




which follows from c2 > c1 and the Cauchy-Schwarz

inequality. The proof is completed by noting that c1 > 0.

B. Trajectory Bounds using SDDM

Using a directional matrix, one can define an SDDM to

adaptively evaluate the risk of surrounding obstacles. We will

show how to use an SDDM to obtain bounds on the closed-

loop trajectory of the constrained state x(t) in (1). Assume

the robot is stabilized by a feedback controller u = −Ks.

The closed-loop dynamics are:

ṡ = Ās z = Cs (3)

where Ā := (A − BK) is Hurwitz. Any initial state

s0 := s(t0) will converge exponentially to the equilibrium

point at origin. An output z is introduced to consider the

constrained state x. We are interested in measuring the

maximum deviation of x(t) for t ≥ 0 from the origin using

a directional measure determined by the orientation of initial

state x0 := x(t0) with respect to 0. Define an SDDM using

the directional matrix:

Q := Q [0− x0] ∈ S
n
>0 (4)

and choose output z(t) = Q
1

2x(t) so that C := Q
1

2P, where

P := [I,0] is the projection matrix from s to x. Note that

z(t)T z(t) = x(t)TQx(t) = ‖x(t)‖
2
Q. Thus, measuring the

maximum deviation of x(t) in the SDDM is equivalent to

finding the output peak along the robot trajectory.

η(t0) := max
t≥t0

‖x(t)‖
2
Q = max

t≥t0
‖z(t)‖2 (5)

We outline two approaches to solve this problem.

1) Exact solution: The output peak η(t0) can be computed

exactly by comparing the values of ‖z(t)‖2 at the boundary

point t = t0 and all critical points
{

t > t0 | d
dt
‖z(t)‖2 = 0

}

.

Since the closed-loop system in (3) is linear time-invariant,

s(t) can be obtained in closed form. Let Ā = VJV−1 be

the Jordan decomposition of Ā, where J is block diagonal.

The critical points satisfy:

0 =
d

dt
z(t)T z(t) = 2z(t)T ż(t) (6)

= 2
(

PVeJ(t−t0)V−1s0

)T

Q
(

PVJeJ(t−t0)V−1s0

)

.

In general, an exact solution may be hard to compute due to

the complicated expression of eJt.

2) Approximate solution: When an exact solution to (5) is

hard to obtain, we may instead compute a tight upper bound

on η(t0). Given a U ∈ S
ns

>0,

Einv :=
{

ξ ∈ R
ns | ξTUξ ≤ 1

}

(7)

is an invariant ellipsoid for the robot dynamics (3), i.e.,

s(t) ∈ Einv for all t ≥ t0. Instead of finding the peak value

of ‖z(t)‖2 along the state trajectory, we can compute it over

the invariant ellipsoid Einv . Since Einv contains the system

trajectory, we have for all t ≥ t0:

‖z(t)‖
2
≤ η(t0) ≤ max

ξ∈Einv

ξTCTCξ (8)

Obtaining the upper bound above is equivalent to solving the

following semi-definite program [24, Ch.6]:

minimize
U,δ

δ

subject to ĀTU+UĀ � 0, sT0 Us0 ≤ 1
[

U CT

C δI

]

� 0, U ≻ 0.

(9)

Lemma 2. For any initial condition s0 and associated

constant directional matrix Q in (4), the trajectory x(t)
under system dynamics (3) admits a tight ellipsoid bound,

x(t) ∈ EQ(0, η(t0)) ⊆ EQ(0, δ(t0)), for all t ≥ t0, where

η(t0) is the solution to (5) and δ(t0) is the solution to (9).

Proof. By definition, x(t) ∈ EQ(0, η(t0)) is equivalent to

d2Q (0,x(t)) ≤ η(t0). Since δ(t0) = maxξ∈Einv
ξTCTCξ,

inequality (8) yields δ(t0) ≥ η(t0) ≥ ‖z(t)‖
2
= ‖x(t)‖

2
Q =

d2Q (0,x(t)). Hence, x(t)∈EQ(0, η(t0))⊆EQ(0, δ(t0)).

Now, we know how to find an accurate outer approxima-

tion of the system trajectory in the SDDM defined by (4).

We are ready to develop a feedback controller that utilizes

the trajectory bounds to quantify the safety of the system

with respect to surrounding obstacles, while following the

navigation path towards the goal.

C. Structure of the Robot-Governor Controller

The problem of collision checking is simple for first-order

kinematic systems since they can stop instantaneously to

avoid collisions. We introduce a reference governor [20],

[21], a virtual first-order system: ġ = ug with state g ∈ R
n

and control input ug ∈ R
n, which will serve to simplify the

conditions for maintaining stability and safety concurrently.

Our proposed structure of a path-following control design is

shown in Fig. 3. The reference governor behaves as a real-

time reactive trajectory generator that continuously regulates

a reference signal for the real robot dynamics depending on

risk level evaluation using SDDM. More precisely, we choose

the real system’s control input u so that the robot tracks

the governor state g, while g is regulated via ug to ensure

collision avoidance and stability for the joint robot-governor

system.

In detail, let s̃ := s − PTg be the system state with the

first element changed from x to (x − g) to make (g,0)
an equilibrium point. Choose a local controller for (1) that

tracks the governor state g:

u = −Ks̃. (10)

Consider the augmented robot-governor system with state

ŝ = (s̃,g) ∈ R
(ns+n), coupling the real states with the

governor state:

˙̂s =

[

˙̃s
ġ

]

=

[

Ās̃

ug

]

. (11)

Before proposing the design of the governor controller ug(t),
we analyze the behavior of the robot-governor system in the

case of static governor.
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