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Abstract—In this paper, a model predictive current controller
(MPCC) is proposed for short-pitched mutually coupled switched
reluctance machines (MCSRMs) using a three-phase voltage
source converter (VSC) to achieve fast dynamics and advanced
current tracking ability. Due to strong mutually coupling between
phases, to our knowledge, MPCC for MCSRMs has not been
studied yet. A two-order flux-based prediction model of the
MCSRMs using the VSC is presented with standard state space
equations in discrete-time domain, based on which, the current
regulation is achieved by solving a constrained optimization
problem. With the receding optimal duty ratio input, MPCC
demonstrates good current tracking ability, which is verified
by simulations with a three-phase, sinusoidal excitation 12/8
MCSRM. Compared to hysteresis current control, the current
response with MPCC bears lower current ripples and a fixed
switching frequency.

I. INTRODUCTION

Switched reluctance machines (SRMs) are currently emerg-

ing as promising solutions to electric vehicles, domestic appli-

ances and industrial applications, primarily due to their rigid-

ity, non-reliance on rare-earth permanent magnet materials,

and extended-speed constant-power range [1]–[3]. Mutually

coupled switched reluctance machines (MCSRMs) inherit im-

portant benefits of conventional switched reluctance machines

(SRMs) and offer further advantages, such as lower copper

and iron losses, higher fault tolerance, flexible drive schemes

and less sensitivity to magnetic saturation [4]–[7].

One distinctive advantage of the MCSRMs is that they can

be driven by a three-phase voltage source converter (VSC)

with either bipolar square-waveform or sinusoidal-waveform

current excitation [8] because at least two phases should be

conducting to generate mutual inductances. The closest work

of current control for MCSRM with VSC is done in [9] using

sinusoidal current excitation for acoustic noise reduction for

MCSRMs.

Traditionally, PWM-based control or hysteresis control

methods are adopted to manipulate the converter switches

in order to generate desired terminal voltages for machines.

The hysteresis control method is widely employed due to

its simplicity, fast dynamic response, and independence of

motor models but suffers from variable switching frequency
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Fig. 1 Winding distribution and flux lines of the conventional
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Fig. 2 Winding distribution and flux lines of the short-pitched

MCSRM.

and much higher sampling rate. The fixed-switching-frequency

sliding mode control method was then incorporated into both

SRMs and MCSRMs [10], [11] to address the problem. If the

inductance is small and back EMF is low at the lower speeds,



the machine often suffers from high current ripples [12].

Model predictive control (MPC) techniques show promise in

optimizing switching frequency and current ripples simultane-

ously. MPC method is capable of deriving the optimal control

signals for the switches in a more intuitive way, i.e., solving

the cost function to minimize the tracking errors in a specified

sampling period. One of the successful MPC applications for

power converters is the finite control set MPC, which takes

advantage of the converter’s feature of having finite switching

states. Thus, through the finite computation of possible future

switching states, then selecting the one with the minimum cost

for the next stage, the optimal problem can be solved. Details

of single-step or multi-step prediction of the future switching

states for power converters can be found in [13].

In addition to the application for power converters, finite

control set MPC has also been explored in electric machines

with predicting the optimal duty ratio for each phase. Specif-

ically, MPC has been an attractive technique for current and

torque control for SRMs with the advantage of easy inclusion

of model nonlinearities and constraints [14]–[19] where the

torque and current ripples and switching frequency can be

minimized. However, this method suffers from a heavy com-

putation burden and high reliance on an accurate model. To

overcome the drawbacks, [17] proposed the deadbeat (single-

step) predictive current controller to predict the duty ratio for

the asymmetric converter with accurate inductance profiles.

Paper [14] developed a stochastic MPC with adaptive model

calibration to address the model uncertainty and measurement

noise issue. Compared to the conventional SRMs, MCSRMs

bear more mutual coupling between phases due to the utiliza-

tion of VSC, which makes it a worthwhile attempt to apply

MPC for MCSRMs. However, the relevant MPC technique

for MCSRMs has yet to be explored. And previous works for

SRMs with asymmetric bridge converter cannot be directly

applied to MCSRMs.

In this paper, a finite control set MPCC is firstly developed

for a short-pitched MCSRM ( Fig. 2) to gain fast dynamic and

accurate current tracking. In section II, a two-order flux-based

model of the MCSRM and the VSC is presented with state-

space equations. Section III presents the problem formulation

and derivation of the optimal solution to the constrained finite

control set MPC problem. Followed by that, the effectiveness

of MPCC, the selection of switching frequency and predic-

tion horizon are discussed through simulation in section IV.

Conclusions are given in section V.

II. FLUX-BASED DYNAMIC MODEL OF THE MCSRMS

In this section, a three-phase 12/8 short-pitched MCSRM

has been selected as the plant. Finite Element Analysis (FEA)

is conducted to depict the electromagnetic characteristics of

the investigated machine. Fig. 3 shows the self inductance

and mutual inductance profiles of the MCSRM under single-

phase constant current excitation and three-phase sinusoidal

current excitation. It can be observed that both self and

mutual inductance profiles are almost overlapped under the

two different excitation ways, which provides the proof that
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Fig. 3 Inductance profiles under two current excitations.

the investigated machine works in the linear magnetic region

around the rated operating current of 15A, and thus can be

modeled as a linear time variant drive system.

The previous modeling of the MCSRM for current control

adopts current-based dynamic equations [10], [20]. However,

the terms to describe the derivative of the inductances make

it inferior to apply MPC methods compared to a flux-based

model [16], which is valid for MCSRMs because there are

more similar terms involved considering mutual inductance.

Therefore, in this paper we use the flux-based model to form

the MPC given by

ψ̇(t) = −RsGψ(t) + v(t), (1)

i(t) = Gψ(t), (2)

where ψ(t) = [ψA ψB ψC ]
T , v(t) = [vAO vBO vCO]

T , i(t) =
[iA iB iC ]

T are the three-phase flux linkage, terminal voltages

and phase currents, respectively; Rs is stator ohmic resistance

for each phase;

G =







LA MAB MAC

MAB LB MBC

MAC MBC LC







−1

:=







G11 G12 G13

G21 G22 G23

G31 G32 G33






.

The variables included in G are defined as: Lk are

self-inductance of kth phase (k = A,B,C), respectively;

MAB ,MAC and MBC are the mutual inductances between

adjacent conducting phases. It should be noted that the induc-

tances are associated with phase current and rotor position,

e.g., Lk = Lk(ik, θk). Considering that the investigated MC-

SRM is less sensitive to magnetic saturation, Lk ≈ Lk(θk).
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Fig. 4 Three phase MCSRM driven by standard voltage source

converter.

Different from the conventional SRMs where each stator

winding is individually controlled by corresponding bridge

leg of the asymmetric bridge converter, the modeling of

the MCSRM needs to be combined with the voltage source

converter (Fig. 4) given that the three-phase terminal voltages

are coupled by the converter topology. In order to derive the

control input [vAN vBN vCN ]T for the VSC, the averaged

model of the VSC described by the three-phase duty ratio

D = [dA dB dC ]
T is given by
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
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Vdc. (3)

For now, the flux-based state-space model of the three-

phase drive system has been established by substituting the

voltage vector in (1) with (3). However, the modeling is not

accurate because a critical feature of the drive system is not

included, that is, iA + iB + iC = 0. In other words, the three-

phase flux linkage associated with three-phase currents are not

independent of each other. Instead, one state variable can be

expressed by the combination of the rest two state variables.

In this case, the following equation can be derived:

ψC(t) = H
[

ψA(t) ψB(t)
]T
, (4)

where H = [MAC − LC ,MBC − LC ] .

[

LA −MAC MAB −MAC

MAB −MBC LB −MBC

]−1

:=

[

H11 H12

H21 H22

]

.

Then, the state space model in continuous time domain can

be simplified as

ẋ(t) = Acx(t) +Bcu(t), (5)

y(t) = Ccx(t), (6)

where

x =

[

ψA(t)

ψB(t)

]

; y =

[

iA(t)

iB(t)

]

;u =







dA(t)

dB(t)

dC(t)






;

Cc =

[

G11 +G13H11 G12 +G13H12

G21 +G23H11 G22 +G23H12

]

;

Bc =

[

2/3 −1/3 −1/3

−1/3 2/3 −1/3

]

Vdc; Ac = −RsCc;

and Vdc is the DC bus voltage.

III. MODEL PREDICTIVE CURRENT CONTROL FOR THE

MCSRM

For digital implement of MPC approach, the continuous-

time state-space description (5) and (6) of the plant is refor-

mulated in discrete time domain with the standard form

x(k + 1) = A(k)x(k) +B(k)u(k); (7)

yc(k) = Cc(k)x(k); (8)

where x(k), u(k), yc(k) are the two phase flux linkage, duty

ratio and phase current at time instant k; A = eAcTs ;B =
∫ Ts

0
eAcτdτBc; Ts is the sampling period. Considering the

motor control system is fast varying, the coefficient matrices

in discrete time domain can be approximated by A ≈ 1 +
AcTs;B ≈ TsBc.

Before receding the prediction horizon, some modifications

are made to the discrete dynamic model. Given that the system

may have nonzero-mean input, a generalized incremental

model for (7) and (8) is given to improve the minimization

accuracy by

4x(k + 1) = A(k)4 x(k) +B(k)4 u(k) (9)

4yc(k) = Cc(k)4 x(k); (10)

where 4x(k) = x(k)−x(k−1), 4yc(k) = yc(k)−yc(k−1),
4u(k) = u(k)− u(k − 1).

Based on the differential equation (9) and provided with a

predictive horizon of p and a control horizon of m (m ≤ p),
the system output yc(k + i | k) at time instant k + i can

be derived after p-step iterations can be derived. It should be

noted that coefficient matrices A(k+ i | k), B(k+ i | k), and

C(k + i | k) are associated with the estimated inductances

L(k + i | k) and M(k + i | k), that is, within the prediction

horizon the inductances are updated.

The target of the model predictive current controller for the

MCSRM is to keep the current response precisely tracking

the reference current while achieving lower torque ripples.

Accordingly, the cost function is set as

J =

p
∑

i=1

‖Γy,i(yc(k + i | k)− r(k + i))‖2

+

m
∑

i=1

‖Γu,i 4 u(k + i− 1))‖2, (11)



where Γy,i = diag(Γy1,i,Γy2,i) is weight factor matrix for

the two phase current tracking errors at predicted time instant

i; Γu,i = diag(Γu1,i,Γu2,i,Γu3,i) is the weight factor matrix

for the control input at predicted time instant i; r(k+ i) is the

current reference sequence. In this paper, the current reference

are the two phase sinusoidal waves. Thus, r(k + i) can be

presented as r1ref (i+k) = 14.5sin(4(θk−δ+iTswk)/180∗π)
and r2ref (i+ k) = 14.5sin(4(θk − δ+30+ iTswk)/180 ∗ π),
in which θk and wk are the mechanical position and speed of

the rotor at time instant k; δ is the leading angle.

So far, the optimal problem is formulated as finding the best

three-phase duty ratio by minimizing the cost function (11).

The control input of the model belongs to the range [−1, 1].
Hence, the optimization problem in this paper is a constrained

finite-control-set MPC problem. Therefore, the optimal control

input 4U∗(k) can be obtained by solving the cost function

(12) subject to the discrete-time model (9) and (10) with

respect to the input constraint which belongs to [−1, 1], i.e.,

umin = −1, umax = 1:

min
4U(k)

J(x(k),4U(k),m, p) (12)

subject to 1 ≥ U(k) ≥ −1.

Eventually, the first component of 4U∗(k), i.e., 4u∗(k),
will be used to calculate the control input u(k) and be applied

to the VSC.

4u∗(k) =
[

I3×3 0 · · · 0
]

4U∗(k) (13)

u(k) = u(k − 1) +4u∗(k) (14)

IV. SIMULATION

In this section, the performance of the proposed model

predicted current controller is first presented under different

prediction horizon sizes and different control frequencies. The

effectiveness of the controller is compared to hystersis current

controller in terms of root mean square error (RMSE) and root

mean square (RMS) value of the current and averaged torque.

The RMSE, RMS current and averaged torque are defined as

IRMSE =

√

1

45

∫ 45

0

(iref − ik)2dθ (15)

IRMS =

√

1

45

∫ 45

0

i2kdθ (16)

Tave =

√

1

45

∫ 45

0

Tkdθ (17)

The current references are the three phase sinusoidal wave-

form given by










irefA = Im sin[0.5Np(ωt− δ)]

irefB = Im sin[0.5Np(ωt− 30◦ − δ)]

irefC = Im sin[0.5Np(ωt+ 30◦ − δ)]

(18)

The nominal current of the MCSRM is 15A and the stator

resistance for each phase is 0.3Ω. During the simulation, the

PWM frequency for the MPC fs is selected to be 10 kHz,

20 kHz, 30 kHz and 50 kHz for the purpose of comparison,

which is the same as the control frequency.

A. Selection of switching frequency and prediction horizon

For a clear comparison, the prediction horizon and control

horizon are of the same size, i.e., m = p. Though the weight

factors in the cost function are important when solving the

QP optimization problem, one can easily select appropriate

weight factors to have the current response follow the current

reference. In the following simulation results, the weight

factors Γy,i for limiting the current errors are selected to

vary from 200 to 500; and weight factors Γu,i for limiting

the control input variations are selected to be 0.1 and keep

unchanged. Thus, the weights in the following cases are not

listed specifically.

Fig. 5 compares the simulation results at 500 rpm when the

prediction horizon is 5 and control frequency is selected to be

10 kHz, 20 kHz, 30 kHz and 50 kHz. It is easy to understand

that with higher switching frequency, the current tracking

can be achieved with smaller variations, and thus the current

response bears lower ripples and lower RMSE values. This

is also demonstrated by Fig. 5. Besides, the torque response

improves significantly as the switching frequency increases.

This is directly resulted from good current response. For this

reason, in order to achieve better current or torque performance

regardless the power converter cost, increasing the switching

frequency is a good method.

Fig. 6 is trying to find out the relation between the prediction

horizon and performance quality at fixed switching frequency

fs =20 kHz. As can be seen from Fig. 6, none of the four

cases stands out from the rest with significantly low current

ripples. The simulation results show that the current ripples are

slightly lower when Np = 5. This is because the tracking error

would accumulate when the model doesn’t fully match with

the real plant. In this case, longer prediction horizon cannot

gurantee the tracking accuracy. Likewise, too short prediction

horizon is not able to sufficiently foresee the future states,

and thus would fail in tracking as well. Additionally, longer

prediction horizon leads to longer computation time and more

requirements on the digital processor. Therefore, the prediction

horizon should be carefully selected before implementing in

the hardware.

The overall simulation evaluation at 1000 rpm are presented

in Fig. 7. There is no doubt that with the highest switching

frequency of 50 kHz, the current response has the lowest

RMSE and the average torque curve is the steadiest whatever

the prediction horizon is. However, for the most industrial

application, 50-kHz switching frequency renders higher cost

compared to the commonly adopted 10k-20kHz frequency.

The trade-off between higher tracking accuracy and lower

computation cost can be achieved when the tracking error

falls in the tolerant range while the switching frequency and

prediction horizon are appropriately selected. For example, in

this simulation, Np = 5 and fs = 20kHz can be a solution to

maintain comparable performance.

B. Simulation comparison with hysteresis current control

Though Section A already demonstrates the current tracking

ability of the finite control set MPC, it would be more
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Fig. 5 System response with finite control set MPCC under

p = 5.
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Fig. 6 System response with finite control set under fs =
20kHz.
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Fig. 7 System response evaluation under MPCC at 1000 rpm.

reasonable to compare it with a commonly applied controller

for the machine. Both the finite control set MPC and hysteresis

current control are good options in terms of fast dynamics and

robustness.

Fig. 8 shows the current response with hysteresis current

controller at 500 rpm when switching frequencies is limited

to be no higher than 20 kHz by regulating the sampling rate

and hysteresis band. Compared with Fig. 5, it is noticeable that

both methods are capable of current tracking for the MCSRM

while current response with MPCC has lower RMSE and a

fixed switching frequency due to PWM technique. Hence,

MPCC method shows great potential for further application

on MCSRMs. Since this paper is the first trial of applying

finite control set MPC to MCSRMs, more improvements

such as reducing the computation burden and more accurately

estimating the model can be explored.

Three Phase Current Reference and Response (A)

Total Electromagnetic Torque Response (Nm)

0.056 0.06 0.064 0.068 0.072 0.76
Time (s)

0

0.5

1

1.5

-20

-10

0

10

20

2

(a) fs = 10 kHz

Fig. 8 System response with hysteresis control at 500rpm.

V. CONCLUSION AND FUTURE WORK

In this paper, a model predictive current control method is

firstly proposed for the short-pitched MCSRMs using VSC

to realize accurate current control. A two-order flux-based

prediction model for the MCSRM combined with the VSC

is derived with discrete state-space equations. Based on the

prediction model, the optimal problem is formed aiming at

minimizing the current error and duty cycle variation with

the constraint on the duty ratio. By solving the constrained

optimal control problem, the control input for the drive system

is derived. Through simulation, the selection of switching

frequency and prediction horizon has been discussed, and

the current tracking ability for the MPCC is demonstrated.

Compared to hysteresis current control, the current response

with MPCC bears lower current ripples and a fixed switching

frequency. The future work on this topic can be explorations on

reducing the computation burden while maintaining excellent

current tracking performance.
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