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Abstract

The emergence of database-as-a-service platforms has
made deploying database applications easier than before.
Now, developers can quickly create scalable applications.
However, designing performant, maintainable, and accurate
applications is challenging. Developers may unknowingly
introduce anti-patterns in the application’s SQL statements.
These anti-patterns are design decisions that are intended to
solve a problem, but often lead to other problems by violating
fundamental design principles.

In this paper, we present SQLCHECK, a holistic toolchain
for automatically finding and fixing anti-patterns in database
applications. We introduce techniques for automatically (1)
detecting anti-patterns with high precision and recall, (2)
ranking the anti-patterns based on their impact on perfor-
mance, maintainability, and accuracy of applications, and (3)
suggesting alternative queries and changes to the database
design to fix these anti-patterns. We demonstrate the preva-
lence of these anti-patterns in a large collection of queries
and databases collected from open-source repositories. We
introduce an anti-pattern detection algorithm that augments
query analysis with data analysis. We present a ranking
model for characterizing the impact of frequently occurring
anti-patterns. We discuss how sQLCHECK suggests fixes for
high-impact anti-patterns using rule-based query refactor-
ing techniques. Our experiments demonstrate that sQLCHECK
enables developers to create more performant, maintainable,
and accurate applications.
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1 Introduction

Two major trends have simplified the design and deploy-
ment of data-intensive applications. The first is the spread
of data science skills to a larger community of develop-
ers [24, 39]. Data scientists combine rich data sources in appli-
cations that process large amounts of data in real-time. These
applications produce qualitatively better insights in many do-
mains, such as science, governance, and industry [14]. The
second trend is the proliferation of database-as-a-service
(DBaaS) platforms in the cloud [13, 30]. Due to economies of
scale, these services enable greater access to database man-
agement systems (DBMSs) that were previously only in reach
for large enterprises. DBaaS platforms obviate the need for
in-house database administrators (DBAs) and enable data
scientists to quickly deploy widely used applications.

CHALLENGE: Designing database applications is, however,
non-trivial since applications may suffer from anti-patterns [27].
An anti-pattern (AP) refers to a design decision that is in-
tended to solve a problem, but that often leads to other
problems by violating fundamental design principles. APs
in database applications can lead to convoluted logical and
physical database designs, thereby affecting the performance,
maintainability, and accuracy of the application. The spread
of data science skills to a larger community of developers
places increased demand for a toolchain that facilitates ap-
plication design without APs since scientists who are ex-
perts in other domains are likely not familiar with these anti-
patterns [24, 39]. Furthermore, the proliferation of DBaaS
platforms obviates the need for in-house DBAs who used to
assist application developers with finding and fixing APs.

Sharma et al. have designed a tool, called DBDEO, for auto-
matically detecting APs in database applications [41]. They
demonstrate the widespread prevalence of APs in production
applications. Although their detection algorithm of DBDEO is
effective in uncovering APs, it suffers from three limitations.
First, the static analysis algorithm suffers from low preci-
sion and recall. Second, it does not rank the APs based on
their impact. Third, it does not suggest solutions for fixing
them. Thus, a developer would need to manually confirm the
APs detected by DBDEO, identify the high-impact APs among
them, and fix them.



In this paper, we investigate how to find, rank, and fix
APs in database applications. We present a toolchain, called
SQLCHECK, that assists application developers by: (1) detect-
ing APs with high precision and recall, (2) ranking the de-
tected APs based on their impact on performance and main-
tainability, (3) suggesting fixes for high-impact APs.

The main thrust of our approach is to augment code anal-
ysis with data analysis (i.e. examine both queries and data
sets of the application) to detect APs with high precision
and recall. We study the impact of frequently occurring APs
on the performance, maintainability, and accuracy of the
application. We then use this information to rank the APs
based on their estimated impact. By targeting frequently oc-
curring APs, we take advantage of our ranking model trained
on data collected from previous deployments without need-
ing to share sensitive data (e.g. data sets). Lastly, sQLCHECK
suggests fixes for high-impact APs using rule-based query
refactoring techniques. The advantage of our approach over
DBDEO is that it reduces the time that a developer must ex-
pend on identifying high-impact APs and fixing them.

In summary, we make the following contributions:

o We illustrate the limitations of the state-of-the-art tools
for identifying APs in database applications and mo-
tivate the need for an alternate approach with higher
precision and recall (§2).

e We introduce an AP detection algorithm that augments
query analysis with data analysis (§4).

e We present a ranking model for characterizing the im-
pact of frequently occurring APs on the performance,
maintainability, and accuracy of the application (§5).

o We discuss how sQLCHECK suggests fixes for high-impact
APs using rule-based query refactoring techniques (§6).

o We illustrate the efficacy of sQLCHECK in finding, rank-
ing, and fixing APs through an analysis of 1406 open-
source database applications, 15 Django applications,
31 Kaggle databases, and a user study (§8).

2 Motivation & Background

We illustrate the need for detecting and diagnosing APs
through a case study, then present an overview of the dif-
ferent types of APs and conclude with a discussion on the
impact of APs on the application’s performance, maintain-
ability, and accuracy.

2.1 Case Study: GlobaLeaks

We illustrate the problems introduced by APs through a
case study of Globaleaks, an open-source application for
anonymous-whistleblowing initiatives [17]. The application

Tenant_ID Zone_ID Active User_IDs
T1 Z1 True U1,02
T2 Z3 True U3 ;U4
(a) Tenants Table
User ID Name Role Email
U1 N1 R1 E1

u2 N2 R2 E2

U3 N3 R3 E3

U4 N4 R4 E4
(b) Users Table

Figure 1: GlobaLeaks Application - List of tables.

supports a multi-tenancy feature to enable multiple organi-
zations to accept submissions and direct them to different
endpoints within a single deployment of the application.

ExamPLE 1: Figure 1 presents the logical database design of
the two tables associated with this feature!. Since a given ten-
ant can serve multiple users (i.e., one-to-many relationship),
the application developer decided to store this information
as a comma-separated list of user identifiers in the User_IDs
column of Tenants table. While this multi-valued attribute
design pattern captures the relationship between the two
entities without introducing additional tables or columns, it
suffers from performance, maintainability, and data integrity
problems. We illustrate these problems using a set of tasks
and associated SQL queries executed by the application.

Task #1: The developer is interested in retrieving the ten-
ants that a user is associated with. We cannot use the equality
operator in SQL to solve this task since the users are stored
in a comma-separated list. Instead, we must employ pattern-
matching expressions to search for that user:

/* List the tenants that a user is associated with */

SELECT * FROM Tenants WHERE User_IDs LIKE “[[:<:]]U1l[[:>:]]"';

Task #2: Consider the task of retrieving information about
the users served by a tenant. This query is also computa-
tionally expensive since this involves joining the comma-
separated list of users to matching rows in the Users table.
Joining two tables using an expression prevents the DBMS
from using indexes to accelerate query processing [18]. In-
stead, it must scan through both tables, generate a cross
product, and evaluate the regular expression for every com-
bination of rows.

/* Retrieve users served by a tenant */

SELECT * FROM Tenants AS t JOIN Users AS u

ON t.User_IDs LIKE “[[:\<:]]1'||u.User_ID|| [[:\>:1]"
WHERE t.Tenant_ID = 'T1';

DAaTtA INTEGRITY PROBLEMS: Another major limitation of
this approach is that the developer implicitly assumes that

IWe distilled the essence of this AP for the sake of presentation.

’



User_ID Name Role Email

U1 N1 R1 E1
(a) Users Table

Tenant_ID User_ID

Tenant_ID Zone_ID Active T1 Ul
T1 Z1 True T1 U2

T2 Z2 True T2 U3

(b) Tenants Table T2 U4

(c) Hosting Table
Figure 2: Refactored GlobaLeaks Application - List of tables.

users will be stored as a list of strings separated by a comma.
This implicit assumption might later be violated by a devel-
oper entering users separated by another delimiter, such as a
semi-colon (e.g. “U6; U7”). This is feasible since the DBMS is
not explicitly enforcing that the string should be separated
by a particular character. Given this new data, the developer
must update all the queries operating on the User_IDs col-
umn to handle the usage of multiple separator characters.
Furthermore, it is not feasible for the DBMS to enforce a
referential integrity constraint between these columns: (1)
User_IDs in Tenants, and (2) User_ID in Users. This is be-
cause the former column encodes the comma-separated list
as a string. So, it is possible for a user in the former column
to not have a corresponding tuple in the latter column.

2.1.1  Solution: Intersection TableWe can eliminate this AP
by creating an additional intersection table to encode the
many-to-many relationship between tenants and users 2.
This table references the Tenant and User tables. In Figure 2,
the Hosting table implements this relationship between the

two referenced tables.

/* Create an intersection table */

CREATE TABLE Hosting (
User_ID VARCHAR(10) REFERENCES User(User_ID),
Tenant_ID VARCHAR(10) REFERENCES Tenants(Tenant_ID),
PRIMARY KEY (User_ID, Tenant_ID)

)

/* Drop redundant column */

ALTER TABLE Tenants DROP COLUMN User_IDs;

We will next illustrate how this AP-free logical design
enables simpler queries for all of the tasks.

Tasks #1 AND #2: It is straightforward to join the Tenants
and Users tables with the Hosting table to solve the first
two tasks. These queries are easy to write for developers
and easy to optimize for DBMSs. The DBMS can now use an
index on User_IDs to efficiently execute the join instead of
matching regular expressions.

/* List the tenants that a user is associated with */

SELECT x FROM Hosting as H JOIN Tenants as T
ON H.Tenant_ID == T.Tenant_ID WHERE H.User_ID = 'Ul';

%That is, each user may be associated with multiple tenants, and likewise
each tenant may serve multiple users.

/* Retrieve information about users served by tenant */
SELECT * FROM Hosting as H JOIN Tenants as T
ON H.User_ID == T.User_ID WHERE H.Tenant_ID = 'T1';

Data INTEGRITY PROBLEMS: The developer can delegate
the task of ensuring data integrity to the DBMS by specify-
ing the appropriate foreign key constraints. The DBMS will
enforce these constraints when data is ingested or updated.

2.2 Classification of Anti-Patterns

We compiled a catalog of APs based on several resources
that discuss best practices for schema design and query struc-
turing [21, 25, 27, 41]. Table 1 lists the APs that sQLCHECK
targets. These APs fall under four categories:

@ LogicaL DESIGN APs: This category of APs arises from
violating logical design principles that suggest the best way
to organize and interconnect data. It includes the multi-
valued attribute AP covered in §2.1. The adjacency list AP also
falls under this category. It refers to references between two
attributes within the same table. Such a logical design is used
to model hierarchical structures (e.g. employee-manager rela-
tionship). With this representation, however, it is not trivial
to handle common tasks such as retrieving the employees of
amanager up to a certain depth and maintaining the integrity
of the relationships when a manager is removed.

@ PHaysicAL DESIGN APs: The next category of APs is as-
sociated with efficiently implementing the logical design
using the features of a DBMS. This includes rounding errors
and enumerated types APs. The rounding errors AP arises
when a scientist uses a type with finite precision, such as
FLOAT to store fractional data. This may introduce accuracy
problems in queries that calculate aggregates. The enumer-
ated types AP occurs when a scientist restricts a column’s
values by specifying the fixed set of values it can take while
defining the table. However, this AP makes it challenging to
add, remove, or modify permitted values later and reduces
the application’s portability®.

® QUERY APs: Query APs arise from violating practices that
suggest the best way to retrieve and manipulate data using
SQL. This includes NULL usage and column wildcard usage
APs. Developers are often caught off-guard by the behavior
of NULL in SQL. Unlike in most programming languages, SQL
treats NULL as a special value, different from zero, false, or an
empty string. This results in counter-intuitive query results
and introduces accuracy problems. The latter AP arises when
a developer uses wildcards (SELECT *) to retrieve all the
columns in a table with less typing. This AP, however breaks
applications on refactoring.

® DaTA APs: Data APs are a subset of APs that SQLCHECK
detects by analysing the data (as opposed to queries). This

SENUM data type is a proprietary feature in the MySQL DBMS.



Category Anti-Pattern Name Description P M DA DI A
Multi-Valued Attribute Storing list of values in a delimiter-separated list violating 1-NF. v v vv oo
No Primary Key Lack of data integrity constraints. v v vO oo
No Foreign Key Lack of referential integrity constraints. v v o- v
Logical Design APs Generic Primary Key Creating a generic primary key column (e.g., id) for each table. - V- - -
Data In Metadata Hard-coding application logic in table’s meta-data. v v v v v
Adjacency List Foreign key constraint referring to an attribute in the same table. voo- - - -
God Table Number of attributes defined in the table cross a threshold (e.g., 10) v v oo- - -
Rounding Errors Storing fractional data using a type with finite precision (e.g., FLOAT). - - - - v
Enumerated Types Using enum to constrain the domain of a column. v v v - -
Physical Design APs External Data Storage Storigg file paths in'stead of actual ﬁle'content in database. - v - v
Index Overuse Creating too many infrequently-used indexes. v v v o -
Index Underuse Lack of performance-critical indexes. v v v -
Clone Table Multiple tables matching the pattern <TableName>_N v ovoo- v v
Column Wildcard Usage  Selecting all attributes from a table using wildcards to reduce typing. v - - - v
Concatenate Nulls Concatenating columns that might contain NULL values using | |. - - - - v
Ordering by RAND Using RAND function for random sampling or shuffling. voo- - - -
Query APs Pattern Matching Using regular expressions for pattern matching complex strings. v oo - - -
Implicit Columns Not explicitly specifying column names in data modification operations. - v - Voo
DISTINCT and JOIN Using DISTINCT to remove duplicate values generated by a JOIN. v ovoo- - -
Too Many Joins Number of JOINs cross a threshold. v - - -
Missing Timezone Date-time fields stored without timezone. - - - - v
Incorrect Data Type Actual data does not conform to expected data type. v v -
Data APs Denormalized Table Duplication of values. voo- v -
Information Duplication — Derived columns (e.g., age from date of birth). - V- v v
Redundant Column Column with NULLS or same value (e.g., en-us) - - v -
No Domain Constraint All values should belong to particular range (e.g., rating) - v ovYo

Table 1: List of Anti-Patterns: A catalog of APs based on best practices for database application design [21, 25, 27, 41]. They fall under
four categories: (1) logical design APs, (2) physical design APs, (3) query APs, and (4) data APs. For each AP we illustrate its impact on five
metrics: (1) Performance (P), (2) Maintainability (M), (3) Data Amplification (DA), (4) Data Integrity (DI), and (5) Accuracy (A). v’ represents
that the given AP affects that metric. T and | refer to increase and decrease in data amplification, respectively, when that AP is fixed.

includes the Incorrect Data Type and Information Duplication
APs. The former AP arises due to data type mismatches (e.g.,
storing a numerical field in a TEXT column). This negatively
impacts performance and leads to data amplification. The
latter AP occurs when a column contains data derived from
another column in the same table (e.g., storing age based on
date of birth). While this accelerates query processing,
it reduces maintainability and leads to data amplification.

2.3 Impact of Anti-Patterns

APs in database applications lead to convoluted logical and
physical database designs, thereby affecting the performance,
maintainability, and accuracy of the application.

1. PERFORMANCE: An application’s performance is often
measured in terms of throughput (e.g. the number of requests
that can be processed per second) and latency (e.g. the time
that it takes for the system to respond to a request) [38]. Op-
timizing these metrics is important because they determine
how quickly an application can process data and how quickly
a user can leverage the application to make new decisions.
Consider the tasks presented in §2.3. We measured the
impact of the multi-valued attribute APs on the time taken to
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Figure 3: Multi-Valued Attribute AP: Performance impact of the
multi-valued attribute AP on the above-mentioned tasks.

execute these tasks. Figure 3 presents the results of this ex-
periment. We defer the discussion of the experimental setup
to §8.2. When we remove this AP, the queries associated with
these tasks accelerated by 636%, 256, and 193X respectively.
These results illustrate the importance of fixing APs.

2. MAINTAINABILITY: The maintainability of an applica-
tion represents the ease with which the application’s design
and component queries can be modified to adapt to a changed
environment, improve performance or other metrics, or cor-
rect faults [20]. Maintainable applications allow developers
to quickly and easily add new features, fix bugs in existing
features, and increase performance.
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Figure 4: Architecture of sQLCHECK: It takes in a SQL query
and database (optional), and produces a ranked list of APs and
associated fixes. Internally, sQLCHECK leverages query and data
analysis to detect the APs. It then uses a ranking model and query
repair engine to generate the desired fixes.

3. Accuracy: An application’s accuracy is measured in
terms of the discrepancy between the data stored by a user
and that returned by the application. For example, an appli-
cation that stores fractional numeric data using the FLOAT
type in SQL can fail to return certain tuples due to slight
discrepancies in their values [27].

Given the impact of APs, we next present an overview of
a toolchain that assists developers in eliminating them.

3 System Overview

SQLCHECK is geared towards automatically finding, rank-
ing, and fixing APs in database applications. Application de-
velopers can leverage SQLCHECK to create more performant,
maintainable, and accurate database applications. SQLCHECK
contains three components for: (1) detecting APs with high
precision and recall, (2) ranking the detected APs based on
their impact, and (3) suggesting fixes to application develop-
ers for high-impact APs.

WoRKFLOW: We envision that application developers will
use SQLCHECK in the following manner. A developer will
deploy sSQLCHECK on their local machine and connect it to
the target application (i.e., queries and data sets). @ The
first component, ap-detect, will then perform static anal-
ysis of the queries to detect APs. To increase precision and
recall, ap-detect will profile the application’s data and
meta-data (§4). @ Next, ap-rank will examine the APs de-
tected by ap-detect in the target application and rank
them based on their estimated impact (§5). ® The third tool,
ap-fix, will suggest fixes for the high-impact APs identified
by ap-rank using rule-based query transformations (§6). @
Lastly, sQLcHECK will optionally upload the APs detected in
the application to an online AP repository with the permis-
sion of the developer. As new performance data is collected
over time, ap-rank will retrain its ranking model to improve
the quality of its decisions.

Algorithm 1: soLcHECK Algorithm

input :application queries Q, database D
output:detected APs and associated fixes
Extract context from queries

-

query context QC « { }
for query q in Q do
‘ QC.append(QUERY-ANALYSER(q))

woN

Extract context from data
4 data context DC « { }
for table t in D.tables do
DC.append(DATA-ANALYSER(1))
context C = CONTEXT-BUILDER(QC, DC)
Detect anti-patterns

o o

<

s anti-patterns P « { }

©

for query q in Q do

10 ‘ ¥ .append(QUERY-RULES (g, C))

11 for table t in D.tables do

12 ‘ P .append(DaTa-RULES (¢, C))

13 ranked anti-patterns R < AP-RaNk ()
14 return AP-F1x(R)

4 Finding Anti-Patterns

In this section, we present the techniques used by ap-detect
for identifying APs in a given application. We begin with an
overview of the sQLCHECK algorithm.

OVERVIEW: As shown in Algorithm 1, ap-detect takes a
list of SQL queries executed by the application and a connec-
tion to the database server as input. It constructs an appli-
cation context using the given inputs. First, it uses a query
analyser to extract context from the queries (e.g., column
names, table names, predicates, constraints, and indexes). It
tailors the analysis based on the type of SQL statement. We
present the query analyser in §4.1. Next, it uses a data anal-
yser to extract context from the tables in the database (e.g.,
data distribution and format of each column). We present the
data analyser in §4.2. Based on the constructed application
context, ap-detect uses a set of rules for identifying APs
in the given queries*. These rules are general-purpose func-
tions that leverage the overall context of the application: (1)
queries, (2) data, and (3) meta-data. The APs identified using
such query and data analyses are then ordered by ap-rank,
which will be covered in §5.

4.1 Query Analysis

ap-detect begins by analysing the SQL queries Q exe-
cuted by the target database application. It detects APs in the
given queries in two phases: (1) intra-query detection and (2)
inter-query detection. During the first phase, it identifies APs
in each query ¢ in Q. During the second phase, it leverages
the entire context of the application (i.e., other queries in Q

“This includes both data definition language (DDL) and data manipulation
language (DML) commands [11].



and logical design of the database D) to detect more complex
APs. We next discuss these techniques in detail.

O INTRA-QUERY DETECTION: ap-detect applies a set of
query rules on the given query gq. Each query rule consists
of a general-purpose function to identify the existence of
the target AP in q. Rules can range from a simple, pattern-
matching function that uses a set of regular expressions
to complex functions that leverage the inferred context of
the application. In order to support diverse SQL dialects,
ap-detect leverages a non-validating SQL parser, called
sqlparse [2], to process the SQL statement. This parser
supports multiple dialects by virtue of its non-validating
parsing logic. However, unlike a typical DBMS parser [33],
it does not generate a semantically-rich parse tree. We ad-
dress this limitation by annotating the parse tree returned by
sqlparse. ap-detect and ap-fix use this annotated parse
tree for finding APs and suggesting fixes, respectively. The
tree-structured representation (as opposed to the raw SQL
string) allows recursive application of rules and improves
the extensibility of the rule system.

ExampLE 2: Consider the following SQL statement for in-
serting a record into the TENANT table:

INSERT INTO Tenant VALUES ('T1', 'Zl1', True, 'U1,U2');

This DML statement fails to correctly function when the
schema of TENANT table evolves. For instance, if we drop the
User_IDs column and add a new column termed Description,
it would incorrectly insert values into the table. This implicit
column usage AP also reduces the maintainability of the ap-
plication. This is because explicitly specifying the column
names improves the readability of the query for another
developer who is trying to infer the values being inserted
into each column. ap-detect identifies this AP by checking
whether the column names are present in the INSERT state-
ment. An intra-query detection rule is sufficient to detect
the existence of this AP. However, to suggest a fixed INSERT
statement, ap-fix needs the application’s context (i.e., the
schema of the TENANT table).

® INTER-QUERY DETECTION: The intra-query detection
technique suffers from low precision and recall as it does not
leverage the relationship between queries in the application
which is critical for detecting complex APs.

ExaMPLE 3: Consider the No Foreign Key AP in GlobalLeaks
[17]. There are two tables: TENANT and QUESTIONNAIRE. The
Tenant_ID column should connect these two tables. How-
ever, the DDL statement of the QUESTIONNAIRE table does
not define this foreign key relationship. Since the intra-query
detection technique applies the rules to each query indepen-
dently, it is unable to detect this AP by separately examining
the two DDL statements. ap-detect can detect the missing

Algorithm 2: Detecting Anti-Patterns via Query Analysis

input :application query g, context C
output:detected APs
anti-patterns P « { }

-

anti-pattern detection rules based on type of query

)

rules R < RULESFORQUERY (gq)
for ruler in R do
4 anti-pattern p « r(q, C)

w

use context to identify relevant contextual rules
5 contextual rules ¥ < RELEVANTRULES (p, g, C)
use contextual rules to reduce false positives and negatives
6 if 7(C, q, p) then
7 ‘ P .append(p)
8 return P

foreign key only if it considers both DDL statements along
with the JOIN condition in the SELECT query as follows.

/* Tenant table */

CREATE TABLE Tenant(Tenant_ID INTEGER PRIMARY KEY,

Zone_ID VARCHAR(30) NOT NULL, Active BOOLEAN);

/* Questionnaire table */

CREATE TABLE Questionnaire (Questionnaire_ID UUID PRIMARY KEY,
Tenant_ID INTEGER, Name VARCHAR(30), Editable BOOLEAN);

/* Select query */

SELECT q.Name, q.Editable, t.Active

FROM  Questionnaire q JOIN Tenant T

ON T.Tenant_ID = Q.Tenant_ID WHERE q.Editable = true;

We address the limitations of the intra-query detection tech-
nique by constructing the application’s context. The context
contains two components: (1) the schema and (2) the queries
associated with the application. The AP detection rules utilize
the context to resolve cases where the presence or absence
of an AP cannot be determined with high precision by only
looking at a given query.

Algorithm 2 presents the algorithm used for detecting APs
by analyzing queries. The ContextBuilder constructs the
context using the analysed queries and the database. The
context exports a queryable interface for applying contextual
rules on the queries, schema, and other application-specific
metadata. If the database is not available, the ContextBuilder
leverages the DDL statements to construct the context. Given
the context, ap-detect first applies a set of AP detection
rules based on the type of the query. It then uses the con-
text to identify the relevant context specific rules that are
subsequently applied to reduce false positives and negatives.

LimitaTioN: The inter-query detection technique also suf-
fers from false positives and negatives. Consider the multi-
valued attribute AP discussed in Example 1. ap-detect uses
a pattern-matching rule (i.e., regular expression) for detect-
ing this AP in SELECT queries containing string processing
tricks. However, this rule can result in: (1) false negatives
if the delimiter-separated strings are handled externally in



Algorithm 3: Detecting Anti-Patterns via Data Analysis

input :context C, database D
output:detected APs

1 anti-patterns P « { }

2 for rule d in data rules D do

3 for table t in D.tables do
sample tuples from the table
4 sampled tuples s = SAMPLE(?)
use data rules to reduce false positives and negatives
5 if r(C[t], s) then
6 ‘ P .append(p)

7 return P

the application code, and (2) false positives if the delimiter is
used for an alternate purpose in application (e.g., ADDRESS at-
tribute). Thus, it is not feasible to identify this APs with high
precision and recall by only examining the SQL queries. We
next discuss how ap-detect extracts and utilizes context
from the tables in the database to overcome this limitation.

4.2 Data Analysis

ap-detect leverages data analysis to improve the pre-
cision and recall of anti-pattern detection. It uses a data
analyzer to profile the contents of the database used by the
application and uses it to augment the context described
in §4.1. This information is also used for retrieving the rele-
vant contextual rules while detecting APs via query analysis.

For example, in case of the multi-valued attribute AP (Ex-
ample 1), ap-detect uses a data rule that checks whether
a particular column contains delimiter-separated strings. It
first checks the data type of the column. If the column is
a VARCHAR or TEXT field, it samples the columnar data and
checks whether that contains delimiter-separated strings. In
case of the TENANT table, as shown in Figure 1a, the User_-
IDs column contains comma-separated strings. Even if the
query rules are unable to detect this AP, the data rule will
correctly flag this column as suffering from the MVA AP.

The data analyzer first scans the database to collect: (1) the
schemata of the component tables, and (2) the distribution
of the data in the component columns (e.g., unique values,
mean, median, etc.). It then collects samples from each table
in the examined database. ap-detect applies a set of rules
for determining the existence of APs in the sampled data. If
one of these rules is activated, then ap-detect appends the
associated anti-pattern to the list of APs sent to ap-rank.

ExamPLE 4: Consider the following AP in GlobaLeaks. The
Role column in the USER table represents the roles assumed
by the users. The developer chose to encode this data as a
STRING field with a constraint on the field’s domain.

ALTER TABLE User ADD CONSTRAINT User_Role_Check
CHECK (ROLE IN ('R1', 'R2', 'R3'));

We refer to this as the Enumerated Types AP. In this case,
the data analyzer extracts the type information of the Role
column and notices that it as a STRING field. It then samples
the data in the column. ap-detect uses the context to com-
pute the ratio of distinct values to the number of tuples. If
this ratio is greater than a given threshold, it detects this AP.

Since data analysis is computationally expensive (e.g., sam-
pling), ap-detect reuses the constructed context across
several checks. The data analyzer periodically refreshes the
context over time. It also refreshes the context whenever the
schema evolves. ap-detect allows the developer to config-
ure the tuple sampling frequency and the thresholds associ-
ated with activating data rules.

RuLE COMPLEXITY: ap-detect supports complex, general-
purpose rules that leverage the overall context of the appli-
cation. Example 5 illustrates the complexity of rules.

ExaMPLE 5: The Index Overuse AP is associated with the
creation of too many infrequently-used indexes. For instance,
consider these three indexes in the TENANT table.

CREATE INDEX idx_zone_actv (Zone_ID, Active); /* Index 1 */
CREATE INDEX idx_zone (Zone_ID); /* Index 2 */
CREATE INDEX idx_actv (Active); /* Index 3 */

/* Queries (Workload 1) */

SELECT Tenant_ID FROM Tenant WHERE Zone_ID = 'Z1'
AND Active = 'True';

SELECT Tenant_ID FROM Tenant WHERE Tenant_ID = 'T1'
AND Active = 'True';

/* Queries (Workload 2) */

SELECT Tenant_ID FROM Tenant WHERE Zone_ID = 'Z1';
SELECT Tenant_ID FROM Tenant WHERE Active = 'True';

Depending on the workload, ap-detect marks different
set of indexes as potentially exhibiting this AP. It leverages
the context to determine the list of constructed indexes. For
the first workload, it marks the second and third indexes
as redundant since these queries will leverage the index on
Tenant_ID. For the second workload, it marks the first index
as redundant since these queries will leverage the second
and third indexes. Thus, ap-detect supports complex rules.

5 Ranking Anti-Patterns

In this section, we present the algorithm used by ap-rank
for ordering the APs identified by ap-detect. We begin with
an overview of the metrics collected by ap-rank for ordering
the APs. We then present the model used by ap-rank.

5.1 Metrics for Ranking Anti-Patterns
ap-rank collects six metrics for each AP. These metrics
are subsequently used by the model for ordering the APs.
@ Read and Write Performance (RP, WP): This met-
ric characterizes the impact of the AP on the application’s
performance. We measure the time taken to execute different



User_ID Name Role Email
Role_ID Role_ Name

1 R1 U1 N1 1 E1
2 R2 U2 N2 2 E2
3 R3 U3 N3 2 E3
(a) Role Table U4 N4 3 E4

(b) User Table
Figure 5: Refactored GlobaLeaks Application - List of tables.

Srp(x), Swp(x), Sm(x) = min (1,x/5)
S4q(x) = min(1,x/8)
Sai(x), Sa(x) =x // x € {0,1}

score = W, * §;p(RP) + Wyyp ™ Sip(WP) +
W " SmM) + Waa ™ Saa(DA) +
Wai ™ Sai(DI) + Wa ™ Sa(A)
Figure 6: Ranking Model - Formulae for measuring the impact
of APs.

WVP (WWP W Waa Wai Wa

CcC1 07 0.15 0.05 0.04 0.02 0.02
c2 04 0.4 0.1 0.04 0.02 0.02

(a) Ranking model configurations
Srp Swp Sm Sda Sdi Sq

Index Underuse 1.5x 0 0 0 0 0
Enumerated Types 0  >10x 2 1 0 0
(b) Impact of APs

Figure 7: Ranking Model Configurations — Illustration of the
impact of the ranking model configuration on the ordering of APs.

types of frequently-observed queries in the presence and ab-
sence of each AP. For this analysis, we focus on the following
types of queries: (1) a lookup query that retrieves a set of
records from a table based on a highly selective predicate
(SELECT), (2) an aggregation query that computes the sum
of all the elements in a column (SUM), (3) a join query that
combines the records in two tables in an application based
on a join predicate (JOIN)), and (4) an update statement that
modifies a set of records in a table based on a highly selective
predicate (UPDATE). ap-rank uses the results of this quanti-
tative analysis to estimate the potential speedup in executing
the target application’s queries by fixing an AP. For example,
fixing the multi-valued attribute AP (Example 1) accelerates
lookup and join queries by 636X and 256X, respectively.

® Maintainability (M): The next metric appraises the
impact of each AP on the maintainability of the application.
We conduct a qualitative analysis of the number of changes
(C) needed in an application to support a new task in the
presence and absence of each AP. This determines the degree
of refactoring necessitated by the AP. If C is linearly or super-
linearly dependent on the number of queries (Q) present
in the application, then ap-rank will prioritize this AP. In
contrast, a design wherein C is independent of Q improves
the extensibility of the application.

Consider the enumerated types AP (Example 4). If the
developer would like to rename a particular Role (e.g., R2
— R5), they would need to execute the following queries:

ALTER TABLE User DROP CONSTRAINT IF EXISTS User_Role_Check;
UPDATE User SET Role='R5' WHERE Role='R2';

Figure 5b illustrates an alternate design wherein only one
query (i.e., C = O(1)) is sufficient for this refactoring.

UPDATE Role SET Role_Name='R5' WHERE Role_Name='R2';

® Data Amplification (DA): The next metric appraises
the impact of APs on data amplification. AP-free design can
shrink the storage footprint of an application.

Consider the enumerated types AP in Globaleaks (Ex-
ample 4). The Role column can take the following STRING
values: (R1, R2, and R3). Repeatedly storing these STRING
values increases the storage footprint of the application. The
alternate design presented in Figure 5b addresses this limi-
tation by introducing a ROLE table and encoding the Role
column in the USER table using INTEGER values: (1, 2, and
3). In addition to reducing data amplification, it allows the
developer to utilize foreign key constraints (e.g., to ensure
that every user can only take on one of these roles) °.

® Data Integrity (DI): The third metric characterizes the
impact of each AP on data integrity. We examine how an AP
affects the integrity of the application. For instance, consider
the multi-valued attribute AP in Globaleaks (Example 1). If
a user with User_ID ul is deleted from the USER table, we
need to manually execute another query to delete the ul
string from the comma-separated User_IDs field.

UPDATE Tenants SET User_IDs = REPLACE(User_IDs, ',ul', ''")
WHERE User_IDs LIKE '%ul%';

If this query is not executed, the data integrity constraint
will be violated. In contrast, if the database contains an inter-
section table as shown in Figure 2c, we can leverage DBMS
features for preserving integrity constraints (e.g., cascaded
deletes as shown in §2.1).

® Accuracy (A): This metric characterizes the impact of
the AP on the accuracy of the returned results. Consider the
no foreign key AP (Example 3). In the QUESTIONNAIRE table,
since there is no foreign key linking the Tenant_ID columns
in the Tenant and QUESTIONNAIRE tables, delete operations
will not be cascaded. The resultant dangling references lead
to tuples with NULL values when these tables are joined.

5.2 Model for Ranking Anti-Patterns

We now present the ranking model that ap-rank uses for
ordering the APs identified by ap-detect. Our goal is to
prioritize the attention of developers on high-impact APs.
The model leverages the metrics presented in §5.1.

5This relationship can also be preserved using a CHECK constraint [34].
However, this feature reduces performance and maintainability (§8.2).



ap-rank sorts the APs in the application in decreasing or-
der of their estimated impact on performance, maintainabil-
ity, and accuracy. To do this estimation, it maps the queries
in the application to the standard types of queries that have
already been evaluated. It then generates a query-aware
ranking of APs in the application. The developer can tailor
the weights used by the model for these different features:
performance, maintainability, and accuracy. It then sends
the ordered list of APs to ap-fix. For APs with multiple
candidate fixes, ap-fix suggests the best fix based on the
collection of queries present in the application. We defer
a discussion of ap-fix to §6. As new performance data is
collected over time, we update the ranking model to improve
the quality of its decisions.

MobpEeL CoMPONENTS: The model consists of two compo-
nents: (1) intra-query and (2) inter-query ranking compo-
nents. The intra-query component ranks the APs detected
in each query. It first computes the following metrics for
each AP: (1) read performance (RP), (2) write performance
(‘WP), (3) maintainability (M), (4) data amplification (DA),
(5) data integrity (DJT), and (6) accuracy (A).

It then aggregates these metrics using the weights shown
in Figure 6. The developer can configure these weights to
best meet their applications requirements. For instance, if an
application requires higher read performance, the developer
can increase the read performance weight. ap-rank uses the
computed aggregate score for ranking the APs within a query
and to compute the score for each AP.

The inter-query component sorts APs based on their im-
pact on all the queries in the application. The developer can
choose one of two inter-query ranking models: @ based on
number of APs in each query (i.e., queries with more APs
are ranked higher), or @ based on the computed score.

ExaAMPLE 6: Consider a query suffering from the index un-
deruse and enumerated types APs. Figure 7a illustrates two
different configurations of the ranking model (C1 and C2).
Figure 7b lists the metrics associated with the detected APs.
The first configuration (C1) prioritises read performance
((e.g., analytical workloads). So, it ranks the index under-
use AP (score = 0.21) higher than the enumerated types AP
(score = 0.175). In contrast, the second configuration (C2)
gives equal priority to both read and write performance (e.g.,
hybrid transactional/analytical workloads). So, it ranks the
enumerated types AP (score = 0.47) higher than the index
underuse types AP (score = 0.12). In this manner, ap-rank
allows the developer to prioritise APs.

CoNFLICTING FIxEs: Fixes for APs detected in an appli-
cation may conflict with each other. ap-rank assists the
developer in resolving these conflicts by prioritising the APs.
For instance, consider an application with these two APs:

Too Many Joins and Enumerated Types. To resolve the latter
AP, the developer must create a new table for the attribute
with an enumerated type (e.g., ROLE table). However, this
fix would increase the performance impact of former AP as
it would require the developer to connect the newly added
table with an additional JOIN in SELECT queries. SQLCHECK
orders the detected APs based on the user-specified ranking
model. So, if the developer is prioritising read performance,
then they may fix the former AP first and ignore the latter
one. In this manner, they can iteratively fix the APs in the
application based on their impact score from ap-rank.

6 Fixing Anti-Patterns

Merely identifying the high-impact APs will not be suffi-
cient since application developers who are experts in other
domains are likely not familiar with anti-patterns [24, 39].
ap-fix addresses this problem by automatically suggesting
alternate database designs and queries that are tailored to
the application. We begin with an overview of the algorithm
used by ap-fix. We then describe the query repair engine
that ap-fix leverages for rewriting SQL queries in §6.1.

OVERVIEW: As shown in Algorithm 4, ap-fix takes the
following inputs: (1) a list of detected APs, (2) the parse
trees of the queries containing those APs, and (3) the con-
text of the application. Depending on the types of APs, it
fetches the associated rules for fixing them. Besides targeting
the queries containing the APs, ap-fix retrieves the list of
queries 7 that are also impacted by the AP fix from the ap-
plication’s context. It appends these impacted queries to the
list of queries containing APs to construct the list of queries
that must be transformed (Z). ap-£fix then passes this list
to the query repair engine (Line 7). The rule engine checks
whether it can generate non-ambiguous query transforma-
tions for a given query based on the APs that it contains. If
that is the case, then it applies those transformations on the
query’s parse tree (Line 9). It then transforms the parse tree
to a SQL string based on the dialect used by the application.
If it cannot generate non-ambiguous transformations, then
it returns a textual fix that is tailored based on the context
(Line 12). The application developer must subsequently fol-
low the guidance provided in the textual fix to manually
resolve the detected APs.

6.1 Query Repair Engine

The query repair engine transforms a given SQL statement
based on a set of rules for fixing APs. The rule system is instru-
mental in facilitating our experimentation with statement
transformations for two reasons. First, the rule system par-
adigm makes it easy for ap-fix to exploit the complicated
triggering interactions between the repair rules, thereby ob-
viating the need for explicitly laying out the flow of control
between rules. Second, the rule system is extensible. This



Algorithm 4: Fixing Anti-Patterns

input :detected anti-patterns P, parsed queries Q, context C
output:anti-pattern fixes
1 fixes F e {}
2 for anti-pattern p in P do
3 fix rules R <~ GETRULESFORANTIPATTERN (p)
Identify queries which are impacted by the anti-pattern fix
4 impacted-queries I « GETIMPACTEDQueries(p, C)
5 to-be-transformed-queries Z «— QU I
Pass to-be-transformed queries to the query repair engine
6 for query z in Z do
7 query transformations 7~ «— GETTRANSFORMATIONS (z, p)
8 if 7 is not empty then
transformed-parsed-query ¢ < TRANSFORM(z, 7))
fixed-sql-query f « TosaqL(2)

10
1 else

Return a textual fix tailored for application
12 ‘ textual fix f < GETTEXTUALFix(p, 2)
13 ¥ .append(f)
14 return 7

extensibility allowed us to formulate and evaluate tens of
transformations over time.

In addition to rewriting existing SQL statements, ap-fix
also needs to construct new statements for certain APs. For
example, in the case of the multi-valued attribute AP (1),
ap-fix first constructs a new HOSTING table and then up-
dates the schema of the TENANTS table, as shown below:

/* Create an intersection table */
CREATE TABLE Hosting (
User_ID VARCHAR(10) REFERENCES Users(User_ID),
Tenant_ID VARCHAR(10) REFERENCES Tenants(Tenant_ID)
)
/* Drop redundant column */
ALTER TABLE Tenants DROP COLUMN User_IDs;

A key challenge for the query repair engine is that it
must identify all the queries which are impacted by the anti-
pattern fix and transform them as well. For instance, with the
intersection table, ap-fix rewrites the query for retrieving
information about the users served by tenant thus:

/* Retrieve information about users served by tenant */
SELECT x FROM Hosting as H JOIN Tenants as T
ON H.User_ID == T.User_ID WHERE H.Tenant_ID = 'T1';

RULE REPRESENTATION: We represent rules in our engine
as pairs of functions in a procedural language. Each rule
consists of: (1) a detection function (§4), which does an arbi-
trary check and sets a flag TRUE or FALSE, and (2) an action
function, which, if the condition function sets the flag TRUE,
is invoked to take an arbitrary action, such as transforming
existing SQL statements and creating new SQL statements.

7 Implementation

SQLCHECK is implemented in Python [35] and exports the
following three interfaces. (1) Interactive Shell, (2) REST, and
(3) GUL Application developers and SQL IDE developers
can leverage these interfaces to either directly interact with
SQLCHECK or to integrate it with their own IDEs. We describe
these interfaces below:

e Interactive Shell: An SQL application developer can
import the sQLcHECK package from a package repos-
itory (e.g., PyPI [36]) and directly use the interactive
shell interface to execute SQL queries or leverage these
sub-modules in other tools.

# Import the anti-pattern finder method

from sqlcheck.finder import find_anti_patterns
query = “INSERT INTO Users VALUES (1, 'foo')"
results = find_anti_patterns(query)

o REST Interface: This interface allows developers to
leverage SQLCHECK in applications developed in other
programming languages by using web requests via HTTP.
We implement this using the Flask web framework [32].

HTTP POST /api/check
Body: {"query":"INSERT INTO Users VALUES (1, 'foo')"}

e GUI Interface: Lastly, this interface is geared towards
a wider range of users who are not familiar with applica-
tion programming. This interface enables users to easily
get feedback on their queries by copying them into the
input field and is developed using React]S [22].

EXTENSIBILITY: SQLCHECK is extensible by design. A devel-
oper may add a new AP rule that implements the generic rule
interface (name, type, detection rule, ranking metrics, and
repair rule) and register it in the SQLCHECK rule registry. A de-
veloper may also extend the context builder to augment the
application’s context for supporting complex rules. Lastly,
a developer may replace the non-validating parser with a
DBMS-specific parser to increase the utility of the parse tree.

8 Evaluation

We evaluated SQLCHECK on a variety of real-world SQL
queries to quantify its efficacy in detecting, ranking and
fixing APs. We illustrate that:

e Detection: SQLCHECK detects a wider range of APs (26)
in real-world DBMS applications compared to DBDEO
(11). ap-detect has 48% fewer false positives and 20%
fewer false negatives than DBDEO resulting in higher
precision and recall. sQLcHECK found 32 major APs in
15 real-world web applications.

¢ Ranking: ap-rank allows the developer to order APs

based on their impact. Its ranking model is derived
through an empirical analysis of Globaleaks. We show



AP Name S D Both | TP-S FP-S TP-D FP-D

Pattern Matching | 1037 524 28 705 332 0 524
God Table | 27 170 3344 27 0 0 170
Enumerated Types | 414 42 48 411 3 0 43
Rounding Errors | 352 7 1074 329 23 0 7
Data in Metadata 18 584 1226 18 0 93 491
Adjacency List 0 10 93 0 0 0 10

Total: | 1848 1337 5813 | 1588 358 93 3783

Table 2: Detection of Anti-Patterns: Comparison of the number
of APs identified by sQLcHECK and DBDEO in the query benchmark.
Columns S and D report the APs detected by only that tool. Column
Both lists the APs detected by both tools. TP and FP refer to true
and false positives, respectively.

that the average and maximal impact of APs on runtime
performance is 4x and >10000X, respectively.

o Fixing: We conduct a user study to validate the effi-
cacy of SQLCHECK in fixing APs. sQLCHECKs efficacy in
resolving the APs in the queries written by users is 51%.
Overall, the participants of the study confirmed that
SQLCHECK helped eliminate APs in their applications.

8.1 Detection of Anti-Patterns

To our knowledge, DBDEO is the closest system to SQLCHECK.
DBDEO is effective in uncovering APs in real-world SQL
queries. However, DBDEO’s query analysis algorithm suf-
fers from low precision and recall. Furthermore, it differs
from sQLCHECK in that it neither ranks the APs based on
their impact nor suggest fixes for the detected APs. In this
experiment, we compare the AP-coverage and accuracy of
SQLCHECK against that of DBDEO.

QUERY BENCHMARK: We download 1406 open-source repos-
itories containing SQL statements from GitHub [23]. We ex-
tract around 174 thousand string-quoted embedded SQL
statements from these repositories. We then use regular
expressions to extract SQL statements from the files con-
tained in these repositories. We evaluate sQLCHECK under
two different configurations: (1) with only intra-query anal-
ysis, and (2) with both intra- and inter-query analyses. The
open-source applications hosted on GitHub only contain SQL
queries and not their associated databases. So, SQLCHECK can-
not leverage its data analysis techniques in this experiment.

REsuLTs: We group and aggregate the detected APs based
on their type. The results (details in Table 3) are as follows:
e DBDEO detects 14764 APs (11 types of APs).
e SQLCHECK (only intra-query analysis) detects 86656
APs (18 types of APs).

® SQLCHECK (intra- and inter-query analysis) detects 63058
APs (21 types of APs).

e Coverage and Accuracy: Under both configurations,
SQLCHECK detects a wider range of APs compared to
DBDEO. With only intra-query analysis enabled, SQLCHECK

finds 2.6x more APs than pDBDEO. We attribute this in-
crease in recall to two factors. First, SQLCHECK supports
26 types of APs (DBDEO only supports 11 types.) Sec-
ond, SQLCHECK uses detection rules that are capable
of uncovering different variants of the same AP (e.g.,
set of regular expressions for identifying Multi-Valued
Attribute: (id\\s+regexp)|(id\\s+1like)). This in-
crease in recall also results in higher false positives (i.e.,
lower precision). Enabling both intra- and inter-query
analyses mitigates this problem. Under this configura-
tion, SQLCHECK reports three additional types of AP but
1.8 X fewer APs compared to the prior configuration.
This is because it eliminates false positives by leveraging
the inter-query context.

e Dialect-Coverage: Qualitatively, both sQLcHECK and

DBDEO support a wide range of SQL dialects. We at-
tribute this to their usage of sqlparse, anon-validating

parser, that supports diverse dialects. Furthermore, SQLCHECK

leverages sqlalchemy to construct the query and con-
text objects in a DBMS-agnostic manner [42].

We next conduct a manual analysis of the APs reported by
DBDEO and SQLCHECK in the query benchmark for a subset
of APs. We do not examine certain AP (e.g., No Primary Key,
Index Underuse) because DBDEO does not report the query in
which the AP was detected. The results are shown in Table 2.
SQLCHECK has 48% fewer false positives and 20% fewer false
negatives compared to pBDEO. This illustrates the impact of
intra- and inter-query analyses in increasing the precision
and recall of AP-detection.

8.2 Ranking and Repair of Antipatterns

We next examine the impact of APs on runtime perfor-
mance. In particular, we compare the query execution time
before and after fixing a given AP in a real-world application.

EXPERIMENT SETUP: We aggregate the APs detected in the
query benchmark presented in §8.1 based on their associ-
ated application. We rank these applications based on the
frequency and types of detected APs. Based on this ranking,
we select the Globaleaks application for this experiment [17].

Globaleaks leverages sqlalchemy (an object-relational
mapping (ORM) framework) [42]. We first transform the
ORM operations to SQL queries. We then recreate the data-
base schema on a DBMS instance (PostgreSQL v11.2) and
load a synthetic dataset containing 10 M records (19 GB
across 11 tables). Globaleaks inherently contains ten types
of APs. We infuse three additional APs for quantifying their
performance impact. For instance, we add comma-separated
strings in a column to infuse the multi-valued attribute AP.

We quantify the performance impact of every AP. For each
AP, we execute different types of queries in Globaleaks under
two configurations: (1) before the AP is fixed, and (2) after the



AP is fixed using the feedback provided by ap-fix. For each
query, we report the average execution time of five runs.

INDEX OVERUSE AP: This AP is associated with the creation
of too many infrequently-used indexes. As shown in Fig-
ure 8a, the performance impact of this AP is significant for
the UPDATE statement. We attribute this to the overhead of
maintaining the indices. The update operation is 10 X slower
when there are five indices on the field being updated. Thus,
it is advisable to only create those indexes whose impact on
query processing is significant. Another fix for this AP is to
maintain a multi-column index as opposed to maintaining
multiple single-column indices.

INDEX UNDERUSE AP: Figure 8b illustrates the impact of not
having important indices on columns. We execute a query
which performs a post-grouping aggregation operation. The
query execution time drops by 1.3X when we create an index
on the column contained in the GROUP BY clause. This is
because the index eliminates the overhead of the grouping
operation. Figure 8c illustrates a scenario where fixing this
AP reduces performance. We consider a scan query with
a predicate on a column with low cardinality. The query
executes 3X slower when it uses the index as opposed to
a table scan. We attribute this to the low cardinality of the
indexed column [12]. The query analysis rule incorrectly
flags this query due to missing indices. SQLCHECK eliminates
this false positive by leveraging its data analysis rule which
takes cardinality into consideration.

No Fore1GN Key Exists AP: Figures 8d to 8f illustrate the
performance impact of this APs on an UPDATE statement and
a scan query. The performance impact is not prominent in
both cases since the PostgreSQL does not automatically cre-
ate an index to maintain the foreign key constraint. An index
explicitly constructed by the user accelerates the UPDATE
operation by 142x. This AP also has a significant impact on
maintainability and data consistency. This is because the
foreign key constraint must be preserved by the developer
using complex application-level logic. For instance, in case
of a cascaded DELETE operation, a developer will need to
issue two SQL statements to update the values in both the
reference and referencing tables. Otherwise, the referential
integrity constraint will not be preserved. This increases the
complexity associated with maintaining the application.

ENUMERATED TYPEs AP: With this AP, the developer uses
the CHECK constraint feature of the DBMS [34]. We measure
the time taken to update a value of the Role column covered
by the constraint (R2 + R5). This consists of three steps:
(1) an ALTER operation to drop the CHECK constraint on the
Role column, (2) updating the value using an UPDATE state-
ment based on a predicate, and (3) an ALTER operation to
add the constraint back onto the column. In contrast, if the

database contains an intersection table as shown in Figure 2c,
the same task can be accomplished using an UPDATE state-
ment. Figures 8g to 8i illustrates the performance impact of
this AP. Eliminating this AP improves performance by more
than 1000X in case of UPDATE and INSERT operations. The
impact is less prominent in case of the scan query due to the
overhead of the JOIN operator. The AP-free design improves
maintainability by reducing the number of queries required
for performing a given task (e.g., Role update). Furthermore,
it reduces the storage footprint by reducing data duplication.

SEVERITY OF APs: Impact of an AP depends on the applica-
tion context (e.g., Enumerated Types AP will not affect per-
formance if the attribute’s domain does not change). Certain
APs may stem from application requirements. For instance, it
may not be possible to simplify a query with Too Many Joins.
Lastly, a subset of APs will always have negative impact (e.g.,
No Foreign Key will always affect data integrity).

8.3 User Study

In this experiment, we evaluate the efficacy of sQLcHECK
through a user study. We recruited 23 graduate and under-
graduate students majoring in Computer Science with vary-
ing degrees of expertise in SQL.

ExXPERIMENT SETUP: We tasked the participants to con-
struct a set of SQL queries for a bike e-commerce application.
The requirements are twofold: (1) design a performant and
extensible database design for this application, and (2) formu-
late performant SQL queries to support application features.
We curated a set of sixteen features that are associated with
one or more APs (e.g., shopping cart, list of products).

The participants use the GUI Interface presented in §7.
We track: (1) the original SQL queries developed by the user,
(2) the fixes suggested by sQLCcHECK for the APs detected in
the original queries, and (3) the re-formulated SQL queries
developed by the user that incorporate these fixes. We also
collect qualitative feedback from the participants about the
accuracy and utility of the detected APs and their fixes.

REsuLTs: The participants constructed 987 SQL statements.
SQLCHECK detected and suggested fixes for 207 APs. Most of
the participants (20 out of 23) took the 187 APs detected in
their queries into consideration. They refactored the queries
to resolve 96 APs. They ignored the remaining 91 fixes. The
reasons for this are twofold: (1) ambiguous fixes (31 fixes),
and (2) incorrect fixes (60 fixes) given the requirements of the
application. Thus, the participants leveraged 51% of the fixes
suggested by sQLcHECK. If we also include the APs labeled
as ambiguous from the participants’ perspective, then the
efficacy increases to 67%.

We compare the distribution of APs detected in the par-
ticipants’ queries using DBDEO and sQLCHECK. The results
are shown in Table 3. There is significant variation in the
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Figure 8: Ranking and Repair of AP: Performance impact of AP on different types of SQL statements.

frequency of APs. For instance, the No Primary Key AP is
14X more prevalent than the Pattern Matching AP.

We next examine the variance in SQL skills of the par-
ticipants. The number of queries executed, detected APs,
and accepted APs follow these distributions: (u=42.5, Q2=46),
(1=9.35, Q2=8), and (u=4.8, Q2=46). The high variance in
SQL skills illustrates the need for an automated toolchain for
detecting APs and suggesting fixes. The qualitative feedback
from the participants indicate that they predominantly found
SQLCHECK to be helpful in understanding APs.

8.4 Web Applications & Databases

In this experiment, we first evaluate the efficacy of sQLcHECK
in finding, ranking, and suggesting fixes for APs in real-
world web applications on GitHub. We apply SQLCHECK on
15 actively-developed Django-based applications [1].

ExXPERIMENT SETUP: We first manually deploy each of
these applications on PostgreSQL. We then collect the SQL
queries either by running the integration tests or by manu-
ally interacting with the application. Lastly, we report the
high-impact APs to the developers by either raising issues
on GitHub or through the official developer forum. Before
reporting the APs, we manually analyse them to study their
significance based on the application-specific context. We
order the APs impact metrics thus: read performance, main-
tainability, write performance, accuracy, and amplification.

REsULTS: As shown in Table 4, soLcHECK detected 123 APs
across these applications (Ref. Section B). We reported 32
APs based on their impact score and the application-specific
context. We do not report low severity APs (e.g., Generic
Primary Key) and those that require a deeper understanding
of application requirements (e.g., Too Many Joins).

We have received responses from all but three of these
development teams. Eleven teams acknowledged the exis-
tence of APs in their applications. They attribute these APs

GitHub Rep | User Study Kaggle
Anti-Pattern D S D S D S
No Primary Key 628 6875 22 70 - 68
Column Wildcard Usage 0 12313 | 0 54 - -
Data in Metadata | 1907 1352 43 39 - 9
Enumerated Types 90 462 11 30 -
Index Underuse 82 506 40 30 - -
God Table | 3514 3371 22 28 - -
Implicit Columns 0 26488 | 0 24 - -
Readable Password 0 295 0 20 - -
Clone Table | 1990 516 21 12 - -
Rounding Errors | 1081 1426 | 91 10 - -
Generic Primary Key 0 5123 0 8 - 25
Multi-Valued Attribute | 2539 1503 3 6 - 20
Pattern Matching | 552 1065 | 25 5 - -
Adjacency List 103 93 0 0 - -
No Foreign Key 0 1389 0 0 - 10
External Data Storage 0 63 0 0 - -
Index Overuse | 228 228 0 0 - -
Concatenate Nulls 0 63 0 0 - -
Ordering by Rand 0 27 0 0 - -
Distinct and Join 0 4 0 0 - -
Too many Joins 0 4 0 0 - -
Missing Timezone - - - - - 12
Incorrect Data Type - - - - - 28
Denormalized Table - - - - - 16
Information Duplication - - - - - 1
Redundant Column - - - - -1
No Domain Constraint - - - - - 0
Total: | 14764 63058 | 278 336 200

Table 3: Distribution of APs- Distribution of APs detected by
SQLCHECK (S) and pBDEO (D) in queries collected from repositories
on GitHub and written by the user study participants.

to the default behavior or lack of certain features in Django.
Four teams are incorporating the fixes from sQLcHECK. Three
teams are looking for alternate fixes. Three teams did not
share their course of action. One team decided not to fix the
reported APs given their application-specific requirements.
Most of these teams were interested in understanding the
implications of these APs and requested us to send patches.



# GitHub Repo # AP Det # AP Rep
1 Globaleaks 10 2
2 Django-oscar 12 2
3 Saleor 10 2
4  Django-crm 8 4
5 django-cms 11 1
17 Total 123 32

Table 4: Evaluation of sQLCHECK on Web Applications: The
APs detected by sQLCHECK (# APs Det) in a subset of 15 Django
applications. We list the major APs that we reported (# APs Rep).

# Kaggle Database # AP
1 The History of Baseball 41
2 Soccer Dataset 20
3 Acad. Research from Indian Univ. 17
4  Pesticide Data Program 13
5 Board Games 12
31 Total 200

Table 5: Evaluation of sQLCHECK on real-world databases:
The APs detected by sQLCHECK in a subset of 31 Kaggle databases.

In one of these applications, sSQLcHECK found APs that intro-
duced by a third-party library. In another application, we
found an existing issue related to the Too Many Joins AP. The
developers found that replacing the ORM-generated query
with a simpler, hand-written query greatly improved perfor-
mance. This experiment illustrates the efficacy of sQLcHECK
in assisting application developers in practice.

DaTta ANALYsIS: We next evaluate the efficacy of sQLcHECK
in finding APs in real-world databases on Kaggle [26]. We
download 31 SQLite databases and apply the data analy-
sis rules of sQLCHECK on them (§4.2). As shown in Table 5,
SQLCHECK detects 200 APs across these databases (Ref. Sec-
tion A). This experiment illustrates the efficacy of sQLcHECK
in detecting APs by only analysing data (without queries).

8.5 Limitations And Future Work

ANTI-PATTERN COVERAGE, DI1SCOVERY, AND EVvOLUTION:
SQLCHECK currently detects 26 types of APs. We intend to
add support for more known APs in the future. However, it
is unclear how to automatically discover new types of APs in
SQL queries. Furthermore, the performance impact of an AP
can evolve over time. For instance, the performance impact
of the Adjacency list AP was prominent in PostgreSQL v9
(5%). However, it is no longer significant (1.1x) in v11.

DiaLECT COVERAGE AND QUERY REPAIR: SQLCHECK is
designed to support multiple SQL dialects for higher util-
ity. We accomplish this using a non-validating query parser
(§4.1). However, it is infeasible to handle dialect-specific
features, especially in complex queries. The usage of a non-
validating query parser also restricts the set of queries wherein
we can automatically rewrite the query to fix the AP. This
is because we do not have enough syntactical information
for query rewriting. We instead fall back on tailored textual

fixes in these scenarios. We made this decision to increase
the utility of soLcHECK. The data analyzer (§4.2) is built on
top of SQLALCHEMY so that it can support diverse DBMSs
(e.g., PostgreSQL, MySQL). Thus, the set of DBMSs that can
be analyzed using ap-detect is constrained by those that
are supported by SQLALCHEMY.

9 Related Work

TRANSFORMING DATABASE APPLICATIONS: Although pro-
gram analysis has a long history in software engineering,
it has not been extensively studied by the DBMS commu-
nity. Recent research efforts have focused on transforming
database-backed programs to improve performance [9, 19,
45]. Ramachandra et al. present application transformations
that enable asynchronous and batched query submission [37].
DBridge presents a set of holistic optimizations including
query batching and binding, and automatic transformation
of object-oriented code into synthesized queries [16, 37].
Cheung et al. describe techniques for batching queries to
reduce the number of round trips between the application
and database servers [7-10].

OBJECT-RELATIONAL MAPPING: Researchers have stud-
ied the impact of ORM on application design and perfor-
mance [4-6, 43, 46]. Yang et al. perform a comprehensive
study of performance issues in database applications using
profiling techniques [47].

This paper is the first to explore the problems of automat-
ically ranking and fixing APs in database applications.

10 Conclusion

In this paper, we presented SQLCHECK, a holistic toolchain
for finding, ranking, and fixing APs in database applications.
SQLCHECK leverages a novel AP detection algorithm that aug-
ments query analysis with data analysis. It improves upon
DBDEO, the state-of-the-art tool for detecting AP, by using
the overall context of the application to reduce false posi-
tives and negatives. SQLCHECK relies on a ranking model for
characterizing the impact of detected APs. We discussed how
SQLCHECK suggests fixes for high-impact AP using rule-based
query refactoring techniques. Our empirical analysis shows
that sQLCHECK enables developers to create more performant,
maintainable, and accurate applications.
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Appendix A Data Analysis

In this experiment, we apply SQLCHECK’s data analysis
rules on 31 publicly-available SQLite databases from Kag-
gle. Table 6 lists the SQLite databases from Kaggle [26] that
we use in this experiment along with the APs detected in
these databases. We found 200 APs across 31 databases us-
ing sQLcHECK. The results of this experiment are discussed
in §8.4.

Appendix B Real World Applications

We tested SQLCHECK on 15 actively developed, open-source
applications based on the Django ORM [1]. In this experi-
ment, we pass the SQL queries obtained from either running
the application’s integration tests or by manually interact-
ing with the application to sQLCHECK. We rank the detected
APs based on their impact and reported the ones with high
impact. The APs detected are summarized in Table 7. The
results of this experiment are discussed in §8.4.

Appendix C Database Tuning Advisors
There is a large body of work related to automated data-

base administration tools geared towards optimizing: (1) data-

base physical design, and (2) database knob configuration.

The former set of tools focus on selecting the best physical
design (e.g., materialized views) for a given database that opti-
mizes the target metrics (e.g., latency) and satisfies the budget
constraints (e.g., hardware resources). These tools include
Microsoft’s AutoAdmin [3] and DETA [40] The latter set of
tools instead focus on selecting the best knob configuration
(e.g., buffer pool size) for a given DBMS. These tools include
OtterTune [44] and vendor-specific offerings [15, 28, 29, 31].

Table 8 compares the core features of sQLCHECK and a tun-
ing advisor (DETA). sQLcHECK complements DETA in that
it focuses on other aspects of database applications besides
physical design (e.g., logical design APs and query APs). We
recommend the user to leverage the accurate feedback of
the physical design tuning tool to fix the detected physical
design APs, since it leverages the cost model of the query
optimizer. SQLCHECK assists application developers in pre-
venting APs during the application development phase by
suggesting better alternatives (as opposed to tuning tools
that are more often used post deployment).



# SQLite Database # AP Detected Anti-Patterns
1 Board Games 12 No Primary Key, Data in Metadata, Incorrect Datatype
2 Pennsylvania Safe Schools Report 1 No Primary Key
3 Soccer Dataset 20  Generic Primary Key, Data in Metadata, Missing Timezone, Multivalued Attribute
4  SF Bay Area Bike Share 11 No & Generic Primary Key, Incorrect Datatype, Missing Timezone, Denormalized Table
5 US Baby Names 2 Generic Primary Key
6  Pitchfork Music Data 10 No Primary Key, Missing Timezone, Information Duplication, Denormalized Table
7  Acad. Research from Indian Univ. 17  No Primary Key, Incorrect Datatype, Redundant Column, Multivalued Attribute
8 What.CD HipHop 3 No Primary Key, Multivalued Attribute
9  Snap Meme-Tracker 1 Missing Timezone
10  NIPS papers 4  Generic Primary Key, Denormalized Table
11 US Wildfires 2 No Primary Key, Redundant Column
12 Que from crossvalidated StackExc 3 No Primary Key
13 The History of Baseball 41 No Primary Key, Data in Metadata, Incorrect Datatype, Multivalued Attribute
14  Twitter US Airline Sentiment 2 Denormalized Table
15 Hilary Clinton Emails 8  Generic Primary Key, Incorrect Datatype
16  SEPTA - Regional Rail 2 Incorrect Datatype, Missing Timezone
17 US Consumer finance Complaints 9  No Primary Key, Incorrect Datatype, Multivalued Attribute, Denormalized Table
18  1st GOP Debate Twitter Sentiment 1 Generic Primary Key
19  SF Salaries 2 Generic Primary Key, Denormalized Table
20  Freight Matrix Transportation 5 No Primary Key, Data in Metadata, Redundant Column
21 WDIdata 9  No Primary Key, Multivalued Attribute
22 Amazon Movie Reviews Dataset 2 No Primary Key, Multivalued Attribute
23 UK Arms Export License 3 No Primary Key
24  Amazon Fine Food Reviews 1  Generic Primary Key
25  Stackoverflow Question Favourites 1 Multivalued Attribute
26 Iron March 1 Redundant Column
27  C# Methods with Doc. Comments 4 Generic Primary Key
28  Pesticide Data Program 13 No Primary Key, Incorrect Datatype, Redundant Column
29  Monty Python Flying Circus 4 No Primary Key, Missing Timezone, Denormalized Table
30 Twitter Conv. about Black Panther 0o -
31 2016 US Election 6 No Primary Key, Data in Metadata, Denormalized Table
Total 200

Table 6: Data Analysis Results A list of SQLite databases from Kaggle [26] with the APs detected by applying the data analysis rules in
SQLCHECK.

GitHub Repo Stars Contr. Domain #AP  APs Reported R A
Globaleaks 741 22 Whistleblower 10 2 (No Foreign Key, Enumerated Types) v v
Django-oscar 4.1k 217  E-commerce 12 2 (Rounding Errors, Index Overuse) v v
Saleor 6.5k 139  E-commerce 10 2 (Multivalued Attribute, Index Overuse) v v
Django-crm 654 17 CRM 8 4 (Index Underuse, Index Overuse, Pattern Matching, No Domain Constraint) v v
django-cms 7.2k 398 CMS 11 1 (Index Overuse) v v
wagtail-autocomplete 41 7  Utility 1 1 (Pattern Matching) v v
shuup 1.1k 41  E-commerce 6 1 (Index Overuse) v v
Pretix 821 113 E-commerce 11 3 (Index Overuse, Pattern Matching, No Domain Constraint) v v
Django-countries 755 35 Library 1 1 (Multivalued Attribute) v v
micro-finance 55 8 Finance 8 4 (Index Underuse, Index Overuse, Pattern Matching, No Domain Constraint) v* v
bootcamp 1.9k 24  Social Ntwrk 5 1 (Index Overuse) v v
NetBox 6.2k 118 DCIM 9 3 (Index Overuse, Pattern Matching, No Domain Constraint) v v
Ralph 1.3k 43 Asset Mgmt 12 3 (Index Overuse, Pattern Matching, No Domain Constraint) voox
Tiaga 6.5k 139  E-commerce 9 2 (Index Overuse, No Domain Constraint) v X
wagtail 8.4k 397 CMS 10 2 (Index Overuse, No Domain Constraint) v X
Total 123 32

Table 7: Evaluation of sQLCHECK on real-world applications on GitHub: A list of open-source database applications on GitHub along
with their popularity and domain, the APs (counts and names) detected by sQLCHECK, whether these APs have been reported (R) as GitHub
Issues and acknowledged (A) by the contributors.



Supported Features DETA SQLCheck
Index creation/destruction suggestions v
Type of index to create based on workload

Materialized view creation/destruction suggestions

Suggestions tailored based on hardware constraints, workload, & data distribution
Table partitioning suggestions

Column type suggestions based on data

Query refactoring suggestions

Alternate logical schema design suggestions

Logical errors that may invalidate data integrity X

Table 8: SQLCheck v/s Microsoft DETA [40] Comparison of the core features of SQLCHECK against a physical design tuning advisor.

XX X NSNS S

NNSNS X X XX
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