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Volumetric modeling is an important topic for material modeling and isogeometric 
simulation. In this paper, two kinds of interpolatory Catmull-Clark volumetric subdivision 
approaches over unstructured hexahedral meshes are proposed based on the limit point 
formula of Catmull-Clark subdivision volume. The basic idea of the first method is to 
construct a new control lattice, whose limit volume by the Catmull–Clark subdivision 
scheme interpolates vertices of the original hexahedral mesh. The new control lattice 
is derived by the local push-back operation from one Catmull–Clark subdivision step 
with modified geometric rules. This interpolating method is simple and efficient, and 
several shape parameters are involved in adjusting the shape of the limit volume. The 
second method is based on progressive-iterative approximation using limit point formula. 
At each iteration step, we progressively modify vertices of an original hexahedral mesh 
to generate a new control lattice whose limit volume interpolates all vertices in the 
original hexahedral mesh. The convergence proof of the iterative process is also given. The 
interpolatory subdivision volume has C2-smoothness at the regular region except around 
extraordinary vertices and edges. Furthermore, the proposed interpolatory volumetric 
subdivision methods can be used not only for geometry interpolation, but also for material 
attribute interpolation in the field of volumetric material modeling. The application of the 
proposed volumetric subdivision approaches on isogeometric analysis is also given with 
several examples.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Volumetric representation describes the interior of an object in addition to its boundaries, which plays an important 
role in modeling and simulation applications. For example, volumetric modeling is required in advanced manufacturing 
technologies with heterogeneous materials, such as additive manufacturing of functionally graded material [Massarwi and 
Elber (2016)]. On the other hand, in three-dimensional isogeometric analysis [Lai et al. (2017)], volumetric modeling plays a 
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key role as a geometric foundation for numerical simulation [Zhang et al. (2007), Xu et al. (2017)]. Trivariate NURBS solids 
[Xu et al. (2013a), Xu et al. (2013b), Xu et al. (2018), Xu et al. (2015), Xu et al. (2014), Pan et al. (2020), Pan et al. (2018), 
Massarwi et al. (2019)] and trivariate T-spline solids [Wang et al. (2012), Zhang et al. (2012), Wang et al. (2013), Zhang et al. 
(2013), Liu et al. (2014), Wei et al. (2017a)] have been used as modeling and numerical tools in isogeometric modeling and 
analysis. However, because of their tensor–product structure, trivariate NURBS and T-spline solids have some limitations on 
the construction of analysis-suitable volumetric parameterizations from arbitrary complex geometries [Wei et al. (2017b), 
Wei et al. (2018), Chen et al. (2019)]. Hence, volumetric modeling for geometry with arbitrary topology is a key challenge 
to be addressed for material modeling and isogeometric analysis.

Subdivision is a simple and efficient technique for surface modeling in computer graphics, which can generate smooth 
surfaces from an input coarse control mesh with arbitrary topology [Catmull and Clark (1978)]. There are some related works 
on volumetric generalization of subdivision surfaces. However, most of them focus on approximating subdivision [Bajaj et 
al. (2002)]. There is very few work on interpolatory volumetric subdivision. In recent work, the authors proposed the limit 
point formula of Catmull-Clark volumetric subdivision [Xu et al. (2020)], which provides a key theoretical foundation for 
interpolatory Catmull-Clark volumetric subdivision.

In this paper, two kinds of interpolatory Catmull-Clark volumetric subdivision approaches over unstructured hexahedral 
meshes are proposed based on the limit point formula of Catmull-Clark subdivision volume. Main contributions of this 
paper can be summarized as follows:

• A simple and efficient interpolatory Catmull-Clark volumetric subdivision approach by the local push-back operation is 
proposed, and several shape parameters are involved in adjusting the limit volumes.

• A new interpolatory Catmull-Clark volumetric subdivision approach based on the progressive-iterative approximation is 
proposed. The convergence of the iterative process is also proven.

• The applications of the proposed interpolatory subdivision methods for volumetric modeling with heterogeneous mate-
rials and isogeometric analysis of heat conduction and linear elasticity problems are also presented.

The rest of the paper is structured as follows. Section 2 describes some related work on interpolatory subdivision sur-
faces and subdivision volumes. Section 3 reviews the Catmull-Clark volumetric subdivision rules and the corresponding 
limit point formula. The interpolatory Catmull-Clark volumetric subdivision based on the push-back operation is presented 
in Section 4. Section 5 describes the interpolatory Catmull-Clark volumetric subdivision based on progressive iterative ap-
proximation. Some comparison examples and applications in volumetric material modeling and isogeometric analysis are 
given in Section 6. Finally, we conclude this paper and outline future work in Section 7.

2. Related work

Interpolatory subdivision surface. Interpolatory subdivision surface can mainly be split into two categories. In the first 
one, the subdivision schemes consistently contain the old vertices in the refined mesh after each subdivision operation. 
Obviously, the limit surface generated in this way will contain all the original vertices. Butterfly scheme [Dyn et al. (1990)] 
and Kobbelt’s scheme [Kobbelt (1996)] both fall into this category. Li et al. proposed a method for directly deducing new 
interpolation subdivision masks from the corresponding approximation subdivision masks [Kobbelt (1996)]. A unified in-
terpolatory subdivision scheme is proposed for quadrilateral meshes based on local refinement operations in a way similar 
to that for approximating schemes generalizing splines of an arbitrarily high-order continuity in [Deng and Ma (2013)]. 
Another idea to generate a subdivision surface interpolating vertices of an input control mesh is to employ approximating 
subdivision schemes by adjusting vertices of the original control mesh. Halstead et al. [Halstead et al. (1993)] proposed a 
method by building a global linear system with some fairness constraints to make the limit surface interpolate vertices of 
the given control mesh. The push-back method was firstly proposed in [Maillot and Stam (2001)] to deal with the shrinkage 
issue of approximating subdivision schemes. Deng and Yang [Deng and Yang (2010)] applied this idea to the Catmull-Clark 
surface subdivision scheme to derive an interpolation scheme based on the explicit limit point formula. Progressive-iterative 
approximation (PIA for short) and weighted PIA have been used for constructing interpolatory subdivision surfaces by ad-
justing the control mesh iteratively [Chen et al. (2008), Cheng et al. (2009), Deng and Ma (2012)]. However, since the PIA 
method requires the explicit limit point formula to realize the interpolation, currently there is no related work on interpo-
latory volumetric subdivision based on PIA. Subdivision surfaces have also been used broadly in design and isogeometric 
analysis [Cirak et al. (2000), Pan et al. (2014), Pan et al. (2016)]. Truncation mechanism has been applied to Catmull-Clark 
subdivision to support local refinement [Wei et al. (2015), Wei et al. (2016)], and a hybrid non-uniform recursive subdivison 
scheme was developed to support isogeometric analysis with improved convergence rate [Li et al. (2019)].
Subdivision volume. Compared with subdivision surfaces, much less work has been done on volumetric subdivision. The 
first subdivision solid scheme was proposed by Joy and Maccracken in [MacCracken and Joy (1996)], which refines a volume 
mesh into a region of three-dimensional space. Bajaj et al. proposed a volumetric extension of the Catmull-Clark subdivision 
surface and analyzed the smoothness property [Bajaj et al. (2002)]. A new volumetric subdivision scheme based on Box 
splines was developed in [Chang et al. (2002)]. Chang et al. also presented an interpolating scheme for recursive subdivision 
of meshes organized around octet-truss structures [Chang et al. (2003)]. A natural generalization of the butterfly subdivision 
from 2D surface to 3D volume was proposed in [McDonnell et al. (2004)] as a novel interpolating volumetric scheme. In 
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the field of scientific visualization, an interactive visualization framework was proposed by using radial basis functions with 
subdivision volumes [McDonnell et al. (2007)]. Lin et al. proposed a constrained volume iterative fitting algorithm to fill 
a triangular mesh with an all-hex volume mesh [Lin et al. (2015)]. In that paper, they fit the boundary of the initial all-
hex mesh to the given triangular mesh by iteratively adjusting the boundary mesh vertices, and the movements of the 
boundary mesh vertices are diffused to the inner all-hex mesh vertices in each iteration without the application of limit 
point formula. As an emerging application, isogeometric analysis based on approximation Catmull-Clark subdivision volumes 
were proposed in [Burkhart et al. (2010)], which can achieve a unified representation of geometric modeling and physical 
simulation. In this paper, two kinds of interpolatory Catmull-Clark volumetric subdivision approaches over unstructured 
hexahedral meshes are proposed based on the explicit limit point formula, and their application in volumetric material 
modeling and isogeometric analysis are also illustrated.

3. Catmull-Clark volumetric subdivision and limit point formula

Catmull-Clark volumetric subdivision is an volumetric extension of Catmull-Clark surface subdivision. Denote M̂0 the 
initial control lattice and M̂i the hex-mesh obtained after i steps of Catmull-Clark volumetric subdivision. Let ei

k , f i
k , ci

k

be the edge point, the face point and the cell point of a vertex in M̂i . The Catmull-Clark volumetric subdivision rules for 
unstructured hexahedral mesh with arbitrary topology can be described as the following five steps:

Step.1 For each cell, insert a cell point (on the centroid) ci
k , which is the average of all vertices of this cell.

Step.2 For each face, insert a face point f i
k , which is derived from

f i+1 = ci
1 + ci

2 + 2A

4
(1)

where ci
1 and ci

2 are the cell points of two adjacent cells of this face, and A is the centroid of this face.
Step.3 For each edge, insert an edge point, which is derived by

ei+1 = Cavg + 2Favg + M

4
(2)

where Cavg is the average of cell points of all the incident cells of this edge, Favg is the average of the centroids of 
all the incident faces of this edge, and M is the midpoint of the edge.

Step.4 For each hexahedral cell, connect the cell points with all the face points, and connect all the face points with all 
incident edge points in this cell respectively. Then each hexahedral cell is divided into eight hexahedral cells, in 
which the cell points, the face points and the edge points are new vertices of M̂i+1.

Step.5 Update each original vertex according to

vi+1 = Cavg + 3Favg + 3Eavg + vi

8
(3)

where Cavg , Favg , Eavg are the averages of the cell points, the face points and the edge points of all adjacent cells, 
faces and edges, and vi is the original vertex.

The above steps define the new geometry and the topology connectivity of new vertices. With these steps, a series of 
refined hex-meshes will be produced, which eventually converges to a limit volume called the Catmull-Clark subdivision 
volume.

Catmull-Clark subdivision surface has an explicit limit formula [Halstead et al. (1993)], which plays an important role 
in theoretical analysis and application of subdivision surface. Recently, the authors proposed an explicit limit point formula 
of Catmull-Clark subdivision volumes [Xu et al. (2020)]. The main result is that the limit point v∞

i of v0 on M̂0 can be 
computed in the following explicit form:

v∞
i = 16(n − 2)v1

i + 4
∑n

j=1 m je1
j + 4

∑3(n−2)
j=1 f 1

j + ∑2(n−2)
j=1 c1

j

30(n − 2) + 4
∑n

j=1 m j
(4)

where n is the valence of an interior vertex vi , m j is the valence of the j-th adjacent edge of vi , and

V 1
i = {v1

i , e1
1, ..., e1

n, f 1
1 , ..., f 1

3(n−2), c1
1, ..., c1

2(n−2)}
is the adjacency of vi . ei, f i, ci are the edge points, face points and cell points respectively after performing Catmull-Clark 
solid subdivision once.

In the following sections, based on this explicit limit point formula, two kinds of interpolatory Catmull-Clark volumetric 
subdivision approaches will be introduced.
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Fig. 1. Interpolatory Catmull-Clark volumetric subdivision example with the push-back method. (a) The original mesh; (b) new control lattices constructed 
by the push-back operation; (c) subdivision result after two levels of Catmull-Clark volumetric subdivision from the modified control lattice; (d) the interior 
view of the result.

4. Interpolatory Catmull-Clark volumetric subdivision with push-back operation

In this paper, we will introduce the interpolatory Catmull-Clark volumetric subdivision with the push-back operation. 
By using the limit point formula of Catmull-Clark subdivision volumes, from a given hexahedral control lattice, we can 
construct a new control lattice whose limit subdivision volume interpolates vertices of the original control lattice. Moreover, 
due to its local property, the interpolatory subdivision results can be obtained efficiently. By changing the shape parameters 
involved in this method, different subdivision volumes can be constructed to satisfy the interpolation condition.

Suppose that M1 is the hexahedral control lattice obtained by performing one Catmull-Clark subdivision step on the 
initial hexahedral control lattice M0, V 1

i on M1 is the corresponding vertex of V 0
i on M0. Then we define an increment as

�0
i = V 0

i − V 1
i . (5)

For each edge Eij with end points V 0
i and V 0

j in M0, we can define

E ′ = 1

2
(V 0

i + V 0
j ) + λi j(�

0
i + �0

j ), 0 < λi j < 1 (6)

as the edge point of this edge. �0
i and �0

j are the increments of two ending points respectively and λi j is a shape parameter, 
which can be used as a degree of freedom to construct different limit volumes.

For each face F in M0, we can define

F ′ =
∑4

j=1 V 0
j

4
+ 2μF

4∑
j=1

�0
j , 0 < μF < 1 (7)

as the face point of this face, in which �0
j is the increment for vertices on this face, where μF is also a shape parameter.

Similarly, for each cell C in M0, we can define

C ′ =
∑8

j=1 V 0
j

8
+ 2γC

8∑
j=1

�0
j , 0 < γC < 1 (8)

as the cell point, in which �0
j is the increment of eight vertices of this cell. Here γC is a shape parameter influencing the 

final result.
In order to satisfy the interpolation condition, the original vertices of the control lattice should be set as the limit points, 

that is, V ∞
i = V 0

i . Then we have a new hex-mesh with E ′ , F ′ , C ′ as above and the following vertices:

V ′ = [30(n − 2) + 4
∑n

j=1 m j]V 0
i − 4

∑n
j=1 m j E ′

j − 4
∑3(n−2

j=1 F ′
j − ∑2(n−2)

j=1 C ′
j

16(n − 2)
. (9)

After the above steps, now we can obtain a new hexahedral control lattice whose limit subdivision volume interpolates 
all the vertices V 0 of M0. From the new control lattice, we can obtain a limit volume interpolating the original control 
points by applying the Catmull-Clark volumetric subdivision rules.

Fig. 1 shows an interpolatory volume example with the push-back method. Fig. 1(a) is the original control lattice. Fig. 1(b) 
is the control lattice constructed by the push-back operation. Fig. 1(c) shows the volumetric subdivision results from the 
modified control lattice. Fig. 1(d) is the interior view of Fig. 1(c). We can find that the final subdivision volume interpo-
lates the original control lattice exactly. Fig. 2 presents interpolatory volumetric subdivision examples with different shape 
parameters in the push-back method.
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Fig. 2. Examples of the push-back method with different parameters. (a) and (e): The original mesh; (b) and (f): interpolatory subdivision volume with 
λi j = 0.05, μF = 0.05 and γC = 0.05; (c) and (g): interpolatory subdivision volume with λi j = 0.25, μF = 0.125 and γC = 0.0625; (d) and (h): interpolatory 
subdivision volume with λi j = 0.25, μF = 0.25 and γC = 0.25.

5. Progressive interpolation using Catmull-Clark volume subdivision

Progressive-iterative approximation is an iterative method with clear geometric meaning, which was first proposed by Qi 
et al. [Qi et al. (1975)] and de Boor [de Boor (1979)]. A detailed review about progressive-iterative approximation was given 
in [Lin et al. (2018)]. In this paper, based on the limit point formula, we derive a volumetric interpolating scheme based on 
Catmull-Clark volumetric subdivision by using progressive-iterative approximation.

5.1. Interpolation process

Denote by M̂k the volumetric control lattice from the original volume mesh after k steps of modification. For each vertex 
vk in M̂k , we compute its limit position of Catmull-Clark solid subdivision, namely vk∞ , according to the limit point formula. 
Then the distance dk between the counterpart of vk in M̂k , namely v0, and vk∞ can be computed as

dk = v0 − vk∞. (10)

Then we modify all vk ∈ M̂k by adding dk and get vk+1 by

vk+1 = vk + dk. (11)

After several iterative steps, the final limit subdivision volume can achieve an interpolation of initial hexahedral control 
lattice. Fig. 3 shows an interpolatory volume example with the PIA method. Fig. 3(a)-3(d) show the iterative process of the 
control lattice, and Fig. 3(e)-3(h) illustrate the corresponding iterative process of the limit volumes, in which the blue points 
are vertices to be interpolated.

5.2. Convergence analysis

In this section, we will prove the convergence of the proposed PIA approach for Catmull-Clark subdivision volumes. Since 
the convergence of PIA on Catmull-Clark subdivision surface has been proved in [Chen et al. (2008)], we can firstly perform 
PIA on the boundary surface vertices of the volume mesh and fix them in the following steps. Then, by repeating the 
process (10)-(11), we can get a sequence of volume meshes M̂k (k = 1, 2 . . .). We want to prove that as k tends to infinity, 
M̂k converges to the limit subdivision volume, which interpolates all the vertices in the original mesh M̂0.
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Fig. 3. Interpolatory volume example with the PIA method. (a): The original mesh; (b-d): new control lattices after one, three and ten PIA steps; (e-h): the 
corresponding iterative process of the limit volumes, in which the blue points are vertices of the original mesh.

The key to prove the convergence of M̂k is to show that when k tends to infinity, dk converges to zeros. For each interior 
vertex, we have

vk∞ = 16(n − 2)vk + 4
∑

j m jek
j + 4

∑
j f k

j + ∑
j ck

j

30(n − 2) + 4
∑

j m j
. (12)

By applying (12) to (10), we have

dk+1 = v0 − 16(n − 2)vk+1 + 4
∑

j m je
k+1
j + 4

∑
j f k+1

j + ∑
j ck+1

j

30(n − 2) + 4
∑

j m j

= v0 − 16(n − 2)vk + 4
∑

j m jek
j + 4

∑
j f k

j + ∑
j ck

j

30(n − 2) + 4
∑

j m j

−
16(n − 2)dk + 4

∑
j m jdk

e j
+ 4

∑
j dk

f k
j
+ ∑

j dk
ck

j

30(n − 2) + 4
∑

j m j

= dk −
16(n − 2)dk + 4

∑
j m jdk

e j
+ 4

∑
j dk

f k
j
+ ∑

j dk
ck

j

30(n − 2) + 4
∑

j m j

(13)

in which dk = 0 when it corresponds to a vertex on the surface.
Denote l as the number of vertices on the boundary surface, r as the number of all vertices in the given mesh. Equation 

(13) can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dk+1
1

dk+1
2· · ·

dk+1
l

dk+1
l+1· · ·

dk+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (I − M)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dk
1

dk
2· · ·

dk
l

dk
l+1· · ·
dk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (I − M)k+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0
1

d0
2· · ·

d0
l

d0
l+1· · ·
d0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)
r r r
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where d0
i = 0 (i = 1, 2, . . . , l), I is the identity matrix of order r, M is a matrix with the following form:

M =
(

0 0
M1 M2

)
, (15)

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4mij

30(nl+1−2)+4
∑

j m j
· · · 4

30(nl+1−2)+4
∑

j m j
· · · 1

30(nl+i−2)+4
∑

j m j
· · ·

4
30(nl+ j−2)+4

∑
j m j

· · · · · ·
...

...
...

...
1

30(nl+1−2)+4
∑

j m j

· · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

M2 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16(nl+1−2)

30(nl+1−2)+4
∑

j m j
· · · 4mij

30(nl+1−2)+4
∑

j m j
· · · 4

30(nl+1−2)+4
∑

j m j
· · · 1

30(nl+1−2)+4
∑

j m j
· · ·

...
. . .

4mij

30(nl+i−2)+4
∑

j m j

16(nl+i−2)

30(nl+i−2)+4
∑

j m j

...
4

30(nl+ j−2)+4
∑

j m j

...

1
30(nl+k−2)+4

∑
j m j

. . .

· · · · · · 16(nl+r−2)

30(nl+r−2)+4
∑

j m j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

where ni is the valence of the i-th vertex, and mij is the valence of the i − j edge.
Because dk

i = 0 (i = 1, 2, . . . , l) and Mij = 0 (i, j = 1, 2, . . . , l), proving that dk converges to zero. The problem reduces to 
proving that the absolute value of each eigenvalue of the matrix (I − M ′) is less than 1, where M ′ = M2. Furthermore, from 
[Chen et al. (2008), Cheng et al. (2009), Deng and Ma (2012)], we have the following similar proposition.

Proposition 1. Suppose that λi (i = 1, 2, . . . , r − l) are the eigenvalues of M ′ = M2 , if λi > 0 (i = 1, 2, . . . , r − l), then the absolute 
value of each eigenvalue of the matrix (I − M ′) is less than 1.

In the above proposition, we suppose that the eigenvalues of M ′ are all positive. Hereafter, we have λi > 0 (i =
1, 2, . . . , r − l). According to [Chen et al. (2008)], we know that the eigenvalues of the product of two positive definite 
matrices are positive. Hence, we can first decompose the matrix M ′ into the product of A and B , in which

A =

⎛⎜⎜⎜⎜⎜⎝
1

30(nl+1−2)+4
∑

j m j
0 · · · 0

0 1
30(nl+2−2)+4

∑
j m j

· · · 0

...
. . .

0 · · · 1
30(nr−2)+4

∑
j m j

⎞⎟⎟⎟⎟⎟⎠ , (18)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16(nl+1 − 2) · · · 4mij · · · 4 · · · 1 · · ·
...

. . .

4mij 16
(
nl+i − 2

)
...

4
. . .

...

1
. . .

· · · · · · 16 (n − 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)
r
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Obviously, A is diagonal and all elements on the diagonal line are positive, thus it is positive definite. Now the only thing 
that we need to prove is that the matrix B is positive definite.

Proposition 2. Matrix B in (19) is positive definite.

Proof. Matrix B is positive definite if and only if the corresponding quadratic form is positive for any non-zero vector 
X = (xl+1, xl+2, . . . , xr):

f
(
xl+1, xl+2 . . . , xr

) = X T B X > 0. (20)

We can see that if vertices vi and v j are adjacent, then bij = b ji = 4mij . If they are not adjacent but lie in the same face, 
then bij = b ji = 4. If they do not lie on the same face but lie in the same cell, then bij = b ji = 1. Thus we can get

f (xl+1, xl+2 . . . , xr) =
r∑

i=l+1

16 (ni − 2) x2
i +

∑
ei j

8mijxi x j +
∑

f i j

8xi x j +
∑
ci j

2xi x j (21)

where ei j , f i j and ci j range through all edges, all diagonals of each face and all diagonals of each cell inside the volume (we 
do not include those on the surface).

In order to prove that (21) is positive, we construct the following equation. For all edges of the mesh, when xi corre-
sponds to a surface vertex, set it to zero. Then we obtain∑

ei j

mij
(
xi + x j

)2 =
r∑

l+1

∑
j

m jx
2
i +

∑
ei j

2mijxi x j (22)

where the sum is taken for all edges ei j of the mesh (including surface edges). For all faces, similarly we have

∑
f ijpq

(
xi + x j + xp + xq

)2 =
r∑

l+1

3 (ni − 2) x2
i +

∑
ei j

2mijxi x j +
∑
gi j

2xi x j (23)

where gij means a pair of diagonal vertices on a given face. For all cells, we have

∑
ci jpquxyz

(
xi + x j + xp + xq + xu + xx + xy + xz

)2 =
r∑

l+1

2 (ni − 2) x2
i +

∑
ei j

2mijxi x j +
∑
gi j

4xi x j +
∑
hij

2xix j (24)

where hij means a pair of diagonal vertices on a given cell.
By applying (22)-(24) to (21), we have

f
(
xl+1, xl+2 . . . , xr

) =
∑

ci jpquxyz

(
xi + x j + xp + xq + xu + xx + xy + xz

)2

+ 2
∑
f i jpq

(
xi + x j + xp + xq

)2 +
∑
ei j

mij
(
xi + x j

)2 +
r∑

i=l+1

⎡⎣8 (ni − 2) −
∑

j

m j

⎤⎦ x2
i .

(25)

For each interior edge, m is equal to the number of adjacent cells. When computing 
∑

j m j for a vertex, each adjacent 
cell will be counted three times because it must have three edges adjacent to the vertex. For each vertex, the number of 
adjacent cells is 2(ni − 2). Thus we have∑

j

m j = 6 (ni − 2) . (26)

Substituting (26) into (25), we can obtain

f
(
xl+1, xl+2 . . . , xr

) =
∑

ci jpquuryz

(
xi + x j + xp + xq + xu + xx + xy + xz

)2

+ 2
∑
f i jpq

(
xi + x j + xp + xq

)2 +
∑
ei j

mij
(
xi + x j

)2 +
r∑

i=l+1

2(ni − 2)x2
i > 0.

(27)

Equation (27) shows that f
(
xl+1, xl+2 . . . , xr

)
is always positive for any non-zero vector X . The above proof shows that B is 

positive definite, and the convergence of PIA on Catmull-Clark subdivision solid is proved. �
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Fig. 4. Comparison examples. From left to right: The input hexahedral mesh; the butterfly interpolatory subdivision method; the push-back method; and 
the PIA method.

6. Examples and applications

In this section, we will compare the proposed interpolatory subdivision schemes with the butterfly volumetric subdivi-
sion approach [McDonnell et al. (2004)], then we will present the applications of the proposed interpolatory subdivision 
methods for volumetric modeling with heterogeneous materials and isogeometric analysis of heat conduction and linear 
elasticity problems.

6.1. Comparison

The proposed interpolatory volumetric subdivision method can achieve a limit volumetric geometry with C2-continuity 
at regular part. McDonnell et al. has proposed a volumetric subdivision algorithm based on the well-known Lagrange poly-
nomials, which is C1 continuous at regular part. It can be seen as a natural generalization of the butterfly subdivision surface 
scheme to the volumetric case. Fig. 4 presents three examples for the comparison of the butterfly method, the push-back 
method and the PIA approach. From these modeling examples, we can find that the PIA-based interpolatory volumetric 
subdivision results are much smoother than the butterfly volumetric subdivision results. From the cross-section of these 
models as shown in Fig. 4(f)-4(h) and Fig. 4(j)-4(l), we can find that the PIA method can also achieve smoother interior 
mesh structure than the butterfly subdivision approach. Another comparison example is shown in Fig. 5(b)-5(d).
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Fig. 5. Comparison examples. (a-h): The input hexahedral mesh; the butterfly interpolatory subdivision method; the push-back method; and the PIA method. 
Blue, green and red vertices in (e) are assigned with material value 0, 50 and 100 respectively. (f-h): The corresponding material description over (b), (c) 
and (d) geometry, respectively. (i): Boundary condition for linear elasticity simulation on the interpolatory subdivision volume with the PIA method in (d); 
(j): IGA results for linear elasticity simulation with boundary condition in (i); (k): IGA results for heat conduction simulation.

6.2. Application in volumetric modeling with heterogeneous materials

Multi-material 3D printers are more and more popular for additive manufacturing, and the research on heterogeneous 
materials, especially the functionally graded material objects, is a hot topic in the field of intelligent manufacturing. The 
proposed interpolatory volumetric subdivision methods can be used not only for geometry interpolation, but also for ma-
terial attribute interpolation in the field of volumetric material modeling with heterogeneous materials, which is a major 
benefit of our volumetric subdivision scheme.

Fig. 6 shows a volumetric geometry and the material interpolation process by the interpolatory volumetric subdivision 
approach based on PIA, and the final volumetric material object can interpolate the material values at vertices of the input 
control lattice. Fig. 5(e)-5(h), Fig. 8(d)-8(i) and Fig. 9(c)-9(e) illustrate several volumetric material modeling examples with 
heterogeneous material properties associated with geometry. In these examples, different material densities are assigned to 
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Fig. 6. Volumetric geometry and material interpolation by the interpolatory volumetric subdivision approach based on PIA. (a): The original control lattice 
with different material values at vertices, where blue vertices have material value 0 and red vertices have material value 100; (b) - (d): volumetric 
subdivision results after one, three and ten PIA operations; (e): material distribution of subdivision volumes after two Catmull-Clark volumetric subdivision 
steps; (f) - (h): the corresponding material distribution after one, three and ten PIA operations with respect to (b) - (d).

different control points. By using our interpolatory volumetric approach, we can blend different densities smoothly and the 
resulting functionally graded material object can interpolate the material density at each control point exactly.

6.3. Application in isogeometric analysis

The proposed interpolatory volumetric subdivision methods have the following advantages for isogeometric analysis: (1) 
easy for imposing Dirichlet boundary conditions; (2) multi-resolution property; and (3) representation of complex geometry 
with arbitrary topology. Moreover, volumetric subdivision methods provide explicit regular shape functions for isogeomet-
ric application over complex geometry with arbitrary topology. In this paper, we also implement the isogeometric analysis 
framework with the proposed interpolatory volumetric subdivision for three-dimensional linear elasticity and heat conduc-
tion problems.

As an illustration problem, we consider the following three-dimensional heat conduction problem:{
−�T (x) = f (x) in � ⊂ R3

T (x) = 0 on ∂�
(28)

where � is the Laplacian operator, � is the computational domain represented by the interpolatory Catmull-Clark subdivi-
sion volume, T (x) is the unknown heat field, and f (x) is the heat source function.

The IGA approximation of (28) is to find the numerical solution T h such that¨

�

∇T h · ∇vdxdy =
¨

�

f · vdxdy, (29)

in which v is a test function. Each control point Pi is associated with a basis function φi . In isogeometric framework, the 
solution field T h has the following form

T h =
n∑

φ j T
h
j , (30)
j=1
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Fig. 7. Convergence study on a sphere-like domain. (a): input control mesh; (b): interpolatory Catmull-Clark subdivision volume with the PIA method; (c): 
the interior view of (b); (d): reference solution to heat conduction problems; (e): error colormap of numerical solution on the level-0 subdivision volume; 
(f): error colormap of numerical solution on the level-1 subdivision volume; (g): error colormap of numerical solution on the level-2 subdivision volume; 
(h): error colormap of numerical solution on the level-3 subdivision volume; (i): convergence rate of relative L2 error vs the number of degrees of freedom.

in which T h
j is the unknown control variable [Pan et al. (2016, 2014)]. Then the numerical approximation problem (29) can 

be rewritten as

n∑
j=1

T h
j

¨

�

∇φ j · ∇φidxdy =
¨

�

f · φidxdy, i = 1, · · · ,n. (31)

Then we can obtain a linear system with unknown vector T,

KT = b,

in which K is the stiffness matrix and b is the load vector described as

K =
¨

�

∇φ j · ∇φidxdy and b =
¨

�

f · φidxdy. (32)
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Fig. 8. Bunny model. (a): The original mesh; (b): interpolatory volumetric subdivision result with the PIA method; (c): the interior view of (b); (d): the 
original control lattice with different material values, where blue, green and red correspond to 0, 50 and 100, respectively; (e) and (f): material distribution 
of the interpolatory subdivision solids by the PIA method; (g) the original control lattice with another set of material values at vertices; (h) material 
distribution of approximation Catmull-Clark subdivision volume with input (g); (i) material distribution of interpolatory Catmull-Clark subdivision volume 
with input (g); (j): boundary condition for linear elasticity simulation; (k): IGA results for linear elasticity simulation with boundary condition (j); (l): IGA 
results for heat conduction simulation.
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Fig. 9. Airplane model. (a): Input control lattice; (b): Catmull-Clark subdivision volume after three subdivision steps; (c): interpolatory Catmull-Clark sub-
division volume after three subdivision steps with the PIA method; (d): the original control lattice with different material values at vertices, where blue 
vertices have material value 0 and red vertices have material value 100; (e): material distribution of approximation Catmull-Clark subdivision volume after 
three subdivision steps; (f): material distribution of interpolatory Catmull-Clark subdivision volume after three subdivision steps; (g): boundary condition 
for linear elasticity simulation; (h): IGA results for linear elasticity simulation with boundary condition (g); (i): IGA results for heat conduction simulation.

The stiffness matrix K and the load vector b over each element are evaluated by using three-dimensional Gauss-Legendre 
quadrature on the limit representation of the interpolatory Catmull-Clark subdivision volume. For the evaluation at the 
sampling points of the Gauss-Legendre quadrature, direct computation with cubic uniform B-spline basis functions is used 
for regular elements; for irregular elements, an approach based on diagonalization of the subdivision matrix is used to 
evaluate subdivision volumes at arbitrary parameter values [Stam (1998); Burkhart et al. (2010)].

For the convergence study of the IGA framework with interpolatory Catmull-Clark subdivision volumes, a heat conduction 
example of a sphere-like domain is presented in Fig. 7. The initial level-0 hex-mesh in Fig. 7(a) is subdivided three times to 
analyze the convergence, and the corresponding numerical error is computed with respect to a reference solution, which is 
solved with the level-4 hex-mesh as shown in Fig. 7(d). After performing volumetric subdivision steps and IGA solving, we 
can find that the numerical error is concentrated in regions around irregular edges and vertices as shown in Fig. 7(e)-7(h). 
Moreover, extraordinary edges and vertices also decrease the convergence rate as shown in Fig. 7(i). The convergence rate 
is sub-optimal at 3.52 for the relative L2 error.

Fig. 5(i)-5(j), Fig. 8(j)-8(k) and Fig. 9(f)-9(h) illustrate several isogeometric simulation results for heat conduction and 
linear elasticity problems on complex geometry respectively.

7. Conclusion

With the help of limit point formula, two new methods are proposed to construct Catmull-Clark subdivision volumes 
that interpolate vertices of a given hex-mesh with arbitrary topology. The first method is based on the push-back operation, 
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and the second method is based on progressive-iterative approximation with convergence proof. Some comparisons with 
examples are given, and applications in volumetric material modeling and isogeometric analysis are also presented to show 
the effectiveness of the proposed methods.

For the research on volumetric subdivision, there are still a few key issues to be addressed. Compared with subdivision 
surfaces, the extension of the subdivision scheme to higher dimensions is not trivial, such as the smoothness property and 
local-refinement theory, which will be our future research topics.
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