


↓Reference \Feature → POE PBB DNN CfG

VIN [6] ✗ ✗ ✓ ✗

CMP [14] ✓ ✗ ✓ ✗

MaxEntIRL [5] ✗ ✗ ✗ ✓

MaxMarginIRL [4] ✗ ✓ ✗ ✓

DAN [16] ✓
†

✗ ✓ ✗

Ours ✓ ✓ ✓ ✓

TABLE I: Comparison with closely related work based on the use of
Partially Observable Environments (POE), Partial Bellman Backups
(PBB), Deep Neural Network (DNN) representation, and Closed-
form Gradients (CfG). PBB refers to computing and differentiating
values over a subset of promising states as opposed to the whole
state space. † DAN [16] works with uncertainty only on the robot or
furniture location, while the main environment structure is known.

which approximates the cost-to-go function only over an

optimally reachable space. Gupta et al. [14] address visual

navigation in partially observed environments while using

hierarchical VIN as the planner. Khan et al. [19] introduce

a memory module to VIN to address partial observability.

Many IRL algorithms rely on dynamic programming,

including VIN and derivatives [14], [19], which requires

updating cost-to-go estimates over all possible states. Our

insight is that in partially observable environments, the cost-

to-go estimates need to be updated and differentiated only

over a subset of states. Inspired by [4], we obtain cost-to-go

estimates only over promising states using a motion planning

algorithm. This helps to obtain a closed-form subgradient of

the cost-to-go with respect to the learned cost function from

the optimal trajectory. While Ratiff et al. [4] exploit this

observation in fully observable environments, none of the

works focusing on partial observability take advantage of

this. Our work differs from closely related works in Table I.

In summary, we offer two contributions illustrated in Fig. 1:

Firstly, we develop a non-stationary cost function represen-

tation composed of a probabilistic occupancy map encoder,

with recurrent dependence on the observation sequence, and

a cost encoder, defined over the occupancy features (Sec. III).

Secondly, we optimize the cost parameters using a closed-

form subgradient of the cost-to-go obtained only over a

subset of promising states (Sec. IV).

II. PROBLEM FORMULATION

Consider a robot navigating in an unknown environment

with the task of reaching a goal state xg ∈ X . Let xt ∈ X be

the robot state, capturing its pose, twist, etc., at discrete time

t. For a given control input ut ∈ U where U is assumed finite,

the robot state evolves according to known deterministic

dynamics: xt+1 = f(xt,ut). Let m∗ : X → {−1, 1} be a

function specifying the true occupancy of the environment by

labeling states as either feasible (−1) or infeasible (1) and let

M be the space of possible environment realizations m∗. Let

c∗ : X ×U ×M → R≥0 be a cost function specifying desir-

able robot behavior in a given environment, e.g., according to

an expert user or an optimal design. We assume that the robot

does not have access to either the true occupancy map m∗ or

the true cost function c∗. However, the robot is able to make

observations zt ∈ Z (e.g., using a lidar scanner or a depth

camera) of the environment in its vicinity, whose distribution

depends on the robot state xt and the environment m∗. Given

a training set D :=
{

(xt,n,u
∗
t,n, zt,n,xg,n)

}Tn,N

t=1,n=1
of N

ht

xt, zt

Map encoder

c1

ux

CNN

Cost encoder

x2, z2x1, z1

h0

CNN CNN

c2

ux

ct

ux

h1 h2BF BF BF

Fig. 2: Neural network model of a cost function representation. A
Bayes filter with likelihood function parameterized by ψ, takes in
sequential observations z1:t and outputs a latent map representation
ht. A convolutional neural network, parameterized by φ, extracts
features from the map state to specify the cost ct at a given robot
state-control pair (x,u). The learnable parameters are θ = {ψ,φ}.

expert trajectories with length Tn to demonstrate desirable

behavior, our goal is to

• learn a cost function estimate ct : X × U × Zt ×Θ →
R≥0 that depends on an observation sequence z1:t from

the true latent environment and is parameterized by θ,

• derive a stochastic policy πt from ct such that the robot

behavior under πt matches the prior experience D.

To balance exploration in partially observable environments

with exploitation of promising controls, we specify πt as a

Boltzmann policy [3], [20] associated with the cost ct:

πt(ut|xt; z1:t,θ) =
exp(−Q∗

t (xt,ut; z1:t,θ))
∑

u∈U exp(−Q∗
t (xt,u; z1:t,θ))

, (1)

where the optimal cost-to-go function Q∗
t is:

Q∗
t (xt,ut; z1:t,θ) := min

ut+1:T−1

T−1
∑

k=t

ct(xk,uk; z1:t,θ) (2)

s.t. xk+1 = f(xk,uk), xT = xg.

Problem. Given demonstrations D, optimize the cost func-

tion parameters θ so that log-likelihood of the demonstrated

controls u∗
t,n is maximized under the robot policies πt,n:

min
θ

L(θ) := −

N
∑

n=1

Tn
∑

t=1

log πt,n(u
∗
t,n|xt,n; z1:t,θ). (3)

The problem setup is illustrated in Fig. 1. While Eqn. (2)

is a standard deterministic shortest path (DSP) problem, the

challenge is to make it differentiable with respect to θ.

This is needed to propagate the loss in (3) back through

the DSP problem to update the cost parameters θ. Once

the parameters are optimized, the robot can generalize to

navigation tasks in new partially observable environments

by evaluating the cost ct based on the observations z1:t
iteratively and (re)computing the associated policy πt.

III. COST FUNCTION REPRESENTATION

We propose a cost function representation comprised of

two components: a map encoder and a cost encoder.

The map encoder incrementally updates a hidden state

ht using the most recent observation zt obtained from

robot state xt. For example, a Bayes filter with likelihood





feature representation σ (ht) can be obtained via a deep

neural network with parameters φ. Wulfmeier et al. [13]

proposed several CNN architectures, including pooling and

residual connections of fully convolutional networks, to

model ct(x,u) from σ (ht). While complex architecture may

provide better performance in practice, we also develop a

simpler model for comparison using the inductive bias of

obstacle avoidance in robot navigation.

Let s and l be a small and large positive parameter,

respectively. The cost of applying control u in robot state

x can be modeled as large when the transition f(x,u)
encounters an obstacle and as small otherwise:

c(x,u) :=

{

s if m∗(x) = −1 and m∗(f(x,u)) = −1

l if m∗(x) = 1 or m∗(f(x,u)) = 1

Since m∗ is unknown, we use the estimated occupancy

probabilities σ (ht) to compute the expectation of c(x,u)
over m∗:

ct(x,u) := E[c(x,u)] = s σ (ht[x])σ (ht[f(x,u)])

+ l (1− σ (ht[x])σ (ht[f(x,u)])) ,
(16)

where ht[x] is the entry of the map encoder state that corre-

sponds to the environment cell containing x. This simple cost

encoder has parameters φ := [s, l]T and its output ct(x,u)
is differentiable with respect to φ and ψ through σ (ht).

IV. COST LEARNING VIA DIFFERENTIABLE PLANNING

We focus on optimizing the parameters θ of the cost

representation ct(x,u; z1:t,θ) developed in Sec. III. Since

the true cost c∗ is not directly observable, we need to

differentiate the loss function L(θ) in (3), which, in turn,

requires differentiating through the DSP problem in (2) with

respect to the cost function estimate ct.

Value Iteration Networks (VIN) [6] shows that T iterations

of the value iteration algorithm can be approximated by a

neural network with T convolutional and minpooling layers.

This allows VIN to be differentiable with respect to the stage

cost. While VIN can be modified to operate with a finite

horizon and produce a non-stationary policy, it would still

be based on full Bellman backups (convolutions and min-

pooling) over the entire state space. As a result, VIN scales

poorly with the state-space size, while it might not even be

necessary to determine the optimal cost-to-go Q∗
t (x,u) at

every state x ∈ X and control u ∈ U in the case of partially

observable environments.

Instead of using dynamic programming to solve the

DSP (2), any motion planning algorithm (e.g., A* [8],

RRT [9], [10], etc.) that returns the optimal cost-to-go

Q∗
t (x,u) over a subset of the state-control space provides

an accurate enough solution. For example, a backwards A*

search applied to problem (2) with start state xg , goal state

x ∈ X , and predecessors expansions according to the motion

model f provides an upper bound to the optimal cost-to-go:

Q∗
t (x,u) = ct(x,u) + g(f(x,u)) ∀f(x,u) ∈ CLOSED,

Q∗
t (x,u) ≤ ct(x,u) + g(f(x,u)) ∀f(x,u) 6∈ CLOSED,

where g are the values computed by A* for expanded nodes

in the CLOSED list and visited nodes in the OPEN list. Thus,

a Boltzmann policy πt(u | x) can be defined using the g-

values returned by A* for all x ∈ CLOSED∪OPEN ⊆ X and

a uniform distribution over U for all other states x. A* would

significantly improves the efficiency of VIN [6] or other full

backup Dynamic Programming variants by performing local

Bellman backups on promising states (the CLOSED list).

In addition to improving the efficiency of the forward

computation of Q∗
t (x,u), using a planning algorithm to

solve (2) is also more efficient in back-propagating errors

with respect to θ. In detail, using the subgradient method [4],

[24] to optimize L(θ) leads to a closed-form (sub)gradient

of Q∗
t (xt,ut) with respect to ct(x,u), removing the need

for back-propagation through multiple convolutional or min-

pooling layers. We proceed by rewriting Q∗
t (xt,ut) in a

form that makes its subgradient with respect to ct(x,u)
obvious. Let T (xt,ut) be the set of feasible state-control

trajectories τ := xt,ut,xt+1,ut+1, . . . ,xT−1,uT−1 start-

ing at xt, ut and satisfying xk+1 = f(xk,uk) for k =
t, . . . , T − 1 with xg = xT . Let τ ∗ ∈ T (xt,ut) be an

optimal trajectory corresponding to the optimal cost-to-go

function Q∗
t (xt,ut) of a deterministic shortest path problem,

i.e., the controls in τ ∗ satisfy the additional constraint

uk = argminu∈U Q∗
t (xk,u) for k = t + 1, . . . , T − 1.

Let µτ (x,u) :=
∑T−1

k=t 1(xk,uk)=(x,u) be a state-control

visitation function indicating if (x,u) is visited by τ . With

these definitions, we can view the optimal cost-to-go function

Q∗
t (xt,ut) as minimum over T (xt,ut) of the inner product

of the cost function ct and the visitation function µτ :

Q∗
t (xt,ut) = min

τ∈T (xt,ut)

∑

x∈X ,u∈U

ct(x,u)µτ (x,u) (17)

where X can be assumed finite because both T and U are

finite. This form allows us to (sub)differentiate Q∗
t (xt,ut)

with respect to ct(x,u) for any x ∈ X , u ∈ U .

Lemma 1. Let f(x,y) be differentiable and convex in x.

Then, ∇xf(x,y
∗), where y∗ := argminy f(x,y), is a

subgradient of the piecewise-differentiable convex function

g(x) := miny f(x,y).

Applying Lemma 1 to (17) leads to the following subgra-

dient of the optimal cost-to-go function:

∂Q∗
t (xt,ut)

∂ct(x,u)
= µτ∗(x,u), (18)

which can be obtained from the optimal trajectory τ ∗ corre-

sponding to Q∗
t (xt,ut). This result and the chain rule allow

us to obtain the complete (sub)gradient of L(θ).

Proposition 1. A subgradient of the loss function L(θ)
in (3) with respect to the cost function parameters θ can

be obtained as follows:

dL(θ)

dθ
= −

N
∑

n=1

Tn
∑

t=1

d log πt,n(u
∗
t,n | xt,n)

dθ
(19)

= −

N
∑

n=1

Tn
∑

t=1

∑

ut,n∈U

∂ log πt,n(u
∗
t,n | xt,n)

∂Q∗
t,n(xt,n,ut,n)

dQ∗
t,n(xt,n,ut,n)

dθ



Algorithm 1 Training: learn cost function parameters θ

1: Input: Demonstrations D=
{

(xt,n,u
∗
t,n, zt,n,xg,n)

}Tn,N

t=1,n=1

2: while θ not converged do
3: L(θ)← 0
4: for n = 1, . . . , N and t = 1, . . . , Tn do
5: Update ct,n based on xt,n and zt,n as in Sec. III
6: Obtain Q∗

t,n(x,u) from DSP (2) with stage cost ct,n
7: Obtain πt,n(u|xt,n) from Q∗

t,n(xt,n,u) via Eq. (1)
8: L(θ)← L(θ)− log πt,n(u

∗
t,n|xt,n)

9: Update θ ← θ − α∇L(θ) via Prop. 1

10: Output: θ

Algorithm 2 Testing: compute control policy for learned θ

1: Input: Start state xs, goal state xg , optimized θ
2: Current state xt ← xs

3: while xt 6= xg do
4: Make an observation zt

5: Update ct based on xt and zt as in Sec. III
6: Obtain Q∗

t (xt,u), u ∈ U from DSP (2) with stage cost ct
7: Obtain πt(u|xt) from Q∗

t (xt,u) via Eq. (1)
8: Update xt ← f(xt,ut) via ut := argmaxu πt(u|xt)

9: Output: Navigation succeeds or fails.

where the first term has a closed-form, while the second term

is available from (18) and the cost representation in Sec. III:

∂ log πt,n(u
∗
t,n | xt,n)

∂Q∗
t,n(xt,n,ut,n)

=
(

1{ut,n=u
∗
t,n}

− πt,n(ut,n|xt,n)
)

dQ∗
t,n(xt,n,ut,n)

dθ
=

∑

(x,u)∈τ∗

∂Q∗
t,n(xt,n,ut,n)

∂ct(x,u)

∂ct(x,u)

∂θ
(20)

The computation graph structure implied by Prop. 1 is il-

lustrated in Fig. 1. The graph consists of a cost representation

layer and a differentiable planning layer, allowing end-to-end

minimization of L(θ) via stochastic (sub)gradient descent.

Full algorithms for the training and testing phases (Fig. 1)

are shown in Alg. 1 and Alg. 2.

Although the form of the gradient in Prop. 1 is similar to

that in Ziebart et al. [5], our contributions are orthogonal. Our

contribution is to obtain a non-stationary cost-to-go function

and its (sub)gradient for a finite-horizon problem using

forward and backward computations that scale efficiently

with the size of the state space. On the other hand, the

results of Ziebart et al. [5] provide a stationary cost-to-go

function and its gradient for an infinite horizon problem. The

maximum entropy formulation of the stationary policy is a

well grounded property of using a soft version of the Bell-

man update, which can explicitly model the suboptimality

of expert trajectories. However, we can show the benefits

of our approach without including the maximum entropy

formulation and will leave it as future work.

V. EXPERIMENTS

We evaluate our approach in 2D grid world navigation

tasks at two scales. Obstacle configurations are generated

randomly in maps m∗
n of sizes 16×16 or 100×100. We use

an 8-connected grid so that a control ut causes a transition

xt+1 = f(xt,ut) from xt to one of the eight neighbor cells

xt+1. At each step, the robot receives a 360◦ lidar scan zt
at 5◦ resolution, resulting in 72 beams zt,k in each scan (see

16× 16 100× 100

Dataset #maps #samples #maps #samples

Train 7638 514k 970 460k
Validation 966 66k 122 58k

Test 952 - 122 -

TABLE II: Dataset size. We sample 10 trajectories in each
map in training and validation, and each sample takes the form
(x1:t,n,u

∗
t,n, z1:t,n,xg,n). In testing, the robot’s task is to navigate

from one randomly sampled start to goal location on each map.

Fig. 3). The lidar range readings are corrupted by an additive

zero mean Gaussian noise. The standard deviation of the

noise is 0.05 and 0.2 (grid cell = 1) and the lidar maximum

range is 2.5 and 10 in 16 × 16 and 100 × 100 domains,

respectively. Note that the lidar range is smaller than the map

size to demonstrate environment partial observability. During

test time, the domain size is the maximum size allowed

for the observed area along a trajectory. Demonstrations are

obtained by running an A* planning algorithm to solve the

deterministic shortest path problem on the true map m∗
n. The

number of maps and training samples generated are shown

in Table II.

A. Baseline and model variations

We use DeepMaxEnt [13] as a baseline and compare it to

three variants of our model. In all variants, we parameterize

an inverse observation model and use the log-odds update

rule in Eqn. (13) as the map encoder. This map encoder is

sufficiently expressive to model occupancy probability from

lidar observations in a 2D enviroment. The A* algorithm is

used to solve the DSP (2), providing the optimal cost-to-go

Q∗
t (x,u) for x ∈ CLOSED ∪ OPEN and a subgradient of

Q∗
t (xt,ut) according to (18). All the neural networks are

implemented in the PyTorch library [25] and trained with

the Adam optimizer [26] until convergence.

DeepMaxEnt uses a neural network to learn a cost

function directly from lidar observations without explicitly

having a map representation. The neural network in our

experiments is the “Standard FCN” in [13] in the 16 × 16
domain, and the encoder-decoder architecture in [27] in the

100×100 domain. Value iteration is approximated by a finite

number of Bellman backup iterations, equal to the map size.

The experiments in the original DeepMaxEnt paper [13] use

the mean and variance of the height of the 3D lidar points

in each cell, as well as a binary indicator of cell visibility,

as input features to the neural network. Since our synthetic

experiments are set up in 2D, the count of lidar beams in each

cell is used as replacement of the height mean and variance.

This is a fair adaptation because Wulfmeier et. al. [13] argued

that obstacles generally represent areas of larger height

variance which means more beam counts in our observations.

Ours-HCE stands for hard-coded cost encoder. This sim-

ple variant of our model uses Eqn. (16) with s = 1 and

l = 100 set explicitly as constants.

Ours-SCE stands for soft-coded cost encoder and has s
and l in Eqn (16) as learnable parameters.

Ours-CNN is our most generic variant using a convolu-

tional neural network as cost encoder. The network architec-

ture is the same as in DeepMaxEnt for fair comparison.



16 × 16 100 × 100

Model Val. loss
Val. acc.

(%)
Test traj.

succ. rate (%)
Test

traj. diff.
Val. loss

Val. acc.
(%)

Test traj.
succ. rate (%)

Test
traj. diff.

DeepMaxEnt [13] 0.18 93.6 90.9 0.145 0.23 93.7 31.1 6.528
Ours-HCE 1.10 59.5 99.7 0.378 1.32 42.2 100.0 2.876
Ours-SCE 0.66 62.1 97.2 0.174 0.66 62.1 84.4 1.569
Ours-CNN 0.27 90.5 96.7 0.144 0.14 95.1 90.1 1.196

0 0.1 0.2 0.3 0.4 0.5
80

85

90

95

100

Gaussian noise STD

P
e
rc
e
n
ta

g
e
(%

)

Test traj. succ. rate
Valid acc.

Fig. 4: Validation and test results for the 16 × 16 and 100 × 100 grid world domains. Cross entropy loss (3) and prediction accuracy
for the validation set are reported. Test trajectories are iteratively rolled out from the non-stationary policy πt. A trial is classified as
successful if the goal is reached without collisions within twice the number of steps of a shortest path in the groundtruth enviroment.
Ours-CNN is capable of matching the expert demonstrations while generalizing to new robot navigation tasks in test time. Right: Plot
showing the effect of noise on the accuracy of Ours-CNN model.

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

60

70

Fig. 5: Examples of occupancy estimation, A* motion planning and subgradient computation during a successful test trajectory. The first
figure shows the true occupancy map m

∗ with the robot start and goal locations in green and magenta, respectively. The second and
third figures show the current lidar observation zt in red and robot trajectory thus far x1:t in green. The map occupancy estimate σ(ht)
in grayscale is in the background. The optimal cost-to-go estimate g from A* is shown in a blue-yellow colormap in the foreground
(brighter means higher cost-to-go). The optimal trajectories τ∗ in cyan corresponding to Q∗

t (xt, ut) are obtained during A* planning for
subgradient computation in Eqn. (18). The last figure shows the final successful trajectory in green and an optimal shortest path in the
fully observable enviroment in blue.

B. Experiments and Results

a) Model generalization: Fig 4 shows the comparison

of multiple measures of accuracy for different algorithms.

Both Ours-HCE and Ours-SCE explicitly incorporate cell

traversability through the cost design in (16). Test results

show that this explicit cost encoder is successful at obstacle

avoidance, regardless of whether the parameters s, l are

constants in Ours-HCE or learnable in Ours-SCE. The

performance of Ours-HCE also shows that the map encoder

is learning a correct map representation from the noisy lidar

observations since the only trainable parameters are ψ in the

inverse observation model (13). However, both models fail

at matching demonstrations in validation because the cost

encoder (16) emphasizes obstacle avoidance explicitly, leav-

ing little capacity to learn from demonstrations. Ours-CNN

combines the strength of learning from demonstrations and

generalization to new navigation tasks while avoiding obsta-

cles. Its validation results are on par with DeepMaxEnt,

showing the validity of the closed-form subgradient in (18).

Ours-CNN significantly outperforms DeepMaxEnt in new

tasks at test time. The performance gap of DeepMaxEnt

in the two domains shows that a general CNN architecture

applied directly to the lidar scan measurements is not as

effective as the map encoder in Ours-CNN at modeling

occupancy probability. Fig 5 shows the map occupancy

estimation, as well as the optimal trajectories necessary for

subgradient computation in Sec IV.

b) Robustness to noise: The robustness of Ours-CNN

to the observation noise is evaluated in the 16× 16 domain.

Fig 4 shows that the performance degrades as the noise

increases but our inverse observation model (13) still gener-

alizes well considering that noise with standard deviation of

0.5 is significant when the lidar range is only 2.5.

c) Computational efficiency: Finally, we compare the

efficiency of a forward pass through our A* planner and the

value iteration algorithm in DeepMaxEnt. The A* algo-

rithm in our models is implemented in C++ and evaluated on

a CPU. The VI algorithm is implemented using convolutional

and minpooling layers in Pytorch as described in [6] and is

evaluated on a GPU. We record the time that each models

takes to return a policy πt given a cost function ct. Our

A* algorithm takes only 0.02 ms as compared to VI’s 0.2
ms on the 16 × 16 map. In the 100 × 100 domain, our A*

algorithm takes 0.6 ms, compared to VI’s 14 ms, illustrating

the scalability of our model in the size of the state space.

VI. CONCLUSION

We proposed an inverse reinforcement learning approach

for infering navigation costs from demonstration in partially

observable enviroments. Our model introduces a new cost

representation composed of a probabilistic occupancy en-

coder and a cost encoder defined over the occupancy features.

We showed that a motion planning algorithm can compute

optimal cost-to-go values over the cost representation, while

the cost-to-go (sub)gradient may be obtained in closed-form.

Our work offers a promising model for encoding occupancy

features in navigation tasks and may enable efficient online

learning in challenging operational conditions.



REFERENCES

[1] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in Proceedings of the Seventeenth International Conference
on Machine Learning, 2000, pp. 663–670.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469 – 483, 2009.

[3] G. Neu and C. Szepesvári, “Apprenticeship learning using inverse
reinforcement learning and gradient methods,” in Proceedings of the
Twenty-Third Conference on Uncertainty in Artificial Intelligence.
AUAI Press, 2007, pp. 295–302.

[4] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 729–736.

[5] B. D. Ziebart, A. Maas, J. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” in Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, 2008, pp. 1433–1438.

[6] A. Tamar, Y. WU, G. Thomas, S. Levine, and P. Abbeel,
“Value iteration networks,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates,
Inc., 2016, pp. 2154–2162. [Online]. Available: http://papers.nips.cc/
paper/6046-value-iteration-networks.pdf

[7] M. Okada, L. Rigazio, and T. Aoshima, “Path integral net-
works: End-to-end differentiable optimal control,” arXiv preprint
arXiv:1706.09597, 2017.

[8] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A*
with Provable Bounds on Sub-Optimality,” in in Advances in Neural
Information Processing Systems, 2004, p. 767774.

[9] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[11] J. Choi and K.-E. Kim, “Inverse reinforcement learning in partially
observable environments,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 691–730, 2011.

[12] T. Shankar, S. K. Dwivedy, and P. Guha, “Reinforcement learning via
recurrent convolutional neural networks,” in 2016 23rd International
Conference on Pattern Recognition (ICPR). IEEE, 2016, pp. 2592–
2597.

[13] M. Wulfmeier, D. Z. Wang, and I. Posner, “Watch this: Scalable cost-
function learning for path planning in urban environments,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 2089–2095.

[14] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[15] P. Karkus, D. Hsu, and W. S. Lee, “QMDP-Net: Deep
learning for planning under partial observability,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4694–4704. [Online]. Available: http://papers.nips.cc/paper/
7055-qmdp-net-deep-learning-for-planning-under-partial-observability.
pdf

[16] P. Karkus, X. Ma, D. Hsu, L. Kaelbling, W. S. Lee, and T. Lozano-
Perez, “Differentiable algorithm networks for composable robot learn-
ing,” in Proceedings of Robotics: Science and Systems, Freiburgim-
Breisgau, Germany, June 2019.

[17] K. strm, “Optimal control of markov processes with incomplete state
information,” Journal of Mathematical Analysis and Applications,
vol. 10, no. 1, pp. 174 – 205, 1965. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0022247X6590154X

[18] W. S. L. Hanna Kurniawati, David Hsu, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in Proceedings of Robotics: Science and Systems IV, Zurich,
Switzerland, June 2008.

[19] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee,
“Memory augmented control networks,” in International Conference
on Learning Representations (ICLR), 2018.

[20] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning.” in IJCAI, vol. 7, 2007, pp. 2586–2591.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[22] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[23] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[24] N. Z. Shor, Minimization methods for non-differentiable functions.
Springer Science & Business Media, 2012, vol. 3.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” in NIPS-W, 2017.

[26] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimiza-
tion,” in ICLR, 2014.

[27] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation,”
PAMI, 2017.


