NON-UNIFORM BOUNDS IN THE POISSON APPROXIMATION
WITH APPLICATIONS TO INFORMATIONAL DISTANCES

S. G. BOBKOV!, G. P. CHISTYAKOV?, AND F. GOTZE?

ABSTRACT. We explore asymptotically optimal bounds for deviations of Bernoulli
convolutions from the Poisson limit in terms of the Shannon relative entropy and
the Pearson x2-distance. The results are based on proper non-uniform estimates
for densities.

1. Introduction

Let Xi,..., X, be independent Bernoulli random variables taking the two values, 1
(interpreted as a success) and 0 (as a failure) with respective probabilities p; and ¢; =
1 —pj. The total number of successes W = X7 +--- + X, takes values £k = 0,1,...,n
with probabilities

P{W =k} = pi'ey 70 an o, (1.1)
where the summation runs over all 0-1 sequences €1, ...,€, such that e1 +---+¢, =
k. Although this expression is difficult to determine in case of arbitrary p; and
large n, it can be well approximated by the Poisson probabilities under quite general
assumptions. Putting

A=p1+- -+ pn,

let Z be a Poisson random variable with parameter A > 0 (for short, Z ~ P,), i.e.,

P{Z=k}="¢>  k=0,1,...

It is well-known for a long time that, if max;<, p; is small, the distribution Py ap-
proximates the distribution Py of W, which may be quantified by means of the total
variation distance

dW,Z) = ||Pw — Pxlltv

= 2sup [P{W € A} —P{Z e A} = > |wp — vl
ACZ k=0
where wy = P{W = k} and v, = P{Z = k}. In particular, based on the Stein-Chen
method, there is the following remarkable two-sided bound due to Barbour and Hall
involving the functional
Ao =pi 4+ 2.
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Theorem 1.1 [2]. One has

1—e?
A

1 1
Smin(L1/A) Ay < Sd(W,2) < No. (1.2)

Here, the parameter Ao, or more precisely — the ratio A\o/A (for A bounded away
from zero), plays a similar role as the Lyapunov ratio Ls in the central limit theorem.

In the i.i.d. case with p; = A/n and fixed A > 0, both sides of (1.2) are of the same
order 1/n. In the case A < 1, the upper bound in (1.2) is sharp also in the sense that
the second inequality becomes an equality for p; =1, p; =0 (2 < j < n).

Theorem 1.1 refined many previous results in this direction, starting from bounds
for the i.i.d. case by Prokhorov [19] and bounds for the general case by Le Cam [16].
In particular, Le Cam obtained the upper bound

dW,Z) < 2X,. (1.3)
For large A Kerstan [14] and respectively Chen [5] improved these bounds to
2.1 1 10
dW,Z) < — Xy if maxp; < —, respectively d(W,Z) < — Aq.
A i<n 4 A

See also [12], [26], [24], [20], [21], [3] and the references therein. A certain refinement
of the lower bound in (1.2) was obtained in Sason [22].

While (1.2) provides a sharp estimate for the total variation distance, one may
wonder whether or not similar approximation bounds still hold for the stronger in-
formational distances. As a first interesting example, one may consider the relative
entropy

o0
w
D(W|Z) = wylog T:’
k=0

often called the Kullback-Leibler distance, or an informational divergence of Py from
P,. It dominates the total variation distance in view of the Pinsker inequality

DW||Z) > %d(W, Z)2.

In this context, a number of lower and upper bounds on the relative entropy were
studied by Harremoés [7], [8], and Harremoés and Ruzankin [10]. In particular, in the
ii.d. case p; = p, it was shown in [10] that

—log(1—p)—p 14p?
2 n(1—p)?

IN

D(W||Z)
—log(l-p)—p (+p)p°
- 2 dn (1 —p)3’

If p = A/n with a fixed (or just bounded) value of A, these estimates provide the rate
of Poisson approximation

2

D(W||Z) = 4%+0(1/n3) as n — oo. (1.4)

The general non-i.i.d. scenario (with not necessarily equal probabilities p;) has
been partially studied as well. A simple upper estimate D(W||Z) < A2, analogous to
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the Le Cam bound (1.3), may be found in [7], cf. also Johnson [13]. It is however not
so sharp as (1.4). A much tighter upper bound

n

1 v}
1—pj

DWI|Z) < (1.5)

>/

was later derived by Kontoyiannis, Harremoés and Johnson [15]. If all p; = A/n
with A < n/2, it yields D(W||Z) < 2)%/n? reflecting a correct decay with respect to
n up to a constant, according to (1.4). Nevertheless, in the general case, Pinsker’s
inequality and the bounds (1.2) and (1.3) suggest that a further sharpening such as

D(W||Z) < A\ (1.6)

might be possible by involving Ay rather than the functional A3 = p3 + --- + p3. To
compare the two quantities, note that, by Cauchy’s inequality, A3 < A\3. Hence, the
inequality (1.6) would be sharper compared to (1.5), modulo a A-dependent factor.
An upper bound such as (1.6) may also be inspired by the lower bound

pw)2) > 1 (32) (17)

recently derived by Harremoés, Johnson and Kontoyiannis [9]. It is consistent with
(1.4) and also shows that the constant 1/4 is best possible.

As it turns out, (1.6) does hold in the so-called non-degenerate situation, and in
essence, the inequality (1.7) may be reversed. Moreover, one can further sharpen (1.6)
by replacing the relative entropy with the Pearson y?-distance, as well as with other
Rényi/Tsallis distances. To avoid technical complications, let us restrict ourselves to
the x2-divergence which is given by

o0
-yl

k=0

It is a divergence type quantity which dominates the relative entropy via the inequality
X*(W,2) > D(W||2). (1.8)

For a general theory of informational distances, we refer interested readers to the
recent review by van Erven and Harremoés [6]; additional material may be found in
the books [17], [18], [25], [13].

To formulate the main result of this paper in a compact form, let us use the
notation (1 ~ QJ2, whenever two positive quantities are related by c¢1Q1 < Q2 < co@1
with some absolute constants c¢; > 0. Introduce the quantity

max(1,\)

= FAA2) = max(1, A — X\g)’

Theorem 1.2. We have

D(W||Z) ~ (%)2 (1+1logF), (W, Z)~ (A;)Q VF.
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Clearly, FF > 1, and if A < 1, then F' = 1. If X is not large (say A < 10, which
is typical for applications), or if A\y/A is bounded away from 1 (for instance, when
max; p; < 1/2), the quantity F' is bounded, and both equivalences are simplified to

2 A2)\?
DW||Z) ~ X*W.2) ~ (). (1.9)
Hence in the above regime, (1.6) holds with a factor Ay ~ 1/A2, which tends to
infinity as A is approaching zero, in contrast with the lower estimate in (1.2).

If the above assumptions on A and A are violated (which we call the “degenerate
case”), both distances are bounded away from zero and can be large, since then

A\ ) \ 1/2
DWI|Z) ~ 1 W, Z) ~ .
(WliZ) ~ log max{1, A — A\a}’ X (W, 2) <max{1,)\—)\2}>

For example, in the case where all p; = 1, we have A\ = A = n. Here P{W =n} =1,
hence as n — 0o

1 n!
DW||Z) =log ——— =1 (—”)wl :
Wll2) Bz =m0 ® ogn
Z(WZ)—¥—1—£!6”—1 2mn
X - P{Z=n} ~onn ‘

These examples show that the lower bound (1.7) may not be reversed in general.
For the study of the asymptotic behavior of D and x? in terms of A and \g, we
derive new bounds for the difference between densities of W and Z, that is, for

A =wp —vp =P{W =k} —P{Z = k}.

To this aim, one has to consider different zones of \’s, distinguishing between “small”
and “large” values. The case A < % can be handled directly leading to the non-uniform
density bound

A < 20 P{k—2< Z <k}

It easily yields sharp upper bounds for all above distances as in Theorems 1.1-1.2 in
the case of small A, at least up to numerical factors. To treat larger values of A, a
more sophisticated analysis in the complex plane is involved — using the closeness of
the generating functions associated with the sequences wy and vg. In particular, the
following statement may be of independent interest.

Theorem 1.3. For all integer k > 0, we have
1AL < 3hge™ . (1.10)
Moreover, putting p = (A — \2) min{%, %}, k=1,2,..., we have
A < TVE (L;A)Q Nomin {1, p Y2} P{Z = k}

+21 k:\/E%min{l,p_g’/z} P{Z = k}. (1.11)
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Let us clarify the meaning of the last bound, assuming that Ao < kA with some
constant £ € (0,1). If £ <2\ and A > A\g > 0, then with some ¢ = ¢\, > 0, it gives

=22 A
)+1>)\2]P’{Z—k},

‘Aﬂg‘(( )

while for £ > XA > Ay, we also have
kN3
1Ak < C(X),&E%Z::k}

Since |k — A| is of order at most v/A on a sufficiently large part of Z measured by Py,
these non-uniform bounds explain the possibility of upper bounds in Theorem 1.2.

Let us finally mention one application of Theorem 1.2 to the problem of estimation
of the difference of entropies

H(W||Z) = H(Z) — H(W), (1.12)

where H stands for the Shannon entropy, that is,

H(Z):—kalogvk, H(W):—Zwklogwk.
k k
The remarkable property that H(WW||Z) is positive represents a consequence of the
assertion, recently proved by Hillion and Johnson [11], that H(p) = H(W) = H(Pw)
is a concave function of the vector p = (p1,...,pn). Indeed, since also H(p) is invariant
under permutations of the coordinates p;, this entropy attains its maximum on the
simplex
{PeER:p; >0, pr+-- +po=A}

at the point where all the coordinates coincide, that is, for p; = A/n. But in that case,
Py represents the binomial law B(n, A/n) whose entropy is dominated by H(Z), as
was earlier shown by Harremoés [7].

Thus, the difference of entropies in this particular discrete model may be viewed
as kind of informational distance. Sason proposed to bound H(W||Z) for equal p;’s
by means of the so-called maximal coupling, cf. [23]. Here, we show that this distance
may be controlled in terms of x?(W, Z), which together with the upper bound on the
Pearson distance leads to the following estimate.

Corollary 1.4. We have

A
HW||2) < O (1.13)
where C) depends only on A. If Ay < )\, one may take Cy = Clog(2 + \) with an
absolute constant C.

The paper is organized as follows. First we describe several general bounds in-
volving the relative entropy and the Pearson distance, together with upper bounds
on the probability function of the Poisson law (Section 2). In Sections 3, we consider
the deviations Ay and prove Theorem 1.2 in case A < 1/2. Sections 4-5 are devoted
to non-uniform bounds and the proof of Theorem 1.3, which is used to complete the
proof of Theorem 1.2 for large A in the non-degenerate case. Uniform bounds for
large A are discussed in Section 7. There we shall demonstrate that in a typical situ-
ation, namely when the ratio A2/ is small, the Poisson approximation considerably
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improves the rate of normal approximation described by the Berry-Esseen bound in
the central limit theorem. The remaining part of the paper is devoted to the proof of
Theorem 1.2 in the degenerate case (Section 8-11) and of Corollary 1.4 (Section 12).
Thus, the paper is structured as follows.

Contents

Introduction

General bounds on relative entropy and y?2
Elementary bounds

Generating functions

Proof Theorem 1.3

Consequences from Theorem 1.3

Uniform bounds. Comparison with normal approximation
Upper bounds on D and x? in the degenerate case
9. Lower bound on x? in the degenerate case

10. Lower bound on D in the degenerate case

11. Summarizing remarks. Proof of Theorem 1.2

12. Difference of entropies

PN oA W=

2. General Bounds on Relative Entropy and x?

Before turning to the problem of lower and upper bounds for the relative entropy
and y2-distance, we first collect several useful general inequalities. If two discrete
random elements W and Z in a measurable space ) take at most countably many
values wy €  with probabilities wy = P{W = wy} and vy = P{Z = wy}, the above
distances are defined canonically by

)
DOIZ) = Sl 2w z) =y Wt

(%
k k

Proposition 2.1. We have

-3 wlog E <1, (2.1)
Uk,
wi <V
Moreover,
1 (wy, — vp,)?
DWI||Z) > = _ 2.2
wiiz) = 2 Zk:max{wk,vk} (2:2)

Proof. Using the Taylor formula for the logarithmic function, write

Z wklogf — Z (v — (v — wg)) log (1-@)

Vg
Wi <V Wy <vg

D IICRITEID D DE

Wi, <vg wi <V m= 2 Uk
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Here
1 (o]
> (wp—wg) = —3 > Jwe — okl = -1,
Wi <V k=0

thus proving the first assertion. Similarly, we have a second identity

Z wklog% = — Z wklog—

W >V k Wi >V
= — Z wklog< )
WE >V
wk—vk
= D (we—w)+ ) Z T
Wk >V Wi >V m=2

Adding the two identities, we get

wp 1 (wp —vg)? 1 (wy, — vg,)?
log 2k > = Wk k) \Wk — Ok)
;wk 08 v 2 Z Wk + 2 Z Vg ’

W >V Wi <vg

which is the desired inequality (2.2). O

Proposition 2.2. Let W7 and W5 be independent, non-negative, integer-valued
random variables with finite means, and let Z1 and Z5 be independent Poisson random
variables with EZ; = EW and EZy; = EW5. Then

D(Wl —i—WQHZl—i-Zz) < D(W1HZ1)+D(W2HZQ). (23)
In addition,
Wy 4+ Wa, Zy 4+ Zo) +1 < (B(Wh, Zy) + 1) (5 (Wa, Zs) + 1). (2.4)

For the proof, we refer to Johnson [13], pp.133-134. Let us only mention that
(2.5) is obtained in [13] in the more general form

P{W; + Wy = k}© i P{W; =k} i P{W, =k}
P(Zl + Zy = k}a 1= P{Zl = k}a—l o P{ZQ = k}a—l

with arbitrary « > 1, which represents a Poisson analog of weighted convolution
inequalities due to Andersen [1]. Here, for & = 1 there is an equality, and comparing
the derivatives of both sides at this point, we arrive at the relation (2.3).

When bounding the Poisson probabilities

)\k
v = f(k) =P{Z = k}——e A k=0,1,...,

with a fixed parameter A > 0, it is convenient to use the well-known Stirling-type
two-sided bound:

V2r ke ek <kl < ekbta ek (k>1). (2.5)

In particular, it implies the following Gaussian type estimates.
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Lemma 2.3. Forall k > 1,

k) < 2.6
f) < <= (2:6)
Moreover, if 1 < k < 2\, then
1 (k=2)? 1 (k=x)?
—e A k) < e 3 2.7
= <10 < o= @)
Here, the lower bound may be improved in the region k > X\ as
1 2
fh) > —— e (2.8)
evk
Proof. Applying the lower estimate in (2.5), we get
1 A\ K
k) < k=2 (2 2.9
k) < o= (T) (2.9)
_ 1 S S 1 M(O), o — k — )\7
27k 27k A

where
h(0) =6 — (1 +6)log(1+0).

This function is concave in 6 > —1, with h(0) = A’'(0) = 0. Hence, h(f) < 0 for all 0,
thus proving the first assertion (2.6).

Assuming that 1 < k < 2\ (with A > 3), we necessarily have |[§| < 1. In this
interval, consider the function 7,(6) = h(#) + c#? with parameter ¢ > 0. The second
derivative

1
T/(0) = ——— +2 -1<6<1
may change the sign at most at one point, say 6y, while 7/(—1) = —oo. Since

T.(0) = T/(0) = 0, this means that either T, is concave on [—1,1] and therefore
non-positive, or it is concave on [—1,6y] and convex on [0y, 1]. In the second case,
T.(0) < 0 for all 6 € [—1,1], if and only if this inequality is fulfilled at § = 1. But
T.(1) =1 —2log 2+ ¢, so the optimal value is ¢ = 2log2 —1 = 0.387... > 1/3. Hence,
h(6) < —3% 62, and we arrive at the upper bound in (2.7).

Similarly, applying the upper estimate in (2.5), we get

Lo (Y2 L e _ kA
f(k:)ze\/Ee (k)_e\/Ee , 0= T
Choosing ¢ = 1, consider the function T'(f) = h(f) + 62 in the interval |#] < 1. Since
T"(—3%) = 0, it is concave on [—1, —3] and is convex on [—3, 1]. Since T'(0) = 77(0) = 0
and T'(—1) = 0, this means that # = 0 is the point of local and thus global minimum
of T. Therefore, T(0) > 0, that is, h(6) > —6? for all § € [—1,1].

Finally, to get the refinement in the region k& > A, consider the function 7'(f) =
h(0) + 1 62 for 6 > 0. Since T'(0) = 0 and 7"() = 6 — log(1 + 6) > 0, this function is
increasing. Therefore, T(6) > 0, that is, () > —3 6 for all § > 0.

O
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3. Elementary Upper Bounds

We keep the same notations as before; in particular,
)\k
P{Z =k} = e -, k=0,1,...,

while
P{W =k} = Zpil (1 —pi)l_gl cepir (1 —pn)l_gn

with summation over all 0-1 sequences ¢ = (e1,...,&,) such that ey + -+ + &, = k.
Clearly, P{W = k} = 0 for & > n. To eliminate this condition, one may always
assume that n is arbitrary, by extending the sequence (X,...,X,) to (X1,...,Xk)
in case n < k with pp,41 = --- = pxr = 0. Then the value W does not change.

First, let us consider the values £k =0 and k£ = 1.

Lemma 3.1. If max; p; < %, then

0 < P{Z =0} —P{W =0}
0 < P{W=1}-P{Z=1}

< 0.8Xge
§ 2)\2€_>\

Proof. Expanding the function p — —log(1—p) near zero according to the Taylor
formula as in the previous section, write

n [e.9]

~A-5S 1
IP’{W—O}—jI;[l(I pj) =e 5 5_822 s (3.1)
Using \s < (max; p;)* 2 Ay <2772 )y for s > 2, we have
S < /\gi 2 dlog2 - %) < 08 (3.2)
S

5=2
Hence
P{Z=0} -P{W=0}=e*1—-e")<e 5,
proving the first inequality

—p]+29]p with 0 < 60; <1, we have

P{W =1}

n
Hl—p] o

e*A S(A+2/\g) < e P AH2\) = P{Z =1} +2 e},

IN

which yields the second inequality. O

Note that the condition of Lemma 3.1 is fulfilled automatically, if A < 1/2. In that
case, the upper bounds of the lemma may easily be reversed up to numerical factors,
for example, in the form

P{Z = 0} — P{W = 0}
P{W =1} - P{Z =1}

0.47 Ay e,

>
> 042X e
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Moreover, if A < 1/8, then also

T
— 49
Here, the value £ = 2 turns out to be most essential for obtaining lower bounds,
since it immediately yields d(W, Z) > cAg and D(W||Z) > ¢ (%)2 with some absolute
constant ¢ > 0.

Returning to upper bounds, in order to involve the values k > 2, we will need the
following;:

P{Z =2} —P{W =2} Age .

Lemma 3.2. If max;p; < 1/2, then for any k > 2,

Neooed -1 AR Ah—2
pov =i -PZ =8| <% (G + 5 oot aoa)

Proof. Representing the Poisson random variable Z ~ Py as Z = Zy +--- + Z,
with independent summands Z; ~ P,;, we have that, for any £ =0,1,...,

€1 En
P{Z=kp=c> Yy BPu
el .epn)’

e1+-+en=~k

where the summation is running over all integers €; > 0 such that ey +--- +¢, = k.
Hence, with this assumption, we may start with the formula

1
]P){Z = k} — P{W = ]C} = 6_)\ Z ﬁ UE — Z Ug%,

e1+-+en=k e1+-+en=k,e;<1
where
U =pi*...050, Ve=(1—p)t =t (1 —p,)ten.
For a 0-1 sequence € = (e1,...,&,) put

Le=ce1p1+ - +enpn

By the Taylor formula once more,

Similarly to (3.1)-(3.2), we have

o 1 n
Se=A-L.+ ) ;Z(l—sj)pj = A—L.+0X, 0<6<1.
s=2 j=1

Therefore,
Ve =elem2 > 14 (Lo — X)) > 1+ Le — Xo

. Le_ L . .
Moreover, since L. < A, we have 6271 < = ¢y, which in turn implies e V. <
£

el <1+ ¢y L.. The two bounds give L, — Ay < e V. — 1 < ¢\ L, so that

U. — *UVe| < M Us + e\ UeL..

er—1
A
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Next, applying the multinomial formula, we have

€1 (S k
SRy )\7
Z Ue < Z el en! K
e1t++en=k, ;<1 g1t ten=
and
n
Z U.L. = Z Z gi pit .. .pffll pfﬁ'l pf_fll Spin
e1+-+en=k, ;<1 =1 e1+-+en=k, ;<1
n
= > > P Py
=1 e1+-+en=k, g;=1, ;<1
n
1 )\k—l
< P—— WL R D U na—
i=1
Thus,
)\k )\k—l
A
3 U. — > UV §)\2(ﬁ+c>\m).

e1t-ten=k, ;<1

For the remaining terms participating in P(Z = k), we have

vt oty ez E1 B e ™ e S1 St

< Zﬁ ()‘*pn)k m

A m!  (k—m)!

< 7 zk: (p?Q Qopa) Py Ak_iz :
=, m—2)!  (k—m)! (k —2)!

and similarly, for any i = 1,...,n,
Z u < p? ﬁ

el .epn! ' (k—=2)!

e1+-+en=k,e;>2
Hence, summing over ¢ < n, we then get

ell...en! T

€1+--+en=k,maxe; >2

g

The obtained estimates are sufficient to establish Theorem 1.2 in the non-degenerate
case, where A is not large. To compare the lower and upper bounds, we recall the
lower bound (1.7) of Harremoés, Johnson and Kontoyiannis [9].

Proposition 3.3. If max; p; < %, then

1 () < poviz) < 2wz < o (22)
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where C) depends on A > 0 as an increasing continuous function with Cy = 2. In
particular, if A\ < 1/2, then

(W, Z) < 16();\2>

Proof. Applying Lemmas 3.1-3.2, we get

)\k )\k—l )\k_2 2
A2t AW, Z) < 0.64
(W, 2) < 0.64+3 +Z ( TeagC 1)!*(%-2)1)’

where c) = -1 Opening the brackets, the above sum is equal to
i li' ()\% . 2¢x AZE1 C%\ A\2k—2 . 9)\2k—2 . ey A2H—3 . \2k—4 >
= MNeXELZ D RN E—-1)!  (B—=1)12  E(k—=2)! (B—D1(k-2) (k—2)!2

AE = N = Ak2
k— 2;2( +AZ/<: _1+ Z
)\k4

+ 2¢y Zk: +Zk 5

which is the same as

o0 )\kfl
36’\—1—)\+2C,\(e’\—1)—|—cg\Z(k+1) o
k=1
o0 A1 0 k—2
+2C)\Z(k+2) +Zk+1 )k +2) =
k=0

= 36)\—1—)\+2C)\(€>\—1)—|—26>\€>\2—;)\ + 2+4;\2+>\2 e,
Multiplying by A2, this gives the desired inequality
MA2E(W, Z) < Cy = (0.640% +4)) + By,
with
By = MBr—1-N+20(—1)2+2@2+Ne (e 1)+ (2+41+ 1))
= A2-A=X)—2(1+A-2X%) e +4(14\)e?

It is easy to check that % B) > 0, so that this function is increasing in A. In addition,
Co=By=2and Cyjp =2.16+ 2 — 2,/e + 6 e < 16. O

4. Generating functions

The probability function f(k) = P{Z = k} of the Poisson random variable Z ~ Py
satisfies the equation A\f(k—1) = kf(k) in integers k£ > 1, which immediately implies

AEW(Z +1) =E Zh(Z)
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for any function h on Z (as long as the expectations exist). This identity was empha-
sized by Chen [5] who proposed to consider an approximate equality

AER(X +1) ~EXh(X)

as a characterization of a random variable X being almost Poisson with parameter
A. This idea was inspired by a similar approach by Stein to the problems for normal
approximation on the basis of an approximate equality Eh/(X) ~ E Xh(X).
Another natural approach to the Poisson approximation is based on the comparison
of characteristic functions. Since the random variables W and Z take non-negative
integer values, one may equivalently consider the associated generating functions.
The generating function for the Poisson law Py with parameter A > 0 is given by

o(w) =Ew? = ZP{Z =k} wh = 2w = H ePi(w=1), (4.1)
k=0 =1

which is an entire function of the complex variable w. Correspondingly, the generating
function for the distribution of the random variable W = X; +--- + X, in (1.1) is

g(w) =Ew" =3 "P{W = k}u* = H a4 + pjw (4.2)
k=0 7=1

which is a polynomial of degree n. Hence, the difference between the involved prob-
abilities may be expressed via the contour integrals by the Cauchy formula

P{W =k} —P{Z =k} = " w™* (g(w) — p(w)) dpy(w), (4.3)
w|=r
where g, is the uniform probability measure on the circle |w| = r of an arbitrary
radius r > 0.

Note that for w = e’ with real ¢, the generating functions ¢ and g become the
characteristic functions of Z and W, respectively. Hence, closeness of the distribu-
tions of these random variables may be studied as a problem of the closeness of the
generating functions on the unit circle.

Let us now describe first steps based on the application of the formula (4.3). Given
complex numbers a;,b; (1 < j < n), we have an identity

n

al...anfbl...bn:Z(ajfbj)HblHal (44)

=1 1<j 1>j

with the convention that HK]- by=1for j =1 and Hl>j a; =1 for j = n. It implies

[Ta - 110 < Zraj o T 10ul T el
j=1 b=1

= I<j >j
According to the product representations (4.1)-(4.2) to be used in (4.3), one should
choose here a; = ¢; + pjw and b; = e? (=Y with |w| = r. Then

laj| < gj+pr < U | = epsRewml) < epilrh), (4.5)
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Therefore

IN

lg(w) = p(w)]

i jaj — b [T em ™Y
j=1

I#j

n
= D Z laj — by e P, (4.6)
=1
To estimate the terms in this sum, consider the function

1
§(u):1+u—e“:—u2/ et (1 —t)dt, ue C, (4.7)
0

where the Taylor integral formula is applied in the second representation. If Reu < 0,
then |u? e™| = |u|? exp{t Reu} < |ul?, so,

E(u)| < % w2, Rew<0. (4.8)
In particular, for u = p;(w — 1) with w = cos @ + isin 6, we have
lw — 1|* = (cos — 1)* 4 sin? = 2(1 — cos ),
hence |£(u)] < p? (1 —cosf), and (4.6) yields

lg(w) — p(w)| < Y [pi(w—1))| < (1—cos8) > p} < (1—cosb) Ay
j=1 j=1

Integrating over the unit circle in (4.3), we then arrive at the uniform bound:

Proposition 4.1. We have

sup |P{W =k} —P{Z =k}| < Ao (4.9)
k>0

This is a weakened variant of Le Cam’s bound |P{W € A} —P{Z € A}| < A,
specialized to the one-point set A = {k}. In order to get a similar bound with
arbitrary sets, or develop applications to stronger distances, we need sharper forms
of (4.9), with the right-hand side properly depending on k.

5. Proof of Theorem 1.3

Applying (4.4) with a; = ¢; + pjw and b; = ePi(w=1) in (4.3), one may write this
formula as

AkEP{W:k}—P{Z:k}:Zn:Tj(k), k=0,1,..., (5.1)
j=1

with

1) = [ (o= [T Lo i), (52)

I<j I>j
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where the integration is performed over the uniform probability measure p, on the
circle |lw| = r. Let us write w = r(cos@ + isin@), |#| < w, and estimate |T};(k)| by
inserting the absolute value sign inside the integral. Then, using (4.5), we get

T5(k)| < r"“/H_ jaj = bsl [T 1e” D1 T law + pow| dpaer(w)

1<j I>j

J—1 n
= r—k/l | laj — bj| exp {(rcos& - 1) Zpl} H lgi + prw| dpy (w)
w|=r =1

I=j+1

- .

. 9 J

= kD) Z?—llpl/l | la; — bj] exp{ — 2rsin? 3 Zpl} H lat + prw| dpr (w).
w=r

=1 I=j+1

Here, in order to estimate |a; — b;|, let us return to the function {(u) introduced in
(4.7), which we need at the values u; = p;(w — 1) with |w| = 1.

Case 1: r > 1. Since Reu; < p;j(r — 1), we have, for any t € (0, 1),

’ug etuj‘ _ ’uj’2€tReuj < ‘Uj|2 epjt(rfl) < |Uj|2 epj(r71)7

so, by (4.7),

1
jaj = bl = [€(u))] < 3

Case 2: 0 <7 < 1. Then Reu; <0, so, by (4.8),

p? jw — 1|2 P,

1
laj — bj| = [§(uy)| < ip? lw —1]%.

Since |w — 1|2 = (r — 1) + 4r sin?(0/2), we therefore obtain from (5.2) that

1 _
ITi(0)| < 59} Ry(r)r ™" <(7~ )2 Lo(r) + 4r1j2(r)>, (5.3)
where
. _ exp{ Zl 1pl} Hl J+1(ql +pl7“) for r>1,
RJ(T) =
exp{ Zl 1 Pl} Hl J+1(QZ + pir) for r <1,
and

1 s
Lim(r) = 5 /

In order to estimate the last integrals, which we need with m = 0 and m = 2, let
us first note that

- . ‘
0 0 J i0
sin§’m exp{—2rsin22lzgpl} H wdg

= atpr

lai —l—plrele\Q = qi + per2 + 2piqrcosf = (g —i—pﬂ')2 — 4qyp; 7 sin? 3

2 2
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Hence, using 1 —z < e™” (z € R), we have

n i0 n
¢ 4 0\ 1/2
11 @ +pre” 11 <1_ qpir 2$n2§>
i @t i1 (@ +pir)
< exp{ -2 sinzg i %}, (5.4)
S (at o)
so that
1 (7 m 9 0
Lim(r) < o sin 2‘ { — 27;(r) sin f} de
1
< zm/ \e|mexp{ }d@. (5.5)
27
Here we applied the inequalities = 2¢<sint <t (0<t< < §) and used the notation

_r(zpl+ Z qz?;lzr )

Thus, we need to bound ~y; from below. If r>1, then ¢y +pr <r, so

n
Z @ty b Zf quz

S ) T A

This gives

V() = TE}H+ }:qm

l 7+1

j
= erer Z )—EZ(pz—sz)

<

n

_ (r—*)zpw me sz ) qua_ (A—Az—qua')'

In case r < 1, we use q; + pr § 1, 1mply1ng that

n
Z ( qipi Z ap.

= q + pr)?

Therefore in this range we have a similar lower bound, namely

v(r) = TszJr?“ Z ap

l=j5+1

J
= erer?“sz p)—r> (m

=1
n
= —rp;+ rzp? +rY (= pi) = (A= X — gpy).
=1 =1
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Since gjpj < i, both lower bounds yield

1
vi(r) > ¥(r) — T (r) = min{r, 1/r} (A — Aa).
As a result, (5.5) is simplified to

72—’”[ \9|mexp{ - %1/}(7“) 92}d0

IN

Ijm(r)

m m 2 ’l,b(’f‘) 1,2
— Ve o) [T et a
4m ~23/5(7)

The last integral may be extended to the whole real line, which makes sense for large
values of ¥(r), or one may bound the exponential term in the integrand by 1, which
makes sense for small values of ¢(r). These two ways of estimation lead to

L) < Vet o) F min {VERE I, 20 ()™ )
Ve ey max {VERE I, }min{W()mH}’

where € is a standard normal random variable. In partlcular, we get the upper bounds

Lio(r) < v/e min {1,4(r 1/2}7 In(r) < Vemr?

In view of g, + pyr < e~V from the definition of R;(r) we also have the bound

Rj(r) < exp {(r -1) zn:pl} — A=)
=1

in case r > 1, while for r <1

Rj(r) < exp{(r — 1)2])1} = D gl < A=
1]
Applying these bounds in (5.3), we therefore obtain that |T(k)| may be bounded
from above by

0.
Erp? Ar—D+3 rik((r— 1)2min{1,¢ 1/2} -l— Tmln{l P(r 3/2}>,
where 0, = 1 in case r > 1 and §, = e for r < 1. Summlng over j < n and recalling
(5.1), one can estimate |A| from above by

2
Ao 8, MNPk <\éé (r—1)> min{l,z/z 1/2}4-\/;3 r mm{l Y(r 3/2}>. (5.6

Letting » — 1 (r > 1), (5.6) leads to

2
A < \/56”

27”+

m+2

IN

min {1,¢(r)_3/2}.

Ay e < 3\ 67)\,

which gives the inequality in (1.10). In case k > 1, one may also use (5.5) with r = &
and apply k! < ekita e, cf. (2.5), giving

A1)~k _ <%)ke—/\ < eVk f(k), f(k) = )‘je”.
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To simplify the numerical constants, note that %e‘f’/ 2 < 6.1 and %65/ 212 < 20.1.

Recalling that ¢ (r) = p for r = k/\, we finally get the second inequality (1.11),

1AL < AoV f(k) (7 (LAA)Q min {1, p1/2} +21§ min{1,p*3/2}). (5.7)

O

6. Consequences of Theorem 1.3

Under the natural requirement that Ay is bounded away from A, the bound (5.7) on
A =P{W =k} —P{Z = k} may be simplified. As before, we use the notations

)\k
- 67)\,
k!
Note that Ay < A and recall that p = (A — X2) min{%, 2}.

f(k) =P{Z =k} = A=pito+ e, Ae=pito 4o

Corollary 6.1. If Ao < kA, k € (0,1), then for any integer k > 0,

7 (k — \)? A2 kN3

Ml = e (P +8) Fmax{(5) 10, (6.1)

In particular, if k < 2\, then
56 (k — \)? Ao

Ml = g (C+3) T (6.2)

Ifk > X\ >1/2, we also have
49 kN3
‘Ak| < m (X> )\Zf(k)- (6~3)

Proof. The assumption Ay < k) ensures that p > (1 — k) min{%, % .

If1<k<KXNK2>1), then § < KQ% and p > II;—{” k, so that the right-hand side
of (5.6) may be bounded from above by

MV f(k) (7 (k 3 A>2 (1If;<;)k: +21iu_§i2k3/2).

Choosing K = max{%, 1}, this expression does not exceed the right-hand side of (6.1).
Thus, the inequality (1.11) yields (6.1), which in turn immediately implies (6.2).

In case k = 0, we apply the inequality (1.10). Since @ +3> Afor k=0,
the right-hand side of (1.10) is dominated by the right-hand side of (6.1). Thus, we
obtain (6.1) without any constraints on k, and (6.2) for all k£ < 2.

In case k > ), necessarily p > (1 — k) A?/k. Hence, the right-hand side of (5.6)

may be bounded from above by

MoVk (k) (7(k;A)2 A\/\l/%mli-wfg_i)w).

Using (@)2 < ’;—; to bound the first term in the brackets and § < 2k to bound the
second term (using A > 1/2), we obtain the bound (6.3). O
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We are now prepared to extend Proposition 3.3 to larger values of A under the
additional assumption that \o/A is bounded away from 1. The next assertion, being
combined with Proposition 3.3, yields Theorem 1.2 in the non-degenerate case.

Proposition 6.2. If A > 1/2 and Ao < kX with k € (0,1), then
1 ()\2 )\2

1 () < pwi2) < 2w 2) < o () (6.4)

where one may take c,, = c (1 — k)~ with some absolute constant, e.g. ¢ =7 -10°,

Proof. The left lower bound in (6.4) is added according to (1.7) (using the Pinsker
inequality, it also follows with some constant from Barbour-Hall’s lower bound in
Theorem 1.1). Hence, one may only focus on the right upper bound in (6.4). Write

oo A2 [2)] 0o A2
conz) =3 s =sies = (L 3 )y
k=0 k=0  k=[2)\]+1
In the range 0 < k < [2)], we apply the inequality (6.2) which gives

2 RNY! —)\)2
Ak = (15_6/-;)3 <(k )\2>\) rolt )\2)\) +9) (%)2“’“)2'

Hence

562 (E(Z-XN* E(Z-)\)? A2\ 2
< — .
Sl—(1—,€)3( oo 9) ()
Using the moment formula EZ™ = A\(A+1)...(A+m — 1), we have E(Z — \)? = )
and E (Z — \)* = 3\(\ + 2), so that

s 0 (B L5y (22

- (1-k)3 A2 A
18816 M2 O o
= G A3 (%) = =7 (%) (6:5)

with C7 = 94080 (where we used the assumption A > 1/2 on the last step).
In order to estimate Sy, we use the following elementary bound

(e 9]

SR < 8 fko) (1- - ()T (6.6

P ko ko

which holds for any d = 1,2,... as long as kd/(ko + 1)~1 > \. For the proof, write

e}

D EUf(k) = k§f(ko) (1401460102 + -+ 01...0m+...),
k=ko
where - P
0 m
= , =1,2,...
b (ko—l—m—l) ko+m "

Since the function (z + 1)1 2=% is decreasing in x > 0, we have 1 > 6; > 6y > ...
This gives

> k) < K f(Ro) (14 61),
m=1

k=ko =
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that is, (6.6). In particular, for kg = [2A] + 1 and A > 8 (with d = 6),
A ko4 1\5\ 1 1 /22 +1\5\1
(-5 CR)) <0-3(50)) <

So, by (6.6), and using [2A] + 1 < 2L\ for the chosen range of A, we have

i ESf(k) < 3.1([2\+ D)0 f([2M\] +1) < 3.1-(170/8)% f([2A\] + 1).
k=[2)\]+1

Hence, by (6.3),

oo 2 2 e 2
k=[2A]+1 [2A]+1

with Co = 492 - 3.1 - (17/8)% < 685343. Asymptotically with respect to large A, this
bound is much better than (6.4). Applying f(k) < \/lek ek=A (%)k as in (2.9) with
k= [2\] + 1 and using 2\ < k < 2\ + 1, we have

A e 3/, /e\81 1
<5z () e <

e
20| +1) < ——
FERA D) < o
This gives
CQ Ao\ 2
$<—=(F)"
2= (1—rp A
As a result, we arrive at the desired upper bound in (6.4).
Finally, let us estimate Sy for the range % < X\ < 8. Returning to (6.6), we have

< ——— — < < =z
SQ—(1—;~;)3;<A) A”C(k)—(l—m)i-%A A B2 _(1—/<;)3()\)’

where Ch = 492 SUP1cy<y P(A), w(\) = A4 EZS. Here

v = AFOED) ey

with Y1(A) =5+ A+ %, ¥a(A) = T+ A+ 32, ¢3(A) = 14 3. All these three functions
are convex, while 13 is decreasing. In addition, v;(1/2) > ;(8) for i = 1,2. Hence
Y(A) < (1/2) = § - 111 It follows that Cj = 492 - 1 - 11!l < 6239560, and thus
¢ = C1 + CY is the resulting constant in (6.4). O

Remark 6.3. Assume that A\ > 1/2, and let us recall that x? is a stronger distance
than the total variation in view of the general relation d(W, Z)? < § D(W, Z). Hence,
the upper bound in (6.4) implies the inequality d(W,Z) < cxAa/A (like in Chen’s
result), provided that Ao < kKA. But, in the other case A2 > kA, there is nothing to
prove, since d(W, Z) < 1.

Also let us recall that, for A < 1/2, the correct upper bound on the total variation
distance is of the form d(W, Z) < C'A2. It may be obtained by elementary methods,
as already illustrated in Proposition 3.3.
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7. Uniform Bounds. Comparison with Normal Approximation

A different choice of the parameter r in the proof of Theorem 1.3 may provide various
uniform bounds in the Poisson approximation, like in the next assertion. Using the
L*°(p)-norm with respect to the counting measure p on Z, let us focus on the devia-
tions of the densities of W and Z and the deviations of their distribution functions.
These distances are thus given by

M(W,Z) = sup [B{W =k} —P{Z = K},
k>0
K(W,Z) = sup |[P{W <k} —P{Z < k}|.
k>0
Putting » = 1 in (5.6), we arrive at the next assertion which sharpens Proposition 4.1.

Theorem 7.1. We have

MW, Z) < */56”2 Ao min {1,(A — Ag)~%/2}. (7.1)

This uniform bound is not new; with a non-explicit numerical factor, it corresponds
to Theorem 3.1 in Cekanavicius [4], p. 53. For A < 1, this relation is simplified to

2
uw,z) < VT,

which cannot be improved (modulo a numerical factor) in view of the lower bounds
on |Ag| with £ = 0,1, 2 mentioned in Section 3. We also have a similar bound for the
Kolmogorov distance, K(W,Z) < C\gy, which follows from the upper bound for the
stronger total variation distance as in Theorem 1.1.

When, however, A is large (and say all p; < 1/2), it is commonly believed that
it will be more accurate, if we replace the Poisson approximation for Py by the
normal law N (A, \) with mean A and variance \. Indeed, suppose, for example, that
pj = 1/2, so that W has a binomial distribution with parameters (n,1/2), while the
approximating Poisson distribution has parameter A = n/2 with Ay = n/4. Here
the inequality (1.2) only yields d(W,Z) ~ 1, which means that there is no Poisson
approximation with respect to the total variation! Nevertheless, the approximation
is still meaningful in a weaker sense in terms of the Kolmogorov distance K, as well
as in terms of M. In this case, both Py and Py are almost equal to N (A, \), and

C

the Berry-Esseen theorem provides a correct bound K (W, Z) < 7 via the triangle

inequality for K. Since M < 2K (which holds true for all probability distributions on
Z), we also have M (W, Z) < ﬁ Note that this inequality also follows from Theorem
7.1. Indeed, when A\ < %)\, (7.1) is simplified to

V2en? o
3 A2
which yields a correct order for growing n. Thus, the two approaches are equivalent
for this particular (i.i.d.) example.
To realize whether or not the normal approximation is better or worse than the
Poisson approximation in the general non-i.i.d. situation (that is, with different p;’s),
let us evaluate the corresponding Lyapunov ratio in the central limit theorem and

M(W,Z) < (7.2)



22 S. G. Bobkov, G. P. Chistyakov and F. G&tze

apply the Berry-Esseen bound K (W, N)) < cLs3, where the random variable N, is
distributed according to N (A, \). Since Var(W) = Z?:l Pjqj = A — A2, the Lyapunov

ratio for the sequence X1q,..., X, is given by
1 n
_ L 3
Ly = Var (W2 ZlE 1X; — EX;|
J:
1 " 1
(A — Xg)3/2 = (pg QJ)pJQJ = A=

(note that § < p? +q]2- <1). Hence K (W, N,) < \/)\%7)\2, up to some absolute constant
¢ > 0. A similar bound holds for Z as well when representing W as the sum of
n independent Poisson random variables Z; with parameters p;. Namely, for the

sequence 71, ..., 2y, we have

1 - 3 C c
L3 Var(Z)3/2 ;H*HZ] EZ;|* < \3/2 j;pj %

Therefore, K(Z,Ny) < % and hence, by the triangle inequality, K (W, Z) < \/AC_T

In particular, in a typical situation where Ao < % A, the normal approximation yields

c

Mw.Z) < - (7.3)

with some absolute constant ¢. But, this bound is surprisingly worse than (7.2) as
long as Ay = o(\).

Consider as an example p; = 1/(2/4) for j =1,...,n. Then A ~ \/n, Ay ~ logn,
and we get M(W,Z) < en~%/*logn in (7.2), while (7.3) only yields M(W,Z) <
cn~1/4. This example is also illustrative when comparing Theorem 1.2 with (1.5).
The first one provides a correct asymptotic D(W, Z) ~ % (within absolute factors),
while (1.5) only gives D(W, Z) < c.

8. Upper Bounds on D and X? in the Degenerate Case

We now turn to Theorem 1.2 in the degenerate case, where the optimal bounds on
the relative entropy and x? have a different behavior. As an intermediate step, let
us derive the following upper bounds for the y2-distance and the relative entropy, by
involving the quantity

Q = A/ max{l, A — A2}

Proposition 8.1. For A > 1/2, we have
(W, 2) <19V, (8.1)
D(W||Z) < 23 log(eQ). (8.2)

These bounds turn out to be sharp when Ao > kA, cf. Propositions 9.1 and 10.1.
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Proof. Setting g(w) = [[;_, (@ + piw) as before, we exploit the representation

P{W =k} = wFg(w) dpy (w) = QL Tk/ g(rei®) = dp,
™

|w|=r -7

which is valid for all » > 0. Like in Section 6, we have an upper bound
P{W =k} < Rp(r)I(r)  with  Ry(r) =r*[[(a+pr)
=1

and

Let us choose r = k/\ as before. Since g; + pjr < ePi(r=1),
n
ex\k
H qj +p] (r—l)—k:logr _ (?) €_>\.

Moreover, applying ( %)k < e\/E 71 as in (2.5), the above is simplified to

Ri(r) < eVk ?: e = eV f(k),

where f(k) is the density of Z ~ Py with respect to the counting measure on non-
negative integers k = 0,1, ...

On the other hand, repeating the arguments from Section 5, or just applying (5.4)
with j = 0, we have for all |f| <,

19|

H lq +pire _ ﬁ (1 _ dapir 2 Q>1/2
( 22

tToatpr P @+ mpr)

qaprr 202~ amir
< exp{—2sm }gexp{——
Z; (@ + pir)? w2 lz; (@ + pir)?
Here
~  qpr
aqpr=—-(A—X2) incase r>1
lz; (1 + pir)? Z
and

n n
aiprr .
E s =T E qpr =7 (A—X2) incase r <1.
2
= (@ +pr) =1

These right-hand sides have the form
Y(r) = min{r, 1/r} (A — A2),

and we get
[ 2 1 2wl o,
I < _ 2 -5
(r) < - _WeXp{ S ¥(r) 0 }d@ roTe )1/2/ MT)e 2% dx

1
()7

IN

min {v27, 41(r 1/2} < min {1, 4(r 1/2}.
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First, we consider the region %)\ < k < 4\, in which case i <r <3and¥(r) >
2 (A= A2) and thus

I(r) Smin{l, } < 24/Qo, Qo = 1/ max{1, X\ — A2}

X — Ao
Hence
P{W =k} < 2e\/Qo Vk f(k). (8.3)

As for for the regions 1 < k < %)\ and k > 4\, we use the property |I(r)| < 1, which
yields simpler upper bounds

P{W =k} < (%)kﬂ < evk f(k). (8.4)

Now, recall that P{W = 0} < f(0) (according to Lemma 3.1) and write

o0 _ 72
X'W,2) = ZW—1<S1+52+53
k=0

IP’{W = k;}2
- (T + ¥ +x)™
1<k<ix La<k<axn k>4
By (8.3),
Sy <2e/Qo > VEP{W=k} <4e/Q Y P{W =k} < 4e\/Q.
L x<k<an LA<k<4

To estimate Si, first note that S; = 0 for A < 4. For A > 4, using the property
that the function k — (%)k is increasing for k < A, we obtain from (8.4) that

oz o 3 R A 5 ()
k<1 1<k<iA
< A S s ()(5)
1<k<i

3 3/2
< _— 0.544.
= ¢ (26 log(e3/4)) <

Here we applied the inequality

p p
P$<(7) >0, 0<e<l, 8.5
re = elog(1/c) P ¢ (8:5)

with p = 3/2 and ¢ = 4/¢3.

To estimate S3, one may bound the sequence vk (%)k for k > 4\ > 2 by the
geometric progression AbF with suitable parameters A > 0 and 0 < b < 1. To this
aim, consider the function

o (4 (2)) -1t

1
= 5logx+m+xlog)\—xlog:z:—xlogb, k> 4\
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We have

1 1 1
u'(z) = g—f—log)\—loga:—logb < z—i—log@ <0,

if b > %61/4 which we assume. In this case, u is decreasing, so that u(x) < u(4\) =
log (2\5\(%)4)‘) <log A, where

A =2 sup f<4b>4/\ = supf( ) <1(3/e)>1/2 < 1.366,

A>1/2 y=2 2elog

where on the last step we choose b = 3/4 and applied (8.5) with p = 1/2 and ¢ = ¢/3.
Thus, putting kg = [4\] + 1 and noting that kg > 2, we get

5 o< Y VE(D) <\fZA<)

k>4
ko

— 4Ae <Z) < ZA\/é < 5.067.

Finally, using Q@ = AQo > 1/2 (due to A > 1/2), we get S; + S3 < 5.611 <
5.611,/2Q. This gives Sy + Sy + 53 < (5.611v/2 +4e)/Q < 18.81,/Q, so (8.1) follows.
Turning to the second assertion and using P{W = 0} < f(0), write similarly

DW|2) = ZP{W B log =) = T4 T+

( o Y Y ) BW =k} log P{W() ki

1<k<ix La<k<ax k>4

IN

For the region % A < k <4\, we can apply the bound (8.3) again, which gives
P{W = k} < 2/Qo eVE f(k) < 4e/Q F (k)
and therefore, using @ > 1/2,
log(4e) — 3 log?2
log(e/2)

Using also (8.4) together with the inequality log(et) <t (¢t > 0), we obtain, similarly
to the derivation of the bound on T} in the y?-case, that

no< et Y (%)klog(eﬁ)se’”og@ YORDS <%>k

1<k<3A 1<k<iA

< ("G < Gmem) <02

Putting again ky = [3A] + 1 similarly to the derivation of the bound on S3 in the
x2-case, we also get

o< ey <€A> log(eVk) < e~ ! Z f(e)‘) < 5.067.

k>4X

1
Ty < log(4e) + B logQ < log(e®) < 6.65 log(eQ).

Hence, T1 + T3 < 5.087 < 16.578 log(e@), and (8.2) follows as well. O
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9. Lower Bound on y? in the Degenerate Case

Here, we complement Proposition 8.1 with a similar lower bound about y?-distance
in terms of the same quantity Q = A/ max{1, A — A2}. Put ¢ = 2.5-107°

Proposition 9.1. If A > 1/2, then with some absolute constant ¢ € [cg, 1)

L+ x*(W, 2) > ¢/Q. (9.1)
Moreover,

V(W.2) > 51/Q (9:2)

as long as Ao > (1 — ) A

Suppose that Ao > (1 — %) A. To derive the second inequality of Proposition 9.1
from the first one, it is sufficient to require that c/Q > 2, since then ¢/Q—1 > $/Q.
This condition is fulfilled, as long as A > Ag = ;% and then we obtain (9.2). In the
remaining case 2 < A < )\, the inequality (9.2) follows from Harremoés’ lower bound

X2(W, Z) > (AQ)2 Indeed, in this case, A — Ag < C A <1, s0that Q@ =\ < 5, and
thus §/Q < 2, while 1 (32)2> 11— %)2.

Thus, we may focus on the first inequality (9.1). First we prove it, assuming that

A — )Xo is sufficiently large. As in Section 9, for any fixed r > 0, we apply the Cauchy
theorem and write

P{W =k} = w [ [(@ + piw) dpr (w) = Rie(r) Ii(r)

|w|=r =1

with integration over the uniform distribution p, on the circle |w| = r of the complex
plane. Here and below

n
-+ H @+ pir)
=1
and

L) / H et pre] { k0 +i>" Tm(log(a + pir ™)) } db.
— =1

™ q +pir
We split the integration over the two regions so that to work with the representation

]P’{W = k} = Rk(T‘) Ik(T') = Ry(r) (Ikl(T) + Ija(r)),

where
[kl( i /g ﬁ ‘QI +Pz7“€ exp{ — kO —i—ZiIm(lOg(ql + pir eie))}de7
21 T ator =1
Ik;Q( ) — i / M exp { — 1k + 1 Zn: Im(log(ql +plT€i9))} do.
21 Jx <o)< @ +pr

=1
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Here we choose the radius r = r(k) > 0 by the condition R)(r) = 0, or equivalently

n
_ nr
F(r) 2y k. (9.3)
Since the function F' is monotone and F'(0) = 0, F'(c0) = n, there is a unique solution,
say r, to this equation as long as n > k (which may be assumed). We also assume
that not all p; are equal to 0 or 1, so that Ay < A.
Let us also emphasize that F' is concave on the positive half-axis. Since F/(1) = A,
we necessarily have r(k) < 1 in case k < A, and r(k) > 1 in case k > A.

Lemma 9.2. For any k =0,...,n—1, the solution r = r(k) to the equation (9.3)
satisfies

r>1+k_)\
- )\—)\2.
Moreover, in case |k — A| < & (A — A2), we have 2 < r < ¢, and actually with some
0<y; <1
6\2  k—A
S
" 5 T
k—A 6\9, Xo—A3 s k—XA\2
- ! () 3= o)
e T ey e
Proof. We have
- b
Fl(r) = , F'(1) =X — \o.
( ) Z(QI"i‘pl'f’)Q ( ) 2

=1
The inverse function F~! : [0,n) — [0,00) is increasing and convex. Hence, for any
s € [0,n),
F7ls) = FTI)+(FHY N (s =N
-1

() + N =1+

1
—_— —A).
PET) _—
Plugging s = k, we obtain the first inequality.
Now, since ¢; + pyr < 1 for r < 1, we conclude that F'(r) > > mg = X — Ao
and F(1) — F(r) > (1 —7)(A — A2). Thus, if £ < A, we obtain that

A— A2

1
g A=) 2 [k =Al=F(Q1) - F(r(k)) = (1 = r(k))(A = A2),
implying r(k) > 2. For r > 1, one may use q;+p;r < r, which gives F'(r) > %2 (A—=X2)
and F(r) — F(1) > (1 — 1) (A — X2). Hence, again by the assumption,
1 1
—A=X)>k—=A=F(@rk)-FQ1)>(1———) (A=A
S (=) > (k) = F) 2 (1= o5) 0= %)

implying r(k) < £. In both cases, 2 < r(k) < £, proving the second assertion of the
lemma.
Now, in the interval % <r< g, we necessarily have % <q-+pr<?8 so
5

CYo-am<roms(3) -
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In addition,

piq 63 63
P ‘22 oy =2 (5) vt =2-(5) (-

Let us now write the Taylor expansion up to the linear and quadratic terms for
the inverse function F~!(s) around the point A\. Then we get

1
F(F1(s1)

_)\)

Fl(s) = 1+ —A)

(1)’ 9 F/(F1(s9))3

where the points s and ss lie between A and s. Putting r = F~!(s) and r; = F~1(s;),
the above is simplified as

FI(F (52) (5 = V)2,

1
r = 1+F,(r1)(s—/\)
1 1 "
- 1+)\—>\2(8 A= QF,( 2)? F(T2)( )\>2

where r; and r9 lie between 1 and r. It remains to apply these equalities with s = k,
that is, r = r(k), and note that F/(lrl) < (8)2 )\771)\2, while

5
1 1 6\3 6\9 Ao — A3
) 2 < 2. (= — = (=) ——"=
2 F'(rg)3 [ (ra)] < 2(%)6 (A — Ag)? (5) (A2 = A3) (5) (A= Xp)3
Note that (£)? = 1.44 and (2)? < 5.16. O

Lemma 9.3. Let r = r(k) be the solution of (9.3) for 0 < A\ — k < é()\ — A2).
Then

AV

Proof. The function

r(r) = log Ry (r Zlogql+pzr> klogr, — r>0,
=1

is vanishing at » = 1 and has derivative

W) =SSPk F =k Pl = Fk),

=1 q + pir T T r

Since F is increasing and concave, F(a) — F(b) < F'(b) (a — b) whenever a > b > 0.
In particular, in the interval r(k) <r <1, we have

i) < S ) < EES (1),
which implies
F(r(k)

Ur(r(k) = Pr(r(k)) —¢e(1) = -



Relative entropy and x? divergence from the Poisson law 29

By Lemma 9.2, 2 < r(k) < % and 1 —r(k) < () f%)f; Moreover, as was shown in
the proof, F’(r(k:)) < (2)%2(X = A2). Hence

F'(r(k)) (8)2(A=A2) (76\2 k=A\2 (677 (k—\)>
(k) (L =r(k)* <= 5/6 ((3) A — )\2> - (3) A=y
Here the constant (%)7 < 3.6. O

Lemma 9.4. Let A — Ay > 100. Then, for 0 <A —k < & (A — A2),

1
I k) > ———.
Proof. By Lemma 9.2, 1 > r(k) > %. Recalling (6.4) which is needed with j =0,
note that, for r > 0 and —7 < 0 < T,

10|

H lgi +pire . ﬁ ( dqiprr sin? Q)l/z
B 2

o @t (a1 +pir)?

_aipr -29}
< {—25 1
= &P (q + pir)? o

For % <r <1, necessarily ¢; + p;r < 1 and

n n
qpir 5
;:1 @+ > ;:1 apir = (A= A2)r 2 £ (A=)

Hence

1 n 0
Iia(r) < / o+ pir e ’d9
2m Jr<jgi<n 1o @t P

1 5 0
< = — S (A=) sin® = tdh <
A <o)< eXp{ 3 ( 2) St 2} o

Let us now estimate Ij;. Using 4qp;r < (q,+pir)? (since (¢ —pir)? > 0), we have,

for |0] < 7/2,
dgpr . .0 1
—————— sin” — -, l=1,...,n.
(@ +pir)? 2 = 2 Y
In the region 0 < ¢ < gg < 1, there is a lower bound 1 — & > e~ with best attainable
constant when € = gg. In the case ¢g = %, this constant is given by ¢ = 2log2.

Therefore, for |0] < Z,

|t + pur €| —~ dgpr
H > exp{ log 2 Z sin (9/2)}

ey q + pir (q + pir)?

m is increasmg in 0 <r <7 =q/p and decreasing

in r > r;. Hence, if r; > 1, then maxs ., wi(r) = w(l) = 1. If r; < 2, that is, when
g<r<

But, any function wy(r) =

D= 1%, we have

[eN[3)]
IN
(g e

max wy(r) =w;(5/6) = ———=
B<p< Hr) = w(5/6) (@1 + 0 g)?
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Finally, if 5 < r; <1, which is equivalent to 2 <p < 11, we have

) = () = < L 121
max wy(r) = wi(r;) = < = —.
S<r<l dpg — 4L -5 120

Thus, in all cases, w(r) < g on the interval % <r <1, so that

g+ pir €| 6 " i 6 ,
2 -z > _2 _
and thus
/2 H‘QZ‘FPZT‘G / eXp § 10g2) ()\—)\2)92}d9
T, atpr x 5

§ (log 4) (A—A2)

27r\/g (log4) (A — A2) /g 2 (log4) (A\=A2)

1
exp{ — ixQ}dx

1
= 0.3093 ——.
VA= Ao
Here we used A — Ay > 100, which ensures that
. /8 (log4) (\—A2) 5my/ ¢ log4
1 /2 : e dr > T ity
6

—%1/ 2 (log4) (A=X2) B 2Ty /% 5 1og 4 / 5 10%4
1 6

= ——— P{l¢/ <5my /7 log4} > 0.3003,
1/27‘(% log 4 g

where £ ~ N(0,1). In addition (recalling one of the upper bounds when bounding
the integral Is from above), and using sin(6/2) > g 6 for 0 <0 < 7/2, we get that

H g +pir e ¢ 1 [2 ) 20\ 6
< — -
/ e 6% do /_,, exp{ 3 (A — \g) sin? } 0° do

_fll
/exp{ 3—0()\ )\)02}06d9

21y /2 log4

IN

IN

1 3\7/2 1 48
M (7> 15v2 TEwic et

The assumption (9.1) may be rewritten as

tn (Y tog(a-+re”) )], = (3 tm(logtar +prre)))
=1

Note that the functions Im(log(ql + pr e“’)) are odd, so their 2nd derivatives are
vanishing at zero. We now apply the Taylor formula up to the cubic term to the

=k.
0=0
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function

Ag(r,0) = =k 4+ Im Z log(q; + pire®)
=1
on the interval 6 € [—7/2,7/2] to get that
" 03

v=0g

Ap(r,0) = % (Im > log(a: +pz7"6w))
=1

with some 0y € [—7/2,7/2]. To perform the differentiation, consider a function of
the form

h(v) =log(q+pre™),  p,qr>0.

We have
priet ) q . vy —1
W) = o = i(1- ) it
W'(v) = —pgre” (q+pre?)7?
W(0) = —pgr (iew (q -+ pre®) 2 — 2ipre®® (q~|—pre“’)_3).
Therefore,
n " n n 2.2 20
plQﬂ’@ qQp;r-e
—(Im log(q+pir €' ) (z )—QIm (z )
< ; ( ; (@ + pir e)? = (@1 +pire)?

implying that

‘ (Im Zn:log(ql + pyre?) )

=1

n

biair QZpl
<
,Z; la+pre®P " Z |<Jl+pn“6l9|3

But, for % <r<land|f] <7,
dqpir .2 0
VP NRY ] Sin- —
(@ + i) 2
2 2 2.2
> (q+pr)” —2qpr = q +ppre.

g +pre?? = (q+pr)*(1-

Hence
r r 121

—— < =y (r
lai + pir €2 = g% + p?r? r) < 60
Here we used the property that u;(r) is increasing in r <r =q/m and is de-
creasing in r > r;. If r; > 1, this gives (1) < (1) = <2 Ifn < , that is,

2+p
when pl > 5 we get w(r) < w(5/6) = %. The latter expression is minimized
at pi = 11 Where it has the value Q Finally, 1f 2 < r; <1, which is equivalent to
S p < %, we have
1 1 121
w(r) < wu(ry) = <
(r) (re) 2o — 2. %% 60
From this,

r2 _ ( r/3 >3/2 - < r )3/2 (- )3/2 <121>3/2
- -5 5 =u
|+ pir €3 = \gf + ppr? = \qi +pir? " 60/ '
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"

so that
121

n
' (Im Z 10g(‘1l + pir 320)) < 60
=1 =1

60

with o = 12b + 2 (£21)3/2 < 7.744438. Thus,

[Ak(r6)] < O =) oI,

Now, as we mentioned before, the function Ay is odd in 6, so that

Ia(r) = /W H 1 + pir €”| cos( Ay (r. 6)) db

r
-z q + D

™

P+ 2 (121)3/2 Zquz < o (A= Aa)

> 1 g+ pire®| / g + piret?| <in?
_ A(r,0)/2) d
/7, H q +pr H q +pr (A(r.0)/2)

T2 =1 2 =1

Hence, using

c2

A — )2 68
< qag A 200
from the previous estimates we may deduce the lower bound

1 c? 48
1 > 0.3093 ———— — L (A — X)) ————
p(r) = ( 2) D= ag) T2

sin?(A(r, 0)/2) < Ak(r 0)*

2
_% 1
VA= 3 (A= M)32

20 1
0.3093 — ——— ) > 0.1093 ——,
( A— )\2> o VA= Ao

= 0.3093

1
> -
T VA=

where on the last step we assume that A — Ay > 100. Together with the upper bound

on Iis, we arrive at the lower bound

1 1 s
Ii(r) > 0.1093 ——— — —¢ 6 (A 22)
A=Ay 2

> (0.1093 — 5o %) L 01

> .
VA= VA=)

Thus, Lemma 9.4 is proved.

Proof of Proposition 9.1. We conclude from Lemmas 9.3 and 9.4 that
1 ,4 A=k)?
X—Xg
10V2 = Xa )\2
for0<A—k<4i g (A = A2) under the assumption A — Ay > 100.

PW =k} >

On the other hand, according to Lemma 2.3, f(k) = P{Z = k} < ——.

k>XA—2(A=2X2) > 2\, we have
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As a consequence,

P{W = k}?
1+ Xz(Wa Z) > Z W
0<A—k< VA= X2
VA _g A=k)? A
> A=Az > 0.001 .
= 500 — \o) 2 ¢ © = X~ o

0<A—k<EVA=X:

In order to clarify the last inequality, note that the condition A — Ay > 100 implies
that A > 100. The above summation is performed over all integers k from the interval
A— %\//\ — A2 <z < X of length at least 10/6. It contains at least one integer point,
and actually, the number of integer points in it is at least h = %\/)\ — A2. Moreover,

o (A=k)? A=k+l g2
Z o 83—, > Z / e 22z dr
A

0<A—k<h A—hl+1<k<[N] “AF

A=[A=h] g2 2/3 2
= / e Y2 dr > f\/)\ )\2/ eV /2 dy
A 2/5

Al
= mm A2 (2(2/3) — ®(2/5)) > 0.056y/X — Xo.

Here, we used the bounds 4 \}\% < 2 £ and 4 /\\/)EA )\h] >4 A=A O10/6] > %7 together
with ®(2/3) — ®(2/5) > 0.09.

In order to treat the region A — Ay < 100, we apply Proposition 2.2. Let W, =W
and Wo =Y +---+Y,,, where Y7, ...Y,, are independent Bernoulli random variables
taking the values 1 and 0 with probabilities 1/2 and m = 400. Assume as well that W
and W, are independent. Then A = A+ m/2 and Ao = Ao+ m/4 satisfy the condition
A — Ag > 100.

Denote by Zs a Poisson random variable with EZs = m/2 which is independent
of Z1 = Z. By the previous step and the inequality (2.4) of Proposition 2.2,

)

— N2

0.001 < Wy +Wa, Zy + Z5) + 1

< (W1, Z1) + 1) (XP(Wa, Za) + 1).

Here, by (8.1), x2(Wa, Z3) < 19v/2. Moreover, since A — Ao < 100, we have

A tm/2 /)\+200
A— /\2 A — )\2+m/4 1()f max{lx\ Ao}

It follows that

0.001 A A
1 Z 2.5-107°
W 2) 2 10v2 (19v2 + 1) \/max{l, A— o} > 2:5-10 \/max{l, A=A}

Hence, Proposition 9.1 holds in the case A — Ay < 100 as well.
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10. Lower Bound for D in the Degenerate Case

An analogue of Proposition 9.1 is the following statement about the relative entropy.
Recall that @ = A/ max{1, A — \a}.

Proposition 10.1. If Ay > koA and A > Ag, then
DW|Z) > cplog(eQ). (10.1)

where kg = 1 — exp{—10%}, Ao = exp{2- 107}, and ¢y = e~ 4.

Proof. Let us recall the two estimates from the previous section,

1 g O=R)? 1
=PW=k > — Adg =P{Z=k} < ,
wEPEN SRR T wERIER s O

The first one is valid under the conditions 0 < A — k < % (A= A2) and A — A9 > 100,
cf. (9.4). Clearly, they are fulfilled if 0 < A —k < g A — Xy and A — X9 > 100, and if
additionally Ay > kA, 0 < k < 1, then we have

1 —100/9 1 —100/9
wp > ————e > ——————e¢ :
10V A — Ao 104/(1 — k) A
Since k > % A, we also have an upper bound
1
vp < —e
\/BrA/3
In order that wy > vy, it is therefore sufficient to require that 10\/1@ e~100/9 > %/3,

that is, 1 —x < g e~200/9  We have, moreover,

1 eA g<\/57r/36 6_100/9> > %log A 14

10 A— A2

Now, applying the general inequality (2.1) of Proposition 2.1, we get
Wk
DWI||Z) > log— —1
Wiz) = 3 wilog’

w
wklogv—: -1

(]

0<A—k<SVA=Xy

1 A
> o1 _ 14) _1
= > Wk (2 BN TN,
0<A—k<3VA=X;
1 A 1 g A=R)?
> Zlo Y s
= 2798 T, 2 10V — Xy

0<A—k<3VA=X,

Note that, if A — A9 > 100, the x-interval 0 < A — z < %\/)\ — A2 has length at
least 50/3, so, the total number of integer points in this interval is also at least 50/3.
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Hence, the last sum can be bounded from below by

50/3 100/ 5 1009 o 11
— 1> -e > e .
10VA = Ag 25: =3
0<A—k<3VA—X2
Thus,
1 e 1 e
DWI||Z) > e Mlog————15 > e 111 ,
(Wil2) z 5 e log 3= =4 BT,
where the second inequality holds true true when 1 — « is sufficiently small. Namely,
- 1 > = 1 > 15
1€ og)\_)\2_4e &1 ’

if 1 — k < exp{—60e''}. Let us assume that.

The proposition is thus proved under the conditions A — Ay > 100 and Ay > k. It
remains to eliminate the first condition, assuming that A\ — Ao < 100 and again that
A2 > k. To this aim, we appeal to Proposition 2.2 again like on the last step of the
proof of Proposition 9.1. Namely, using the same notations and assumptions, from
the inequality (2.3) and using the previous step, we obtain that

-11 eA
1
c o8 max{1,\ — A2}

1
1 < D(Wy + Whl||Z) + Z3)
< D(Wh||Z1) + D(Wa||Z2), (10.2)

where Wy = W and Z; = Z. It holds, as long as Ap > k), i.e., o+m/4 > K (A+m/2).
Since A — Ao < 100, the latter would follow from

A—100+m/4 > k(A +m/2)

which is solved as A > 50 ﬁ
Moreover, by (9.2), we have D(W3||Z2) < 23 log(2¢). This bound may be used in
(10.2), which gives

1 e
DW|Z) > =e 1 — 23 log(2
Wijz) = je 08 (1A~ Ao 3 log(2e)
1 e
> —
= 3¢ IOgmax{l,)\—)\g}’

where the second inequality holds true true when 1 — k is sufficiently small. Namely,

L 1 e L 1
— 1 > — 1
8¢ BN T8 BTk

> 23 log(2e),

if 1 — k < exp{—8-23-1log(2e) - e!'}. Since the product in the exponent is smaller
than 18700000, we may choose k = k1 = 1 — exp{—18700000}. In this case,

e 1

> —
D(WI|Z) = e1log - ;

assuming that A > 50 15—;1 It remains to note 50 1f}$1 < Ap, K1 < Kg, €1 > Cp- O
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11. Summarizing Remarks. Proof of Theorem 1.2

Let us summarize. Using an additional quantity
max(1,\)
max(1,A — \g)’
the obtained results on Poisson approximation for different regions of A and As are
united in Theorem 1.2 in the form of two-sided bounds

o (%)Z(ngp) < D(W||Z) < 02<%>2(1+log}7), (11.1)

& (%)2\/17 < W, Z) < e (%)2\/1? (11.2)

which are valid up to some absolute positive constants ¢; and co. Let us give final
comments on the proof of Theorem 1.2 and indicate these constants explicitly. As we
will see, (11.1)-(11.2) hold with ¢; = 1077 and ¢y = 5.6 - 10”.

An upper bound in (12.1).
If A < 1/2, these bounds are simplified and may be precised as
1 /729\2 Ao 2
1 (5) = bwliz) < 2w.2) <16 (3 (11.3)
Here, the left inequality is true for all A and Ao, cf. [H-J-K], while the right inequality
is proved in Proposition 3.3. Note that A < 1/2 implies Ay < %)\.
In the case where A > 1/2 and A9 < %)\, we have, by Proposition 6.2,

F=F\\) =

IN

Ao\ 2
DW||Z) < x*(W,Z) < 56 -10° (72) ,
so that .
DOVI|Z) < 56-10° () (1-+ log F) (11.4)

In the case where A > 1/2 and A9 > %)\, one may apply (8.2) which gives

2
DW||Z) < 23(1+1logF) < 4-23 (%) (1+log F).

Here, the right-hand side contains a better numerical constant in comparison with
(11.4), and we finally get (11.1) with constant cp = 56 - 10°.

A lower bound in (12.1).

If A <1, then F = 1, so that the lower bound in (11.3) yields (11.1) with ¢; = 1/4.

Assume that A > 1. The inequality (11.4) may be reversed by virtue of (10.1),
which gives

D(W||Z) > co(1+logF) > CO(%)Q(l—FlogF) (11.5)

with cg = e~ provided that Ay > koA and A > \g, where ko = 1 — exp{—2- 107}
and \g = exp{2-107}.

But, the remaining regions belong to the non-degenerate case, where F' is bounded
by a quantity which depends on kg or Ao, and then the lower bound in (11.3) is
asymptotically optimal. Indeed, if Ay < ko), then log F < —log(1 — ko) = 2- 107, so,
1 <)\2

> - (=
bwliz) = 4(1+2-107) \ X

)2(1+logF).
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This means that the left inequality in (11.1) holds true with constant ¢; = m
which is better than ¢y in the analogous inequality (11.5). Similarly, if 1 < A < Ay,
then F' < X\ < \g, and we get, by the lower bound in (11.3),
N (&
4(1+1logio) \ A
This means that the left inequality in (11.1) holds true with the same constant ¢; as
above. Thus, the lower bound in (11.1) holds with constant cq (> 1077).

2
D(W||Z) > ) (1+log F).

An upper bound in (11.2).

If A <1/2, we have (11.3), which implies (11.2) with co = 14. In the case A > 1/2
and Ao < %)\, a stronger version of (11.4) is still provided by Proposition 6.2, which
gives

Ao 2

(W, Z) < 2(W, Z) < 56-10° (72) :
so that (12.2) holds true with ca = 56 - 10%. In the case where A\ > 1/2 and \g > %)\,
one may apply (8.1) which gives

Ao 2
(W, Z) < 76 (72) VF.

Here, the right-hand side contains a better numerical constant, and we finally get
(11.2) with the same constant ¢y as in (11.1).

A lower bound in (11.2).

If A <1, then F = 1, so that the lower bound in (11.3) yields (11.1) with ¢; = 1/4.

Assume that A > 1, in which case F' = @Q = A/ max(1, A — \2). By Proposition
9.1, cf. (9.2), we have

Y(W,2) = TV

with cg = 2.5 -107%, provided that Ay > koA, kg = 1 — ¢§/4. This gives
Ao\ 2
(w.z) = () VE, (11.6)
and we obtain the left inequality in (11.2) with ¢; = ¢o/9 > 1077.
The remaining region belongs to the non-degenerate case, where F' is bounded,

and then the lower bound in (11.3) is asymptotically optimal. Indeed, if Ay < KA,
then 1/VF > /T — kg =2 = 0.8 - 107°, so that, by the left inequality in (11.3),
1 /7 X\2 6 (A2 2
W.7Z) > 7(7> > 02 -10 6(—) F
XW,2) = 1~ ) = ;y vF
This means that the left inequality in (11.1) holds true with constant ¢; = 2 - 107

which is slightly better than the constant in the analogous inequality (10.6). Thus,
the lower bound in (11.2) holds true with constant ¢; = 10~". O

12. Difference of Entropies

For the proof of Corollary 1.4, we shall use another functional

Ha(Z) = (E (logv(2))?)"/? = (Z”k (10g”k)2>1/2’

k
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where Z is an integer-valued random variable with probability function vy = P{Z =
k}, k € Z. Thus, while the Shannon entropy H(Z) = —E logv(Z) describes the
average of the informational content —logv(Z), the informational quantity Hs(Z)
represents the 2nd moment of this random variable.

An application of Theorem 1.2 is based upon the following elementary relation.

Proposition 12.1. For all integer-valued random variables W and Z with finite
entropies, we have

H(WI|Z) < x*(W, Z) + Hy(Z)V/ X*(W, Z). (12.1)

Proof. We may assume that the distribution of W is absolutely continuous with
respect to the distribution of Z (since otherwise x2(W, Z) = o). Equivalently, for all
k € Z, vy =0 = w =0, where wy, = P{W = k}. Define t; = wy /vy in case vy > 0.
Recalling the definition (1.12), we then have

HW||Z) =Y (trlogty) vk + Y _ (tx — 1) vi log .

v >0 v >0

We now apply the inequality tlogt < (t — 1) + (¢t — 1)2 (¢ > 0), obtaining

HWZ) < > (te—Doe+ Y (t—1D%vp+ Y (tr — Doglogo

v >0 v >0 v >0
2
wy — v
= Z (w0 = vr)” + Z (wg, — vg) log vg.
% Uk v >0

Here, the first sum in the last bound is exactly x?(W, Z), while, by Cauchy’s inequal-
ity, the square of the last sum is bounded from above by

ZW 3w (logu)? = X2(W, Z) HE(2).
k k

In view of (12.1), we also need:

Proposition 12.2. If Z ~ P, then

log(1 } >1
Hy(Z) < V50 log(1 + A), z.f A>1,
5v/\ log(e/)), if A<1.

Proof. As before, let vy = P{Z = k}. In particular, vg (logvg)? = A2e~* and
v1 (logv1)? = Ae™ (A +1og(1/A))2. This shows that the above upper bound for small
A can be reversed up to a constant. For A < 1, given k > 1, from

1 1
log — = A+ log k! + klog ~ < k?log <,
Vi A A

we get

> " vy, (log vy,)* < E Z” log? (;) < 24 ) log? (;)
E>1
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Hence, H3(Z) < 25 X log%(e/)\), thus proving the second upper bound of the lemma.
Now, assuming that A > 1, let us apply the lower bounds (2.7)-(2.8) from Lemma
2.3, which for all k£ > 1 give

1 1 1 5 1 2
<14 - “(k=N2< — (k-
log o = 1+ 5 log k + 5 (k—\)* <log(ek) + 3 (k—M\)
and 1 9
log? o < 2log?(e(k + 1)) + 2 (k-4

Note that this bound is also true for k = 0. Using the concavity of the function log? z
in x > e and applying Jensen’s inequality, we therefore obtain that

= 2
> v (logup)? < 2E log’(e(Z +1)) + 2 E(Z - M)
k=0

6(A+2
< 2log®(e(A+1)) + (;_)
Hence Hy(Z) < Cx, z =log(1 + A) > log2, with C* =2 (1+ 1) + g < 50.
Applying the upper bound (2.7) from Lemma 2.3, we also see that this upper
bound on H, can also be reversed up to a constant.

< 2(1+1log(1+ ) +18.

O
Remark 12.3. With similar arguments, it follows that

H(Z) < clog(1+ M), if A>1,
cAlog(e/N), if A<1,

which can also be reversed modulo an absolute factor ¢ > 0. Hence, H2(Z) ~ H(Z)
as long as A stays bounded away from zero.

Proof of Corollary 1.4. By Theorem 1.2 with W as in (1.1) and Z ~ Py, we
have

(W, 2) < c(%)i/m

with some absolute constant C'. Using this estimate in (13.1) and applying Proposition
13.2, the desired inequality (1.11) immediately follows (in view of Ay < \).

To derive a more precise inequality illustrating the asymptotic behaviour in A in
the typical case Ao < % A, let us apply once more Theorem 1.2 with its sharper bound

XZ(W? Z)<C (%)2

By Proposition 12.1, this gives

A
HWI||Z) < C(1+ Hx(Z)) .
and it remains to note that 1+ Hy(Z) < Clog(2 + \), according to Proposition 12.2.
O
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