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Abstract

Markov chain Monte Carlo (MCMC) methods generate samples that are asymptoti-
cally distributed from a target distribution of interest as the number of iterations
goes to infinity. Various theoretical results provide upper bounds on the distance
between the target and marginal distribution after a fixed number of iterations.
These upper bounds are on a case by case basis and typically involve intractable
quantities, which limits their use for practitioners. We introduce L-lag couplings to
generate computable, non-asymptotic upper bound estimates for the total variation
or the Wasserstein distance of general Markov chains. We apply L-lag couplings
to the tasks of (i) determining MCMC burn-in, (ii) comparing different MCMC al-
gorithms with the same target, and (iii) comparing exact and approximate MCMC.
Lastly, we (iv) assess the bias of sequential Monte Carlo and self-normalized
importance samplers.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms generate Markov chains that are invariant with
respect to probability distributions that we wish to approximate. Numerous works help understanding
the convergence of these chains to their invariant distributions, hereafter denoted by π. Denote
by πt the marginal distribution of the chain (Xt)t≥0 at time t. The discrepancy between πt and π
can be measured in different ways, typically the total variation (TV) distance or the Wasserstein
distance in the MCMC literature. Various results provide upper bounds on this distance, of the form
C(π0)f(t), where C(π0) < ∞ depends on π0 but not on t, and where f(t) decreases to zero as t
goes to infinity, typically geometrically; see Section 3 in [48] for a gentle survey, and [17, 13, 18]
for recent examples. These results typically relate convergence rates to the dimension of the state
space or to various features of the target. Often these results do not provide computable bounds on
the distance between πt and π, as C(π0) and f(t) typically feature unknown constants; although see
[49] where these constants can be bounded analytically, and [12] for examples where they can be
numerically approximated.

Various tools have been developed to assess the quality of MCMC estimates. Some focus on the
behaviour of the chains assuming stationarity, comparing averages computed within and across chains,
or defining various notions of effective sample sizes based on asymptotic variance estimates (e.g.
[20, 21, 19, 56], [46, Chapter 8]). Few tools provide computable bounds on the distance between πt
and π for a fixed t; some are mentioned in [6] for Gibbs samplers with tractable transition kernels.
Notable exceptions, beyond [12] mentioned above, include the method of [31, 32] which relies on
coupled Markov chains. A comparison with our proposed method will be given in Section 2.4.

We propose to use L-lag couplings of Markov chains to estimate the distance between πt and π
for a fixed time t, building on 1-lag couplings used to obtain unbiased estimators in [23, 29]. The
discussion of [29] mentions that upper bounds on the TV between πt and π can be estimated with such
couplings. We generalize this idea to L-lag couplings, which provide sharper bounds, particularly
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for small values of t. The proposed technique extends to a class of probability metrics [52] beyond
TV. We demonstrate numerically that the bounds provide a practical assessment of convergence for
various popular MCMC algorithms, on either discrete or continuous and possibly high-dimensional
spaces. The proposed bounds can be used to (i) determine burn-in period for MCMC estimates,
to (ii) compare different MCMC algorithms targeting the same distribution, or to (iii) compare
exact and approximate MCMC algorithms, such as Unadjusted and Metropolis-adjusted Langevin
algorithms, providing a computational companion to studies such as [18]. We also (iv) assess the bias
of sequential Monte Carlo and self-normalized importance samplers.

In Section 2 we introduce L-lag couplings to estimate metrics between marginal and invariant
distributions of a Markov chain. We illustrate the method on simple examples, discuss the choice of
L, and compare with the approach of [31]. In Section 3 we consider applications including Gibbs
samplers on the Ising model and gradient-based MCMC algorithms on log-concave targets. In Section
4 we assess the bias of sequential Monte Carlo and self-normalized importance samplers. All scripts
in R are available at https://github.com/niloyb/LlagCouplings.

2 L-lag couplings

Consider two Markov chains (Xt)t≥0, (Yt)t≥0, each with the same initial distribution π0 and Markov
kernel K on (Rd,B(Rd)) which is π-invariant. Choose some integer L ≥ 1 as the lag parameter. We
generate the two chains using Algorithm 1. The joint Markov kernel K̄ on (Rd×Rd,B(Rd×Rd)) is
such that, for all x, y, K̄((x, y), (·,Rd)) = K(x, ·), and K̄((x, y), (Rd, ·)) = K(y, ·). This ensures
that Xt and Yt have the same marginal distribution at all times t. Furthermore, K̄ is constructed
such that the pair of chains can meet exactly after a random number of steps, i.e. the meeting time
τ (L) := inf{t > L : Xt = Yt−L} is almost surely finite. Finally we assume that the chains remain
faithful after meeting, i.e. Xt = Yt−L for all t ≥ τ (L).
Various constructions for K̄ have been derived in the literature: for instance coupled Metropolis-
Hastings and Gibbs kernels in [31, 29], coupled Hamiltonian Monte Carlo kernels in [36, 5, 26], and
coupled particle Gibbs samplers in [9, 3, 28].

Algorithm 1: Sampling L-lag meeting times

Input: lag L ≥ 1, initial distribution π0, single kernel K and joint kernel K̄
Output: meeting time τ (L), and chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
Initialize: generate X0 ∼ π0, Xt|Xt−1 ∼ K(Xt−1, ·) for t = 1, . . . , L, and Y0 ∼ π0
for t > L do

Sample (Xt, Yt−L)|(Xt−1, Yt−L−1) ∼ K̄((Xt−1, Yt−L−1), ·)
if Xt = Yt−L then return τ (L) := t, and chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L

end

We next introduce integral probability metrics (IPMs, e.g. [52]).
Definition 2.1. (Integral Probability Metric). Let H be a class of real-valued functions on a
measurable space X . For all probability measures P,Q on X , the corresponding IPM is defined as:

dH(P,Q) := sup
h∈H

∣∣∣EX∼P [h(X)]− EX∼Q[h(X)]
∣∣∣. (1)

Common IPMs include total variation distance dTV with H := {h : supx∈X |h(x)| ≤ 1/2}, and
1-Wasserstein distance dW with H = {h : |h(x) − h(y)| ≤ dX (x, y), ∀x, y ∈ X}, where dX is a
metric onX [42]. Our proposed method applies to IPMs such that suph∈H |h(x)−h(y)| ≤MH(x, y)
for all x, y ∈ X , for some computable function MH on X ×X . For dTV we have MH(x, y) = 1, and
for dW we have MH(x, y) = dX (x, y).

With a similar motivation for the assessment of sample approximations, and not restricted to the
MCMC setting, [25] considers a restricted class of functions H to develop a specific measure
of sample quality based on Stein’s identity. [35, 10] combine Stein’s identity with reproducing
kernel Hilbert space theory to develop goodness-of-fit tests. [24] obtains further results and draws
connections to the literature on couplings of Markov processes. Here we directly aim at upper bounds
on the total variation and Wasserstein distance. The total variation controls the maximal difference
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between the masses assigned by πt and π on any measurable set, and thus directly helps assessing the
error of histograms of the target marginals. The 1-Wasserstein distance controls the error made on
expectations of 1-Lipschitz functions, which with X = Rd and dX (x, y) = ‖x− y‖1 (the L1 norm
on Rd) include all first moments.

2.1 Main results

We make the three following assumptions similar to those of [29].
Assumption 2.2. (Marginal convergence and moments.) For all h ∈ H, as t → ∞, E[h(Xt)] →
EX∼π[h(X)]. Also, ∃η > 0, D <∞ such that E[MH(Xt, Yt−L)2+η] ≤ D for all t ≥ L.

The above assumption is on the marginal convergence of the MCMC algorithm and on the moments
of the associated chains. The next assumptions are on the coupling operated by the joint kernel K̄.
Assumption 2.3. (Sub-exponential tails of meeting times.) The chains are such that the meeting time
τ (L) := inf{t > L : Xt = Yt−L} satisfies P( τ

(L)−L
L > t) ≤ Cδt for all t ≥ 0, for some constants

C <∞ and δ ∈ (0, 1).

The above assumption can be relaxed to allow for polynomial tails as in [37]. The final assumption
on faithfulness is typically satisfied by design.

Assumption 2.4. (Faithfulness.) The chains stay together after meeting: Xt = Yt−L for all t ≥ τ (L).

We assume that the three assumptions above hold in the rest of the article. The following theorem is
our main result.
Theorem 2.5. (Upper bounds.) For an IPM with function set H and upper bound MH, with the
Markov chains (Xt)t≥0, (Yt)t≥0 satisfying the above assumptions, for any L ≥ 1, and any t ≥ 0,

dH(πt, π) ≤ E
[ ⌈ τ(L)−L−t

L

⌉∑
j=1

MH(Xt+jL, Yt+(j−1)L)
]
. (2)

Here dxe denotes the smallest integer above x, for x ∈ R. When d(τ (L) − L − t)/Le ≤ 0, the
sum in inequality (2) is set to zero by convention. We next give an informal proof. Seeing the
invariant distribution π as the limit of πt as t → ∞, applying triangle inequalities, recalling that
dH(πs, πt) ≤ E[MH(Xs, Xt)] for all s, t, we obtain

dH(πt, π) ≤
∞∑
j=1

dH(πt+jL, πt+(j−1)L) ≤
∞∑
j=1

E[MH(Xt+jL, Yt+(j−1)L)]. (3)

The right-hand side of (2) is retrieved by swapping expectation and limit, and noting that terms
indexed by j > d(τ (L) − L − t)/Le are equal to zero by Assumption 2.4. The above reasoning
highlights that increasing L leads to sharper bounds through the use of fewer triangle inequalities. An
alternate, formal proof based on an unbiased estimation argument is given in supplementary material.

Theorem 2.5 gives the following bounds for dTV and dW,

dTV(πt, π) ≤ E
[

max(0,
⌈τ (L) − L− t

L

⌉
)
]
, (4)

dW(πt, π) ≤ E
[ ⌈ τ(L)−L−t

L

⌉∑
j=1

dX (Xt+jL, Yt+(j−1)L)
]
. (5)

For the total variation distance, the boundedness part of Assumption 2.2 is directly satisfied. For the
1-Wasserstein distance on Rd with dX (x, y) = ‖x− y‖1 (the L1 norm on Rd), the boundedness part
is equivalent to a uniform bound of (2 + η)-th moments of the marginal distributions for some η > 0.

We emphasize that the proposed bounds can be estimated directly by running Algorithm 1 N times
independently, and using empirical averages. All details of the MCMC algorithms and their couplings
mentioned below are provided in the supplementary material.
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2.2 Stylized examples

2.2.1 A univariate Normal

We consider a Normal example where we can compute total variation and 1-Wasserstein distances
(using the L1 norm on R throughout) exactly. The target π is N (0, 1) and the kernel K is that of a
Normal random walk Metropolis-Hastings (MH) with step size σMH = 0.5. We set the initial distri-
bution π0 to be a point mass at 10. The joint kernel K̄ operates as follows. Given (Xt−1, Yt−L−1),
sample (X?, Y ?) from a maximal coupling of p := N (Xt−1, σ

2
MH) and q := N (Yt−L−1, σ

2
MH).

This is done using Algorithm 2, which ensures X? ∼ p, Y ? ∼ q and P(X? 6= Y ?) = dTV(p, q).

Algorithm 2: A maximal coupling of p and q
Sample X∗ ∼ p, and W ∼ U(0, 1)
if p(X∗)W ≤ q(X∗) then set Y ∗ = X∗ and return (X∗, Y ∗)

else sample Ỹ ∼ q and W̃ ∼ U(0, 1) until q(Ỹ )W̃ > p(Ỹ ). Set Y ∗ = Ỹ and return (X∗, Y ∗)

Having obtained (X?, Y ?), sample U ∼ U(0, 1); set Xt = X? if U < π(X?)/π(Xt−1); otherwise
set Xt = Xt−1. With the same U , set Yt−L = Y ? if U < π(Y ?)/π(Yt−L−1); otherwise set
Yt−L = Yt−L−1. Such a kernel K̄ is a coupling of K with itself, and Assumption 2.4 holds by
design. The verification of Assumption 2.3 is harder but can be done via drift conditions in various
cases; we refer to [29] for more discussion.

Figure 1 shows the evolution of the marginal distribution of the chain, and the TV and 1-Wasserstein
distance upper bounds. We use L = 1 and L = 150. For each L, N = 10000 independent runs of
Algorithm 1 were performed to estimate the bounds in Theorem 2.5 by empirical averages. Exact
distances are shown for comparison. Tighter bounds are obtained with larger values of L, as discussed
further in Section 2.3.
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Figure 1: Marginal distributions of the chain (left), and upper bounds on the total variation (middle)
and the 1-Wasserstein distance (right) between πt and π, for a Metropolis-Hastings algorithm targeting
N (0, 1) and starting from a Dirac mass at 10. With L = 150 the estimated upper bounds for both are
close to the exact distances.

2.2.2 A bimodal target

We consider a bimodal target to illustrate the limitations of the proposed technique. The target is
π = 1

2N (−4, 1) + 1
2N (4, 1), as in Section 5.1 of [29]. The MCMC algorithm is again random walk

MH, with σMH = 1, π0 = N (10, 1). Now, the chains struggle to jump between the modes, as seen in
Figure 2 (left), which shows a histogram of the 500th marginal distribution from 1000 independent
chains. Figure 2 (right) shows the TV upper bound estimates for lags L = 1 and L = 18000
(considered very large), obtained with N ∈ {1000, 5000, 10000} independent runs of Algorithm 1.

With L = 18000, we do not see a difference between the obtained upper bounds, which suggests
that the variance of the estimators is small for the different values of N . In contrast, the dashed
line bounds corresponding to lag L = 1 are very different. This is because, over 1000 experiments,
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the 1-lag meetings always occurred quickly in the mode nearest to the initial distribution. However,
over 5000 and 10000 experiments, there were instances where one of the two chains jumped to the
other mode before meeting, resulting in a much longer meeting time. Thus the results obtained with
N = 1000 repeats can be misleading. This is a manifestation of the estimation error associated with
empirical averages, which are not guaranteed to be accurate after any fixed number N of repeats. The
shape of the bounds obtained with L = 18000, with a plateau, reflects how the chains first visit one
of the modes, and then both.
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Figure 2: Metropolis-Hastings algorithm with π0 ∼ N (10, 1), σMH = 1 on a bimodal target. Left:
Histogram of the 500th marginal distribution from 1000 independent chains, and target density in full
line. Right: Total variation bounds obtained with lags L ∈ {1, 18000} andN ∈ {1000, 5000, 10000}
independent runs of Algorithm 1.

2.3 Choice of lag L

Section 2.2.2 illustrates the importance of the choice of lag L. Obtaining τ (L) requires sampling L
times from K and τ (L) − L from K̄. When L gets large, we can consider XL to be at stationarity,
while Y0 still follows π0. Then the distribution of τ (L) − L depends entirely on K̄ and not on L. In
that regime the cost of obtaining τ (L) increases linearly in L. On the other hand, if L is small, the
cost might be dominated by the τ (L) − L draws from K̄. Thus increasing L might not significantly
impact the cost until the distribution of τ (L) − L becomes stable in L.

The point of increasing L is to obtain sharper bounds. For example, from (4) we see that, for fixed t,
the variable in the expectation takes values in [0, 1] with increasing probability as L→∞, resulting
in upper bounds more likely to be in [0, 1] and thus non-vacuous. The upper bound is also decreasing
in t. This motivates the strategy of starting with L = 1, plotting the bounds as in Figure 1, and
increasing L until the estimated upper bound for dTV(π0, π) is close to 1.

Irrespective of the cost, the benefits of increasing L eventually diminish: the upper bounds are loose
to some extent since the coupling operated by K̄ is not optimal [54]. The couplings considered in
this work are chosen to be widely applicable but are not optimal in any way.

2.4 Comparison with Johnson’s diagnostics

The proposed approach is similar to that proposed by Valen Johnson in [31], which works as
follows. A number c ≥ 2 of chains start from π0 and evolve jointly (without time lags), such
that they all coincide exactly after a random number of steps Tc, while each chain marginally
evolves according to K. If we assume that any draw from π0 would be accepted as a draw from
π in a rejection sampler with probability 1 − r, then the main result of [31] provides the bound:
dTV(πt, π) ≤ P(Tc > t)× (1− rc)−1. As c increases, for any r ∈ (0, 1) the upper bound approaches
P(Tc > t), which itself is small if t is a large quantile of the meeting time Tc. A limitation of this
result is its reliance on the quantity r, which might be unknown or very close to one in challenging
settings. Another difference is that we rely on pairs of lagged chains and tune the lag L, while the
tuning parameter in [31] is the number of coupled chains c.
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3 Experiments and applications

3.1 Ising model

We consider an Ising model, where the target is defined on a large discrete space, namely a square
lattice with 32 × 32 sites (each site has 4 neighbors) and periodic boundaries. For a state x ∈
{−1,+1}32×32, we define the target probability πβ(x) ∝ exp(β

∑
i∼j xixj), where the sum is over

all pairs i, j of neighboring sites. As β increases, the correlation between nearby sites increases and
single-site Gibbs samplers are known to perform poorly [39]. Difficulties in the assessment of the
convergence of these samplers are in part due to the discrete nature of the state space, which limits
the possibilities of visual diagnostics. Users might observe trace plots of one-dimensional statistics
of the chains, such as x 7→

∑
i∼j xixj , and declare convergence when the statistic seems to stabilize;

see [55, 60] where trace plots of summary statistics are used to monitor Markov chains.

Here we compute the proposed upper bounds for the TV distance for two algorithms: a single site
Gibbs sampler (SSG) and a parallel tempering (PT) algorithm, where different chains target different
πβ with SSG updates, and regularly attempt to swap their states [22, 53]. The initial distribution
assigns −1 and +1 with equal probability on each site independently. For β = 0.46, we obtain TV
bounds for SSG using a lag L = 106, and N = 500 independent repeats. For PT we use 12 chains,
each targeting πβ with β in an equispaced grid ranging from 0.3 to 0.46, a frequency of swap moves
of 0.02, and a lag L = 2× 104. The results are in Figure 3, where we see a plateau for the TV bounds
on SSG and faster convergence for the TV bounds on PT. Our results are consistent with theoretical
work on faster mixing times of PT targeting multimodal distributions including Ising models [59].
Note that the targets are different for both algorithms, as PT operates on an extended space. The
behavior of meeting times of coupled chains motivated by the “coupling from the past” algorithm
[44] for Ising models has been studied e.g. in [11].
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Figure 3: Single-site Gibbs (SSG) versus Parallel Tempering (PT) for an Ising model; bounds on the
total variation distance between πt and π, for t up to 106 and inverse temperature β = 0.46.

3.2 Logistic regression

We next consider a target on a continuous state space defined as the posterior in a Bayesian logistic
regression. Consider the German Credit data from [34]. There are n = 1000 binary responses
(Yi)

n
i=1 ∈ {−1, 1}n indicating whether individuals are creditworthy or not creditworthy, and d = 49

covariates xi ∈ Rd for each individual i. The logistic regression model states P(Yi = yi|xi) =

(1 + e−yix
T
i β)−1 with a normal prior β ∼ N (0, 10Id). We can sample from the posterior using

Hamiltonian Monte Carlo (HMC, [40]) or the Pólya-Gamma Gibbs sampler (PG, [43]). The former
involves tuning parameters εHMC and SHMC corresponding to a step size and a number of steps in
a leapfrog integration scheme performed at every iteration. We can use the proposed bounds to
compare convergence associated with HMC for different εHMC, SHMC, and with the PG sampler.
Figure 4 shows the total variation bounds for HMC with εHMC = 0.025 and SHMC = 4, 5, 6, 7 and the
corresponding bound for the parameter-free PG sampler, both starting from π0 ∼ N (0, 10Id). In this
example, the bounds are smaller for the PG sampler than for all HMC samplers under consideration.

We emphasize that the HMC tuning parameters associated with the fastest convergence to stationarity
might not necessarily be optimal in terms of asymptotic variance of ergodic averages of functions
of interest; see related discussions in [26]. Also, since the proposed upper bounds are not tight, the
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true convergence rates of the Markov chains under consideration may be ordered differently. The
proposed upper bounds still allow a comparison of how confident we can be about the bias of different
MCMC algorithms after a fixed number of iterations.
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Figure 4: Proposed upper bounds on dTV(πt, π) for a Pólya-Gamma Gibbs sampler and for Hamilto-
nian Monte Carlo on a 49-dimensional posterior distribution in a logistic regression model. For HMC
the step size is εHMC = 0.025 and the number of steps is SHMC = 4, 5, 6, 7.

3.3 Comparison of exact and approximate MCMC algorithms

In various settings approximate MCMC methods trade off asymptotic unbiasedness for gains in
computational speed, e.g. [30, 50, 14]. We compare an approximate MCMC method (Unadjusted
Langevin Algorithm, ULA) with its exact counterpart (Metropolis-Adjusted Langevin Algorithm,
MALA) in various dimensions. Our target is a multivariate normal:

π = N (0,Σ) where [Σ]i,j = 0.5|i−j| for 1 ≤ i, j ≤ d.
Both MALA and ULA chains start from π0 ∼ N (0, Id), and have step sizes of d−1/6 and 0.1d−1/6

respectively. Step sizes are linked to an optimal result of [47], and the 0.1 multiplicative factor for
ULA ensures that the target distribution for ULA is close to π (see [13]). We can use couplings to
study the mixing times tmix(ε) of the two algorithms, where tmix(ε) := inf{k ≥ 0 : dTV(πk, π) < ε}.
Figure 5 highlights how the dimension impacts the estimated upper bounds on the mixing time
tmix(0.25), calculated as inf{k ≥ 0 : Ê[max(0, d(τ (L) − L − k)/Le)] < 0.25} where Ê denotes
empirical averages. The results are consistent with the theoretical analysis in [18]. For a strongly
log-concave target such as N (0,Σ), Table 2 of [18] indicates mixing time upper bounds of order
O(d) and O(d2) for ULA and MALA respectively (with a non-warm start centered at the unique
mode of the target). In comparison to theoretical studies in [13, 18], our bounds can be directly
estimated by simulation. On the other hand, the bounds in [13, 18] are more explicit about the impact
of different aspects of the problem including dimension, step size, and features of the target.
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Figure 5: Mixing time bounds for ULA and MALA targeting a multivariate Normal distribution, as a
function of the dimension. Mixing time tmix(0.25) denotes the first iteration t for which the estimated
TV between πt and π is less than 0.25.

4 Assessing the bias of sequential Monte Carlo samplers

Lastly, we consider the bias associated with samples generated by sequential Monte Carlo (SMC) sam-
plers [16]; the bias of self-normalized importance samplers can be treated similarly. Let (wn, ξn)Nn=1
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be the weighted sample from an SMC sampler with N particles targeting π, and let q(N) be the
marginal distribution of a particle ξ sampled among (ξn)Nn=1 with probabilities (wn)Nn=1. Our aim
is to upper bound a distance between q(N) and π for a fixed N . We denote by Ẑ the normalizing
constant estimator generated by the SMC sampler.

The particle independent MH algorithm (PIMH, [2]) operates as an independent MH algorithm using
SMC samplers as proposals. Let (Ẑt)t≥0 be the normalizing constant estimates from a PIMH chain.
Consider an L-lag coupling of a pair of such PIMH chains as introduced in [38], initializing the
chains by running an SMC sampler. Here τ (L) is constructed so that it can be equal to L with positive
probability; more precisely,

τ (L) − (L− 1)
∣∣ẐL−1 ∼ Geometric(α(ẐL−1)), (6)

where α(Ẑ) := E
[

min(1, Ẑ∗/Ẑ)
∣∣Ẑ] is the average acceptance probability of PIMH, from a state

with normalizing constant estimate Ẑ; see [38, Proposition 8] for a formal statement in the case of
1-lag couplings. With this insight, we can bound the TV distance between the target and particles
generated by SMC samplers, using Theorem 2.5 applied with t = 0. Details are in supplementary
material. We obtain

dTV(q(N), π) ≤ E
[

max(0,
⌈τ (L) − L

L

⌉
)
]

= E
[ 1− α(ẐL−1)

1− (1− α(ẐL−1))L

]
. (7)

The bound in (7) depends only on the distribution of the normalizing constant estimator Ẑ, and can
be estimated using independent runs of the SMC sampler. We can also estimate the distribution of
Ẑ from a single SMC sampler by appealing to large asymptotic results such as [4], combined with
asymptotically valid variance estimators such as [33]. As N goes to infinity we expect α(ẐL−1)
to approach one and the proposed upper bound to go to zero. The proposed bound aligns with the
common practice of considering the variance of Ẑ as a measure of global performance of SMC
samplers.

Existing TV bounds for particle approximations, such as those in [15, Chapter 8] and [27], are more
informative qualitatively but harder to approximate numerically. The result also applies to self-
normalized importance samplers (see [46, Chapter 3] and [41, Chapter 8]). In that case [1, Theorem
2.1] shows dTV(q(N), π) ≤ 6N−1ρ for ρ = Eξ∼q[w(ξ)2]/Eξ∼q[w(ξ)]2, with w the importance
sampling weight function, which is a simpler and more informative bound; see also [8] for related
results and concentration inequalities.

5 Discussion

The proposed method can be used to obtain guidance on the choice of burn-in, to compare different
MCMC algorithms targeting the same distribution, and to compare mixing times of approximate
and exact MCMC methods. The main requirement for the application of the method is the ability to
generate coupled Markov chains that can meet exactly after a random but finite number of iterations.
The couplings employed here, and described in supplementary materials, are not optimal in any
way. As the couplings are algorithm-specific and not target-specific, they can potentially be added to
statistical software such as PyMC3 [51] or Stan [7].

The bounds are not tight, in part due to the couplings not being maximal [54], but experiments suggest
that they can be practical. The proposed bounds go to zero as t increases, making them informative
at least for large enough t. The combination of time lags and coupling of more than two chains as
in [31] could lead to new diagnostics. Further research might also complement the proposed upper
bounds with lower bounds, obtained by considering specific functions among the classes of functions
used to define the integral probability metrics.
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