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Abstract

Deep learning models have achieved huge success in numerous fields, such as
computer vision and natural language processing. However, unlike such fields,
it is hard to apply traditional deep learning models on the graph data due to
the ‘node-orderless’ property. Normally, adjacent matrices will cast an artificial
and random node-order on the graphs, which renders the performance of deep
models extremely erratic, and the representations learned by such models lack clear
interpretability. To eliminate the unnecessary node-order constraint, we propose a
novel model named Isomorphic Neural Network (ISONN), which learns the graph
representation by extracting its isomorphic features via the graph matching between
the input graph and the learned subgraph templates. We test the proposed model
with experiments on three real-world datasets. The results show the effectiveness
of ISONN. A full version of this paper is available at [13]

1 Introduction
The graph structure is attracting increasing interests because of its great representation power on
various types of data. Researchers have done many analyses based on different types of graphs, such
as social networks, brain networks and biological networks. In this paper, we will focus on the binary
graph classification problem, which has extensive applications in the real world. For example, one
may wish to identify the social community categories according to the users’ social interactions [4],
distinguish the brain states of patients via their brain networks [16], and classify the functions of
proteins in a biological interaction network [7].

However, we should notice that when we deal with the graph-structured data, different node-orders
will result in very different adjacent matrix representations for most existing deep models (i.e.,
SDBN [16], CNN [10]) which take the adjacent matrices as input. The different graph matrix
representations brought by the node-order differences may render the learning performance of the
existing models to be extremely erratic and not robust. Moreover, although the other models like
MPNN [5] and GCN [8] learn implicit structural features, the explict structural information cannot
be maintained for further research. Meanwhile, the subgraph mining methods based on BFS or DFS
require high cost [17, 18]. Therefore, how to explicitly learn useful subgraph patterns automatically
need to be solved. Lastly, representing graphs in the vector space is an important task since it facilitates
the storage, parallelism and the usage of machine learning models for the graph data. Extensive
works have been done on node representations [6, 12, 11, 7], whereas learning the representation of
the whole graph with clear interpretability is still an open problem requiring more explorations.

In this paper, we propose a novel model, namely Isomorphic Neural Network (ISONN), to address the
aforementioned challenges in the graph representation learning and classification problem. ISONN is
composed of two components: the graph isomorphic feature extraction component and the classifica-
tion component, aiming at learning isomorphic features and classifying graph instances, respectively.
In the graph isomorphic feature extraction component, ISONN automatically learns a group of
subgraph templates of useful patterns from the input graph. ISONN makes use of a set of permutation
matrices, which act as the node isomorphism mappings between the templates and the input graph.
With the potential isomorphic features learned by all the permutation matrices and the templates,
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the graph isomorphic layer, and (2) identifying and fusing the optimal features with the min-pooling
layer and softmax layer to be introduced as follows. By shifting one kernel matrix Ki on regional
sub-matrices, ISONN extracts the isomorphic features on the matrix A, which can be denoted as a

3-way tensor Z̄i ∈ R
k!×(|V|−k+1)×(|V|−k+1), where Z̄i(1 : k!, s, t) = z̄i,(s,t)(1 : k!). In a similar

way, we can also compute the isomorphic feature tensors based on the other kernels, which can be
denoted as Z̄1, Z̄2, · · · , Z̄c respectively.

2.1.2 Min-pooling Layer

Given the tensor Z̄i computed by Ki in the graph isomorphic layer, ISONN will identify the optimal
permutation matrices via the min-pooling layer. Formally, we can represent results of the optimal
permutation selection with Z̄i as matrix Zi:

Zi(s, t) = min{Z̄i(1 : k!, s, t)}. (4)

The min-pooling layer learns the optimal matrix Zi for kernel Ki along the first dimension (i.e., the
dimension indexed by different permutation matrices), which can effectively identify the isomorphic
features created by the optimal permutation matrices. For the remaining kernel matrices, we can also
achieve their corresponding graph isomorphic feature matrices as Z1, Z2, · · · , Zc respectively.

2.1.3 Softmax Layer

Based on the above descriptions, a perfect matching between the subgraph templates with the input
graph will lead to a very small isomorphic feature, e.g., a value approaching to 0. If we feed the small
features into the classification component, the useful information will vanish and the relative useless
information (i.e., features learned by the subgraphs dismatch the kernels) dominates the learning
feature vector in the end. Meanwhile, the feature values computed in Equation (4) can also be in
different scales for different kernels. To effectively normalize these features, we propose to apply the
softmax function to matrices Z1, Z2, · · · , Zc across all c kernels. Compared with the raw features,
e.g., Zi, softmax as a non-linear mapping can also effectively highlight the useful features in Zi by
rescaling them to relatively larger values especially compared with the useless ones. Formally, we
can represent the fused graph isomorphic features after rescaling by all the kernels as a 3-way tensor
Q, where slices along first dimension can be denoted as:

Q(i, :, :) = Ẑi , where Ẑi = softmax(−Zi), ∀i ∈ {1, . . . , c}. (5)

2.2 Classification Component

After the isomorphic feature tensor Q is obtained, we feed it into a classification component. Let q
denote the flattened vector representation of feature tensor Q, and we pass it to three fully-connected
layers to get the predicted label vector ŷ. For the graph binary classification, suppose we have
the ground truth y = (yg1 , y

g
2) and the predicted label vector ŷg = (ŷg1 , ŷ

g
2) for the sample g

from the training batch set B. We use cross-entropy as the loss function in ISONN. Formally, the
fully-connected (FC) layers and the objective function can be represented as follows respectively:

FC Layers:

{

d1 = σ(W1q+ b1),
d2 = σ(W2d1 + b2),
ŷ = σ(W3d2 + b3),

Objective Function: L = −
∑

g∈B

2
∑

j=1

y
g
j log ŷ

g
j , (6)

where Wi and bi represent the weights and biases in i-th layer respectively for i ∈ {1, 2, 3}. The
σ denotes the adopted the relu activation function. To train the proposed model, we adopt the back
propagation algorithm to learn both the subgraph templates and the other involved variables.

3 Experiments

To evaluate the performance of ISONN, we use accuracy and F1 as the evaluation metrics and discuss
the experimental results for all comparison methods. The datasets used in the experiments are all the
benchmark [1, 3, 14, 19, 2] for the brain graph classification for patient brain disease early diagnosis.

Reproducibility: Both the datasets and source code used in this paper can be accessed via link1.

3.1 Comparison Methods

• ISONN: The proposed method ISONN uses a set of template variables as well as the
permutation matrices to extract the isomorphic features and feed these features to the
classification component.

1https://github.com/linmengsysu/IsoNN
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Table 1: Classification Results of the Comparison Methods.

Methods

Dataset Metric Freq Conf Ratio Gtest HSIC AE CNN SDBN ISONN

HIV-fMRI-77
Accuracy 54.3 58.6 54.3 50.0 58.7 46.9 59.3 66.5 73.4

F1 58.2 64.2 62.0 52.5 59.5 35.5 66.3 66.7 72.2

HIV-DTI-77
Accuracy 64.6 52.4 59.3 59.3 49.8 62.4 54.3 65.9 67.5

F1 63.9 46.1 57.9 58.5 58.3 0.0 55.7 65.6 68.3

BP-fMRI-97
Accuracy 56.8 50.8 54.2 55.2 54.9 53.6 54.6 64.8 64.9

F1 57.6 49.1 53.7 53.9 55.8 69.5 52.8 63.7 69.7

• Freq: The method uses the top-k frequent subgraphs as its features. This is also an
unsupervised feature selection method based on frequency.

• Conf, Ratio, Gtest, HISC: These methods are supervised subgraph selection [9] based on
confidence, frequency ratio, G-test score, and HISC respectively. The top-k discriminative
subgraph features are selected in terms of different discrimination criteria.

• AE: We use the autoencoder model [15] to get the features of graphs without label informa-
tion. It is an unsupervised learning method, which learns the latent representations of all
connections in the brain graphs without considering the structural information.

• CNN: It is the convolutional model [10] learns the structural information within small
regions of the whole graph. We adopt one convolution layer and two fully-connected layers
to extract features and one fully-connected layer to be the classification module.

• SDBN: A model proposed in [16], which reorders the nodes in the graph first and then feeds
the reordered graph into an augmented CNN. In this way, it not only learns the structural
information but also tries to minimize the effect of the order constraint.

3.2 Experimental Results

In this section, we investigate the effectiveness of the learned subgraph-based graph feature represen-
tations for brain graphs. We adopt one isomorphic layer where the kernel size k = 2 and channel
number c = 3 for HIV-fMRI, one isomorphic layer with k = 4, c = 2 and k = 3, c = 1 for the
HIV-DTI and BP-fMRI, respectively. The results are shown in Table 1. From that table, we can
observe that ISONN outperforms all other baseline methods on these three datasets. Compared with
the time-consuming and resource-consuming subgraph mining based methods that search in a poten-
tially exponential space, the proposed method achieves a better performance without searching for all
possible subgraphs manually. In addition, the AE has the worst performance among all comparison
methods. This is because the features learned from AE do not contain any structural information.
For HIV-DTI, AE gets 0 in F1. This is because the dataset contains too many zeros, which makes
the AE learns trivial features. CNN performs better than AE but worse than those subgraph mining
methods in most cases. The reason can be that it learns some structural information but fails to
learn representative structural patterns. Comparing ISONN with AE, ISONN achieves better results.
This means the structural information is more important than only connectivity information for the
classification problem. If compared with CNN, the results also show the contribution of breaking
the node-order in learning the subgraph templates. Similar to SDBN, ISONN also finds the features
from subgraphs, but ISONN gets better performance with more concise architecture. Due to the
limited pages, more detailed information about the experimental setups, analyses about the model
convergence, parameter sensitivity are also provided in the supplementary material submitted along
with this paper.

4 Conclusion

In this paper, we proposed a novel graph neural network named ISONN to solve the graph classi-
fication problem. ISONN consists of two components: (1) isomorphic component, where a set of
permutation matrices is used to break the randomness order posed by matrix representation for a
bunch of templates and one min-pooling layer and one softmax layer are used to get the best isomor-
phic features, and (2) classification component, which contains three fully-connected layers. The
experimental results on real-world datasets show the proposed method outperforms all comparison
methods, which demonstrate the superiority of our proposed method.
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6 Supplementary Material

6.1 Experimental Setup

In our experiments, to make the results more reliable, we partition the datasets into 3 folds and then
set the ratio of train/test according to 2 : 1, where two folds are treated as the training data and the
remaining one is the testing data. To evaluate the quality of the learned brain network features, we
feed the learned features to a softmax classifier for the subgraph mining methods. For the subgraph
mining methods, the thresholds for three datasets are 0.9, 0.3, 0.5, respectively. We select top-100
features for classification as in [16]. For Auto-encoder, we apply the two-layer encoder and two-layer
decoder. For the CNN, we apply the one convolutional layer with the size 5× 5× 50, a max-pooling
layer with kernel size 2× 2, one gating relu layer as activation layer and two fully-connected layers
which contain 1024 and 128 neurons, respectively. For the SDBN, we set the architecture as follows:
we use two layers of "convolution layer + max pooling layer + activation layer " and concatenate a
fully connected layer with 100 neurons as well as an activation layer, where the parameters are the
same as those in CNN. We also set the dropout rate in SDBN being 0.5 to avoid overfitting. In the
experiments, we set the kernel size k in the isomorphic layer for three datasets as 2, 4, 3, respectively,
and then set the neuron number of each fully-connected layer as 1024, 128 and 2, respectively. In this
experiment, we adopt Adam optimizer and the set the learning rate η = 0.001, and then we report the
average results on balanced datasets.

6.2 Convergence Analysis and Parameter Analysis

To further study the proposed method, we will discuss the model convergence and the effects of
different kernel size and channel number in ISONN.

• Convergence Analysis: The Figure 2 shows the convergence trend of ISONN on three
datasets, where the x-axis denotes the epoch number and the y-axis is the training loss,
respectively. From these three sub-figures, we can know that the proposed method can
achieve a stable optimal solution within 50 iterations, which also illustrates our method
would converge relatively fast.

• Kernel Size: We show the effectiveness of different k in Figure 3. Based on the previous
statement, parameter k can affect the final results since it controls the size of learned
subgraph templates. To investigate the best kernel size for each dataset, we fix the channel
number c = 1. As Figure 3 shows, different datasets have different appropriate kernel sizes.
The best kernel sizes are 2, 4, 3 for the three datasets respectively.

• Channel Number: We also study the effectiveness of multiple channels (i.e., multiple
templates in one layer). To discuss how the channel number influences the results, we
choose the best kernel size for each dataset (i.e., 2, 4, 3, respectively). From all sub-figures
in Figure 4, we can see that the differences among the different channel numbers by using
only one isomorphic layer. As shown in Figure 4, ISONN achieves the best results by
c = 3, 2, 1, respectively, which means the increase of the channel number can improve the
performance, but more channels does not necessarily lead to better results. The reason could
be the more templates we use, the more complex our model would be. With such a complex
model, it is easy to learn an overfitting model on train data, especially when the dataset
is quite small. Thus, increasing the channel number can improve the performance but the
effectiveness will still depend on the quality and the quantity of the dataset.

6.3 Time Complexity Study

To study the efficiency of ISONN, we collect the actual running time with a fixed epoch number (i.e.,
50), which is shown on Figure 5. In both Figures 5(a) and 5(b), the x-axis denotes its value for k or c
and the y-axis denotes the time cost with different parameters. From Figure 5(a), three lines show the
same pattern. When the k increases, the time cost grows exponentially. This pattern can be directly
explained by the size of the permutation matrix set. When we increase the kernel size by one, the
number of corresponding permutation matrices grows exponentially. While changing c, shown in
Figure 5(b), it is easy to observe that those three curves are basically linear with different slopes. This
is also natural since whenever we add one channel, we only need to add a constant number of the
permutation matrices.
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