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Abstract

Graph representation learning is to learn universal node rep-
resentations that preserve both node attributes and struc-
tural information. When a graph is heterogeneous, the prob-
lem becomes more challenging than the homogeneous graph
node learning problem. Inspired by the emerging informa-
tion theoretic-based learning algorithm, we propose an unsu-
pervised graph neural network Heterogeneous Deep Graph
Infomax (HDGI ) for heterogeneous graph representation
learning. By maximizing local-global mutual information,
HDGI effectively learns high-level node representations that
can be utilized in downstream graph-related tasks. Experi-
ment results show that HDGI remarkably outperforms state-
of-the-art unsupervised graph representation learning meth-
ods on both classification and clustering tasks. By feeding
the learned representations into a parametric model, we even
achieve comparable performance in node classification tasks
when comparing with supervised end-to-end GNN models. A
full version of this paper can be accessed in (Ren et al. 2019).

Introduction

Traditional machine learning methods focus on the features
of individual nodes, which obstructs their ability to process
graph data. Graph neural networks (GNNs) for represen-
tation learning of graphs learn nodes’ new feature vectors
through a recursive neighborhood aggregation scheme (Xu
et al. 2019), which complete the fusion of node attributes
and structural information in essence. A rich body of suc-
cessful supervised graph neural network models have been
developed (Kipf and Welling 2017a; Velickovic et al. 2018;
You et al. 2018). However, labeled data is not always avail-
able in graph representation learning tasks. To alleviate the
training sample insufficiency problem, unsupervised graph
representation learning has aroused extensive research inter-
est. Most of the existing unsupervised graph representation
learning models can be roughly grouped into factorization-
based models and edge-based models. Factorization-based
models capture the global graph information by factoriz-
ing the sample affinity matrix (Zhang et al. 2016; Yang et
al. 2015; Zhang et al. 2016). Those methods tend to ignore
the node attributes and local neighborhood relationships.
Edge-based models exploit the local and higher-order neigh-
borhood information by edge connections or random-walk
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paths. Nodes tend to have similar representations if they are
connected or co-occur in the same path (Kipf and Welling
2017b; Duran and Niepert 2017; W. Hamilton and Leskovec
2017; Grover and Leskovec 2016). Edge-based models are
prone to preserve limited order node proximity and lack a
mechanism to preserve the global graph structure. The re-
cently proposed deep graph infomax (DGI) (Veličković et
al. 2019) model provides a novel direction that maximizes
the mutual information between graph patch representations
and the corresponding high-level summaries of graphs.

In this paper, we explore the mutual information maxi-
mization learning framework in heterogeneous graph rep-
resentation problems. The networked data in the real-world
usually contain very complex structures (involving multiple
types of nodes and edges), which can be formally modeled
as the heterogeneous information networks (HIN). In this
paper, we will misuse the terminologies “HIN” and “HG”
(heterogeneous graph) without any differentiation. Com-
pared with homogeneous graphs, heterogeneous graphs con-
tain more detailed information and rich semantics with com-
plex connections among multi-typed nodes. Taking the bib-
liographic network in Figure 1 as an example, it contains
three types of nodes (Author, Paper and Subject) as well as
two types of edges (Write and Belong-to). Besides, the indi-
vidual nodes themselves also carry abundant attribute infor-
mation (e.g., paper textual contents). The relations between
paper nodes can be expressed by Paper-Author-Paper (PAP)
and Paper-Subject-Paper (PSP) which represent papers writ-
ten by the same author and papers belonging to the same
subject respectively. In heterogeneous graph studies, since
Y. Sun, J. Han, et al. proposed the concept of meta-path
in (Sun et al. 2011), meta-path has been widely used to
represent the composite relations with different semantics.
GNNs initially proposed for the homogeneous graphs may
encounter challenges to handle relations with different se-
mantics.

To address the above challenges, we propose a novel
meta-path based unsupervised graph neural network for
heterogeneous graphs, namely Heterogeneous Deep Graph
Infomax (HDGI ). In summary, our contributions in this pa-
per can be summarized as follows:

• This paper presents the first model to apply mutual infor-
mation maximization to representation learning in hetero-
geneous graphs.









Table 2: The results of node classification tasks

Available data X A X, A X, A, Y

Dataset Train Metric Raw Feature Metapath2vec DeepWalk DeepWalk+F DGI HDGI-A HDGI-C GCN GAT HAN

ACM

20%
Micro-F1 0.8590 0.6125 0.5503 0.8785 0.9104 0.9178 0.9227 0.9250 0.9178 0.9267

Macro-F1 0.8585 0.6158 0.5582 0.8789 0.9104 0.9170 0.9232 0.9248 0.9172 0.9268

80%
Micro-F1 0.8820 0.6378 0.5788 0.8965 0.9175 0.9333 0.9379 0.9317 0.9250 0.9400

Macro-F1 0.8802 0.6390 0.5825 0.8960 0.9155 0.9330 0.9379 0.9317 0.9248 0.9403

DBLP

20%
Micro-F1 0.7552 0.6985 0.2805 0.7163 0.8975 0.9062 0.9175 0.8192 0.8244 0.8992

Macro-F1 0.7473 0.6874 0.2302 0.7063 0.8921 0.8988 0.9094 0.8128 0.8148 0.8923

80%
Micro-F1 0.8325 0.8211 0.3079 0.7860 0.9150 0.9192 0.9226 0.8383 0.8540 0.9100

Macro-F1 0.8152 0.8014 0.2401 0.7799 0.9052 0.9106 0.9153 0.8308 0.8476 0.9055

IMDB

20%
Micro-F1 0.5112 0.3985 0.3913 0.5262 0.5728 0.5482 0.5893 0.5931 0.5985 0.6077

Macro-F1 0.5107 0.4012 0.3888 0.5293 0.5690 0.5522 0.5914 0.5869 0.5944 0.6027

80%
Micro-F1 0.5900 0.4203 0.3953 0.6017 0.6003 0.5861 0.6592 0.6467 0.6540 0.6600

Macro-F1 0.5884 0.4119 0.4001 0.6049 0.5950 0.5834 0.6646 0.6457 0.6550 0.6586

Table 3: Evaluation results on the node clustering task

Data ACM DBLP IMDB

Method NMI ARI NMI ARI NMI ARI

DeepWalk 25.47 18.24 7.40 5.30 1.23 1.22

Raw Feature 32.62 30.99 11.21 6.98 1.06 1.17

DeepWalk+F 32.54 31.20 11.98 6.99 1.23 1.22

Metapath2vec 27.59 24.57 34.30 37.54 1.15 1.51

DGI 41.09 34.27 59.23 61.85 0.56 2.6

HDGI-A 57.05 50.86 52.12 49.86 0.8 1.29

HDGI-C 54.35 49.48 60.76 62.67 1.87 3.7

Results

Node classification task In the node classification task,
we will train a logistic regression classifier for unsupervised
learning methods, while the supervised methods can out-
put the classification result as end-to-end models. We con-
duct the experiments with two different training-ratios (20%
and 80%). To keep the results stable, we repeat the classi-
fication process for 10 times and report the Macro-F1 and
Micro-F1 of all methods in Table 2. We can observe that
HDGI-C outperforms all other unsupervised learning meth-
ods. When compared with the supervised learning meth-
ods but designed for homogeneous graphs like GCN and
GAT, HDGI can perform much better as well which proves
that the type information and semantic information are very
important and need to be handled carefully instead of di-
rectly ignoring them in heterogeneous graphs. HDGI is also
competitive with the result reported from the supervised
model HAN which is designed for heterogeneous graphs.
The reason should be that HDGI can capture more global
structural information when the mutual information plays a
strong role in reconstructing the representation, while super-
vised loss based GNNs overemphasize the direct neighbor-
hoods (Veličković et al. 2019). This, on the other hand, also
suggests that the features learned through supervised learn-
ing in graphs may have limitations, either from the structure
or from a task-based preference.

Node clustering task In the node clustering task, we use
the KMeans to conduct the clustering based on the learned
representations. The number of clusters K is set as the num-

ber of the node classes. We will not use any label in this
unsupervised learning task and make the comparison among
all unsupervised learning methods. We repeat the cluster-
ing process for 10 times and report the average NMI and
ARI of all methods in Table 2. DeepWalk can not perform
well because they are not able to handle the heterogeneity of
graphs. Metapath2vec can not handle diversity semantic in-
formation simultaneously which makes the representations
not effective enough. The verification based on node clus-
tering tasks also demonstrates that HDGI can learn effective
representation considering the structural information, the se-
mantic information and the node independent information
simultaneously.

HDGI-A vs HDGI-C From the comparison between
HDGI-C and HDGI-A in node classification tasks, the dif-
ference in results between them reflects some interesting
things. HDGI-C has better performance than HDGI-A in all
experiments, which means that the graph convolution works
better than the attention mechanism in capturing local rep-
resentation. We insist that the reason is that the graph at-
tention mechanism is strictly limited to the direct neighbors
of nodes, the graph convolution considering hierarchical de-
pendencies can see farther than the graph attention.

VI Conclusion

In this paper, we propose an unsupervised graph neural
network model, HDGI , which learns node representations
in heterogeneous graphs. We demonstrate the effectiveness
of learned representations in three heterogeneous graphs.
HDGI is particularly competitive in node classification tasks
with state-of-the-art supervised methods, where they have
the additional supervised label information. We are op-
timistic that mutual information maximization will be a
promising future direction for unsupervised representation
learning.
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