1: Parameters: T , a positive integer number of generators, and δ 2 (0, 1), a covering threshold.
2: Input: a target distribution P on a data domain X .
3: For each x 2 X , initialize its weight w1(x) = p(x).
4: for t = 1 ! T do
5: Construct a distribution Pt over X as follows:

6: For every x 2 X , normalize the probability density pt(x) =
wt(x)
Wt

, where Wt =
R

X
wt(x)dx.

7: Train a generative model Gt on the distribution Pt.
8: Estimate generated density gt(x) for every x 2 X .
9: For each x 2 X , if gt(x) < δ ·p(x), set wt+1(x) = 2·wt(x). Otherwise, set wt+1(x) = wt(x).

10: end for
11: Output: a mixture of generators G∗ = {G1, . . . , GT }.

Estimation of generated probability density. In Line 8 of Algorithm 1, we need to estimate the
probability gt(x) of the current generator sampling a data point x. Our estimation follows the idea
of adversarial training, similar to AdaGAN [33]. First, we train a discriminator Dt to distinguish
between samples from Pt and samples from Gt. The optimization objective of Dt is defined as

max
Dt

E
x∼Pt

[logDt(x)] + E
x∼Gt

[log(1�Dt(x))].

Unlike AdaGAN [33], here Pt is the currently updated data distribution, not the original target
distribution, and Gt is the generator trained in the current round, not a mixture of generators in all

past rounds. As pointed out previously [35, 33], once Dt is optimized, we have Dt(x) =
pt(x)

pt(x)+gt(x)

for all x 2 X , and equivalently
gt(x)
pt(x)

= 1
Dt(x)

� 1. Using this property in Line 9 of Algorithm 1 (for

testing the data coverage), we rewrite the condition gt(x) < δ · p(x) as

gt(x)

p(x)
=

gt(x)

pt(x)

pt(x)

p(x)
=

✓

1

Dt(x)
� 1

◆

wt(x)

p(x)Wt

< δ,

where the second equality utilize the evaluation of pt(x) in Line 6 (i.e., pt(x) = wt(x)/Wt).

Note that if the generators Gt are GANs, then the discriminator of each Gt can be reused as Dt here.
Reusing Dt introduces no additional computation. In contrast, AdaGAN [33] always has to train an
additional discriminator Dt in each round using the mixture of generators of all past rounds.

Working with empirical dataset. In practice, the true data distribution P is often unknown when
an empirical dataset X = {xi}

n
i=1 is given. Instead, the empirical dataset is considered as n i.i.d.

samples drawn from P . According to the Glivenko-Cantelli theorem [36], the uniform distribution
over n i.i.d. samples from P will converge to P as n approaches to infinity. Therefore, provided the
empirical dataset, we do not need to know the probability density p(x) of P , as every sample xi 2 X

is considered to have a finite and uniform probability measure. An empirical version of Algorithm 1
and more explanation are presented in the supplementary document (Algorithm 2 and Appendix B).

4 Theoretical Analysis

We now provide a theoretical understanding of our algorithm, showing that the pointwise data
coverage (1) is indeed obtained. Our analysis also sheds some light on how to choose the parameters
of Algorithm 1.

4.1 Preliminaries

We first clarify a few notational conventions and introduce two new theoretical notions for our
subsequent analysis. Our analysis is in continuous setting; results on discrete datasets follow directly.

Notation. Formally, we consider a d-dimensional measurable space (X ,B(X)), where X is the
d-dimensional data space, and B(X) is the Borel σ-algebra over X to enable probability measure. We
use a capital letter (e.g., P) to denote a probability measure on this space. When there is no ambiguity,
we also refer them as probability distributions (or distributions). For any subset S 2 B(X), the
probability of S under P is P (S) := Prx∼P [x 2 S]. We use G to denote a generator. When there is

5

no ambiguity, G also denotes the distribution of its generated samples. All distributions are assumed
absolutely continuous. Their probability density functions (i.e., the derivative with respect to the
Lebesgue measure) are referred by their corresponding lowercase letters (e.g., p(·), q(·), and g(·)).

Moreover, we use [n] to denote the set {1, 2, ..., n}, N>0 for the set of all positive integers, and 1(E)
for the indicator function whose value is 1 if the event E happens, and 0 otherwise.

f -divergence. Widely used in objective functions of training generative models, f -divergence is a
statistical distance between two distributions. Let P and Q be two distributions over X . Provided a
convex function f on (0,1) such that f(1) = 0, f -divergence of Q from P is defined as Df (Q k
P) :=

R

X
f
⇣

q(x)
p(x)

⌘

p(x)dx. Various choices of f lead to some commonly used f -divergence metrics

such as total variation distance DTV, Kullback-Leibler divergence DKL, Hellinger distance DH, and
Jensen-Shannon divergence DJS [35, 37]. Among them, total variation distance is upper bounded

by many other f -divergences. For instance, DTV(Q k P) is upper bounded by

q

1
2DKL(Q k P),

p
2DH(Q k P), and

p

2DJS(Q k P), respectively. Thus, if two distributions are close under those
f -divergence measures, so are they under total variation distance. For this reason, our theoretical
analysis is based on the total variation distance.

δ-cover and (δ,β)-cover. We introduce two new notions for analyzing our algorithm. The first is
the notion of δ-cover. Given a data distribution P over X and a value δ 2 (0, 1], if a generator G
satisfies g(x) � δ · p(x) at a data point x 2 X , we say that x is δ-covered by G under distribution P .
Using this notion, the pointwise mode coverage (1) states that x is ψ-covered by G under distribution
P for all x 2 X . We also extend this notion to a measurable subset S 2 B(X): we say that S is
δ-covered by G under distribution P if G(S) � δ · P (S) is satisfied.

Next, consider another distribution Q over X . We say that G can (δ,β)-cover (P,Q), if the following
condition holds:

Pr
x∼Q

[x is δ-covered by G under distributionP] � β. (6)

For instance, using this notation, Equation (3) in our game-theoretic analysis states that G can
(0.25, 0.4)-cover (P,Q).

4.2 Guarantee of Pointwise Data Coverage

In each iteration of Algorithm 1, we expect the generator Gt to approximate the given data distribution
Pt sufficiently well. We now formalize this expectation and understand its implication. Our intuition
is that by finding a property similar to (3), we should be able to establish a pointwise coverage lower
bound in a way similar to our analysis in Sec. 1.1. Such a property is given by the following lemma
(and proved in Appendix E.1).

Lemma 1. Consider two distributions, P and Q, over the data space X , and a generator G producing
samples in X . For any δ, γ 2 (0, 1], if DTV (G k Q)  γ, then G can (δ, 1� 2δ � γ)-cover (P,Q).

Intuitively, when G and Q are identified, γ is set. If δ is reduced, then more data points in X can
be δ-covered by G under P . Thus, the probability defined in (6) becomes larger, as reflected by the
increasing 1� 2δ � γ. On the other hand, consider a fixed δ. As the discrepancy between G and Q
becomes larger, γ increases. Then, sampling an x according to Q will have a smaller chance to land
at a point that is δ-covered by G under P , as reflected by the decreasing 1� 2δ � γ.

Next, we consider Algorithm 1 and identify a sufficient condition under which the output mixture of
generators G∗ covers every data point with a lower-bounded guarantee (i.e., our goal (1)). Simply
speaking, this sufficient condition is as follows: in each round t, the generator Gt is trained such that
given an x drawn from distribution Pt, the probability of x being δ-covered by Gt under P is also
lower bounded. A formal statement is given in the next lemma (proved in Appendix E.2).

Lemma 2. Recall that T 2 N>0 and δ 2 (0, 1) are the input parameters of Algorithm 1. For any
ε 2 [0, 1) and any measurable subset S 2 B(X) whose probability measure satisfies P (S) � 1/2ηT

with some η 2 (0, 1), if in every round t 2 [T], Gt can (δ, 1� ε)-cover (P, Pt), then the resulting
mixture of generators G∗ can (1� ε/ln 2� η)δ-cover S under distribution P .

This lemma is about lower-bounded coverage of a measurable subset S, not a point x 2 X . At first
sight, it is not of the exact form in (1) (i.e., pointwise δ-coverage). This is because formally speaking
it makes no sense to talk about covering probability at a single point (whose measure is zero). But as

6

T approaches to 1, S that satisfies P (S) � 1/2ηT can also approach to a point (and η approaches
to zero). Thus, Lemma 2 provides a condition for pointwise lower-bounded coverage in the limiting
sense. In practice, the provided dataset is always discrete, and the probability measure at each discrete
data point is finite. Then, Lemma 2 is indeed a sufficient condition for pointwise lower-bounded
coverage.

From Lemma 1, we see that the condition posed by Lemma 2 is indeed satisfied by our algorithm,
and combing both lemmas yields our final theorem (proved in Appendix E.3).

Theorem 1. Recall that T 2 N>0 and δ 2 (0, 1) are the input parameters of Algorithm 1. For
any measurable subset S 2 B(X) whose probability measure satisfies P (S) � 1/2ηT with some
η 2 (0, 1), if in every round t 2 [T], DTV(Gt k Pt)  γ, then the resulting mixture of generators G∗

can (1� (γ + 2δ)/ ln 2� η)δ-cover S under distribution P .

In practice, existing generative models (such as GANs) can approximate Pt sufficiently well, and
thus DTV(Gt k Pt)  γ is always satisfied for some γ. According to Theorem 1, a pointwise
lower-bounded coverage can be obtained by our Algorithm 1. If we choose to use a more expressive
generative model (e.g., a GAN with a stronger network architecture), then Gt can better fit Pt in each
round, yielding a smaller γ used in Theorem 1. Consequently, the pointwise lower bound of the data
coverage becomes larger, and effectively the coefficient ψ in (1) becomes larger.

4.3 Insights from the Analysis

γ, η, δ, and T in Theorem 1. In Theorem 1, γ depends on the expressive power of the generators
being used. It is therefore determined once the generator class G is chosen. But η can be directly set
by the user and a smaller η demands a larger T to ensure P (S) � 1/2ηT is satisfied. Once γ and η is
determined, we can choose the best δ by maximizing the coverage bound (i.e., (1�(γ+2δ)/ ln 2�η)δ)
in Theorem 1. For example, if γ  0.1, η  0.01, then δ ⇡ 1/4 would optimize the coverage bound
(see Appendix E.4 for more details), and in this case the coefficient ψ in (1) is at least 1/30.

Theorem 1 also sets the tone for the training cost. As explained in Appendix E.4, given a training
dataset of size n, the size of the generator mixture, T , needs to be at most O(log n). This theoretical
bound is consistent with our experimental results presented in Sec. 5. In practice, only a small number
of generators are needed.

Estimated density function gt. The analysis in Sec. 4.2 assumes that the generated probability
density gt of the generator Gt in each round is known, while in practice we have to estimate gt by
training a discriminator Dt (recall Section 3). Fortunately, only mild assumptions in terms of the
quality of Dt are needed to retain the pointwise lower-bounded coverage. Roughly speaking, Dt

needs to meet two conditions: 1) In each round t, only a fraction of the covered data points (i.e., those
with gt(x) � δ · p(x)) is falsely classified by Dt and doubled their weights. 2) In each round t, if the
weight of a data point x is not doubled based on the estimation of Dt(x), then there is a good chance
that x is truly covered by Gt (i.e., gt(x) � δ · p(x)). A detailed and formal discussion is presented in
Appendix E.5. In short, our estimation of gt would not deteriorate the efficacy of the algorithm, as
also confirmed in our experiments.

Generalization. An intriguing question for all generative models is their generalization perfor-
mance: how well can a generator trained on an empirical distribution (with a finite number of
data samples) generate samples that follow the true data distribution? While the generalization
performance has been long studied for supervised classification, generalization of generative models
remains a widely open theoretical question. We propose a notion of generalization for our method,
and provide a preliminary theoretical analysis. All the details are presented in Appendix E.6.

5 Experiments

We now present our major experimental results, while referring to Appendix F for network details
and more results. We show that our mixture of generators is able to cover all the modes in various
synthetic and real datasets, while existing methods always have some modes missed.

Previous works on generative models used the Inception Score [1] or the Fréchet Inception Dis-
tance [18] as their evaluation metric. But we do not use them, because they are both global measures,
not reflecting mode coverage in local regions [38]. Moreover, these metrics are designed to measure
the quality of generated images, which is orthogonal to our goal. For example, one can always use a
more expressive GAN in each iteration of our algorithm to obtain better image quality and thus better
inception scores.

7

References

[1] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2234–2242, 2016.

[2] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2016.

[3] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[4] Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: Generative networks with metric
embeddings. In Advances in Neural Information Processing Systems, pages 2269–2280, 2018.

[5] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2172–2180, 2016.

[6] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, pages 10–21, 2016.

[7] J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320,
1928.

[8] Ding-Zhu Du and Panos M Pardalos. Minimax and applications, volume 4. Springer Science &
Business Media, 2013.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[10] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[11] David H Wolpert, William G Macready, et al. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

[12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[13] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized
generative adversarial networks. arXiv preprint arXiv:1612.02136, 2016.

[14] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126, 2016.

[15] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2813–2821. IEEE, 2017.

[16] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in Neural Information Processing Systems,
pages 5769–5779, 2017.

[17] Yunus Saatci and Andrew G Wilson. Bayesian gan. In Advances in neural information
processing systems, pages 3622–3631, 2017.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–6637, 2017.

10

[19] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[20] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.

[21] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples
in generative adversarial networks. arXiv preprint arXiv:1712.04086, 2017.

[22] Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U Gutmann, and Charles Sutton.
Veegan: Reducing mode collapse in gans using implicit variational learning. In Advances in
Neural Information Processing Systems, pages 3310–3320, 2017.

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[24] Chongxuan Li, Max Welling, Jun Zhu, and Bo Zhang. Graphical generative adversarial networks.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 6072–6083. Curran Associates,
Inc., 2018.

[25] Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Rätsch, Sylvain Gelly, and Bern-
hard Schölkopf. Clustering meets implicit generative models. arXiv preprint arXiv:1804.11130,
2018.

[26] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573, 2017.

[27] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. MGAN: Training generative adver-
sarial nets with multiple generators. In International Conference on Learning Representations,
2018.

[28] David Keetae Park, Seungjoo Yoo, Hyojin Bahng, Jaegul Choo, and Noseong Park. Megan:
Mixture of experts of generative adversarial networks for multimodal image generation. arXiv
preprint arXiv:1805.02481, 2018.

[29] Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Thomas Hofmann, and Andreas Krause. An
online learning approach to generative adversarial networks. arXiv preprint arXiv:1706.03269,
2017.

[30] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R� in
Optimization, 2(3-4):157–325, 2016.

[31] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[32] Yaxing Wang, Lichao Zhang, and Joost van de Weijer. Ensembles of generative adversarial
networks. arXiv preprint arXiv:1612.00991, 2016.

[33] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. In Advances in Neural Information Processing
Systems, pages 5430–5439, 2017.

[34] Aditya Grover and Stefano Ermon. Boosted generative models. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[35] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural sam-
plers using variational divergence minimization. In Advances in Neural Information Processing
Systems, pages 271–279, 2016.

[36] Francesco Paolo Cantelli. Sulla determinazione empirica delle leggi di probabilita. Giorn. Ist.
Ital. Attuari, 4(421-424), 1933.

[37] Shun-ichi Amari. Information geometry and its applications. Springer, 2016.

11

[38] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973,
2018.

[39] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[40] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[41] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[42] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

