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Abstract. We explore asymptotically optimal bounds for deviations of Bernoulli
convolutions from the Poisson limit in terms of the Shannon relative entropy and
the Pearson χ2-distance. The results are based on proper non-uniform estimates
for densities.

1. Introduction

Let X1, . . . , Xn be independent Bernoulli random variables taking the two values, 1
(interpreted as a success) and 0 (as a failure) with respective probabilities pj and qj =
1− pj . The total number of successes W = X1 + · · ·+Xn takes values k = 0, 1, . . . , n
with probabilities

P{W = k} =
∑

pε11 q
1−ε1
1 . . . pεnn q

1−εn
n , (1.1)

where the summation runs over all 0-1 sequences ε1, . . . , εn such that ε1 + · · ·+ εn =
k. Although this expression is difficult to determine in case of arbitrary pj and
large n, it can be well approximated by the Poisson probabilities under quite general
assumptions. Putting

λ = p1 + · · ·+ pn,

let Z be a Poisson random variable with parameter λ > 0 (for short, Z ∼ Pλ), i.e.,

P{Z = k} =
λk

k!
e−λ, k = 0, 1, . . .

It is well-known for a long time that, if maxj≤n pj is small, the distribution Pλ ap-
proximates the distribution PW of W , which may be quantified by means of the total
variation distance

d(W,Z) = ‖PW − Pλ‖TV

= 2 sup
A⊂Z

|P{W ∈ A} − P{Z ∈ A}| =
∞∑
k=0

|wk − vk|,

where wk = P{W = k} and vk = P{Z = k}. In particular, based on the Stein-Chen
method, there is the following remarkable two-sided bound due to Barbour and Hall
involving the functional

λ2 = p21 + · · ·+ p2n.
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Theorem 1.1 [2]. One has

1

32
min(1, 1/λ)λ2 ≤

1

2
d(W,Z) ≤ 1− e−λ

λ
λ2. (1.2)

Here, the parameter λ2, or more precisely – the ratio λ2/λ (for λ bounded away
from zero), plays a similar role as the Lyapunov ratio L3 in the central limit theorem.

In the i.i.d. case with pj = λ/n and fixed λ > 0, both sides of (1.2) are of the same
order 1/n. In the case λ ≤ 1, the upper bound in (1.2) is sharp also in the sense that
the second inequality becomes an equality for p1 = 1, pj = 0 (2 ≤ j ≤ n).

Theorem 1.1 refined many previous results in this direction, starting from bounds
for the i.i.d. case by Prokhorov [19] and bounds for the general case by Le Cam [16].
In particular, Le Cam obtained the upper bound

d(W,Z) ≤ 2λ2. (1.3)

For large λ Kerstan [14] and respectively Chen [5] improved these bounds to

d(W,Z) ≤ 2.1

λ
λ2 if max

j≤n
pj ≤

1

4
, respectively d(W,Z) ≤ 10

λ
λ2.

See also [12], [26], [24], [20], [21], [3] and the references therein. A certain refinement
of the lower bound in (1.2) was obtained in Sason [22].

While (1.2) provides a sharp estimate for the total variation distance, one may
wonder whether or not similar approximation bounds still hold for the stronger in-
formational distances. As a first interesting example, one may consider the relative
entropy

D(W ||Z) =

∞∑
k=0

wk log
wk
vk
,

often called the Kullback-Leibler distance, or an informational divergence of PW from
Pλ. It dominates the total variation distance in view of the Pinsker inequality

D(W ||Z) ≥ 1

2
d(W,Z)2.

In this context, a number of lower and upper bounds on the relative entropy were
studied by Harremoës [7], [8], and Harremoës and Ruzankin [10]. In particular, in the
i.i.d. case pj = p, it was shown in [10] that

− log(1− p)− p
2

− 14p2

n (1− p)3
≤ D(W ||Z)

≤ − log(1− p)− p
2

− (1 + p) p2

4n (1− p)3
.

If p = λ/n with a fixed (or just bounded) value of λ, these estimates provide the rate
of Poisson approximation

D(W ||Z) =
λ2

4n2
+O(1/n3) as n→∞. (1.4)

The general non-i.i.d. scenario (with not necessarily equal probabilities pj) has
been partially studied as well. A simple upper estimate D(W ||Z) ≤ λ2, analogous to
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the Le Cam bound (1.3), may be found in [7], cf. also Johnson [13]. It is however not
so sharp as (1.4). A much tighter upper bound

D(W ||Z) ≤ 1

λ

n∑
j=1

p3j
1− pj

(1.5)

was later derived by Kontoyiannis, Harremoës and Johnson [15]. If all pj = λ/n
with λ ≤ n/2, it yields D(W ||Z) ≤ 2λ2/n2 reflecting a correct decay with respect to
n up to a constant, according to (1.4). Nevertheless, in the general case, Pinsker’s
inequality and the bounds (1.2) and (1.3) suggest that a further sharpening such as

D(W ||Z) ≤ Aλλ22 (1.6)

might be possible by involving λ2 rather than the functional λ3 = p31 + · · · + p3n. To
compare the two quantities, note that, by Cauchy’s inequality, λ22 ≤ λλ3. Hence, the
inequality (1.6) would be sharper compared to (1.5), modulo a λ-dependent factor.
An upper bound such as (1.6) may also be inspired by the lower bound

D(W ||Z) ≥ 1

4

(λ2
λ

)2
(1.7)

recently derived by Harremoës, Johnson and Kontoyiannis [9]. It is consistent with
(1.4) and also shows that the constant 1/4 is best possible.

As it turns out, (1.6) does hold in the so-called non-degenerate situation, and in
essence, the inequality (1.7) may be reversed. Moreover, one can further sharpen (1.6)
by replacing the relative entropy with the Pearson χ2-distance, as well as with other
Rényi/Tsallis distances. To avoid technical complications, let us restrict ourselves to
the χ2-divergence which is given by

χ2(W,Z) =
∞∑
k=0

(wk − vk)2

vk
.

It is a divergence type quantity which dominates the relative entropy via the inequality

χ2(W,Z) ≥ D(W ||Z). (1.8)

For a general theory of informational distances, we refer interested readers to the
recent review by van Erven and Harremoës [6]; additional material may be found in
the books [17], [18], [25], [13].

To formulate the main result of this paper in a compact form, let us use the
notation Q1 ∼ Q2, whenever two positive quantities are related by c1Q1 ≤ Q2 ≤ c2Q1

with some absolute constants cj > 0. Introduce the quantity

F = F (λ, λ2) =
max(1, λ)

max(1, λ− λ2)
.

Theorem 1.2. We have

D(W ||Z) ∼
(λ2
λ

)2
(1 + logF ), χ2(W,Z) ∼

(λ2
λ

)2√
F .
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Clearly, F ≥ 1, and if λ ≤ 1, then F = 1. If λ is not large (say λ ≤ 10, which
is typical for applications), or if λ2/λ is bounded away from 1 (for instance, when
maxj pj ≤ 1/2), the quantity F is bounded, and both equivalences are simplified to

D(W ||Z) ∼ χ2(W,Z) ∼
(λ2
λ

)2
. (1.9)

Hence in the above regime, (1.6) holds with a factor Aλ ∼ 1/λ2, which tends to
infinity as λ is approaching zero, in contrast with the lower estimate in (1.2).

If the above assumptions on λ and λ2 are violated (which we call the “degenerate
case”), both distances are bounded away from zero and can be large, since then

D(W ||Z) ∼ log
λ

max{1, λ− λ2}
, χ2(W,Z) ∼

(
λ

max{1, λ− λ2}

)1/2

.

For example, in the case where all pj = 1, we have λ2 = λ = n. Here P{W = n} = 1,
hence as n→∞

D(W ||Z) = log
1

P{Z = n}
= log

( n!

nn
en
)
∼ log n,

χ2(W,Z) =
1

P{Z = n}
− 1 =

n!

nn
en − 1 ∼

√
2πn.

These examples show that the lower bound (1.7) may not be reversed in general.
For the study of the asymptotic behavior of D and χ2 in terms of λ and λ2, we

derive new bounds for the difference between densities of W and Z, that is, for

∆k = wk − vk = P{W = k} − P{Z = k}.

To this aim, one has to consider different zones of λ’s, distinguishing between “small”
and “large” values. The case λ ≤ 1

2 can be handled directly leading to the non-uniform
density bound

|∆k| ≤ 2λ2 P{k − 2 ≤ Z ≤ k}.

It easily yields sharp upper bounds for all above distances as in Theorems 1.1-1.2 in
the case of small λ, at least up to numerical factors. To treat larger values of λ, a
more sophisticated analysis in the complex plane is involved – using the closeness of
the generating functions associated with the sequences wk and vk. In particular, the
following statement may be of independent interest.

Theorem 1.3. For all integer k ≥ 0, we have

|∆k| ≤ 3λ2 e
−λ. (1.10)

Moreover, putting ρ = (λ− λ2) min{ kλ ,
λ
k}, k = 1, 2, . . . , we have

|∆k| ≤ 7
√
k
(k − λ

λ

)2
λ2 min

{
1, ρ−1/2

}
P{Z = k}

+ 21 k
√
k
λ2
λ

min
{

1, ρ−3/2
}
P{Z = k}. (1.11)
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Let us clarify the meaning of the last bound, assuming that λ2 ≤ κλ with some
constant κ ∈ (0, 1). If k ≤ 2λ and λ ≥ λ0 > 0, then with some c = cκ,λ0 > 0, it gives

|∆k| ≤ c
((k − λ)2

λ
+ 1
) λ2
λ

P{Z = k},

while for k ≥ λ ≥ λ0, we also have

|∆k| ≤ c
(k
λ

)3
λ2 P{Z = k}.

Since |k− λ| is of order at most
√
λ on a sufficiently large part of Z measured by Pλ,

these non-uniform bounds explain the possibility of upper bounds in Theorem 1.2.
Let us finally mention one application of Theorem 1.2 to the problem of estimation

of the difference of entropies

H(W ||Z) = H(Z)−H(W ), (1.12)

where H stands for the Shannon entropy, that is,

H(Z) = −
∑
k

vk log vk, H(W ) = −
∑
k

wk logwk.

The remarkable property that H(W ||Z) is positive represents a consequence of the
assertion, recently proved by Hillion and Johnson [11], that H(p) ≡ H(W ) = H(PW )
is a concave function of the vector p = (p1, . . . , pn). Indeed, since alsoH(p) is invariant
under permutations of the coordinates pj , this entropy attains its maximum on the
simplex

{p ∈ Rn : pj ≥ 0, p1 + · · ·+ pn = λ}
at the point where all the coordinates coincide, that is, for pj = λ/n. But in that case,
PW represents the binomial law B(n, λ/n) whose entropy is dominated by H(Z), as
was earlier shown by Harremoës [7].

Thus, the difference of entropies in this particular discrete model may be viewed
as kind of informational distance. Sason proposed to bound H(W ||Z) for equal pj ’s
by means of the so-called maximal coupling, cf. [23]. Here, we show that this distance
may be controlled in terms of χ2(W,Z), which together with the upper bound on the
Pearson distance leads to the following estimate.

Corollary 1.4. We have

H(W ||Z) ≤ Cλ
λ2
λ
, (1.13)

where Cλ depends only on λ. If λ2 ≤ 1
2 λ, one may take Cλ = C log(2 + λ) with an

absolute constant C.

The paper is organized as follows. First we describe several general bounds in-
volving the relative entropy and the Pearson distance, together with upper bounds
on the probability function of the Poisson law (Section 2). In Sections 3, we consider
the deviations ∆k and prove Theorem 1.2 in case λ ≤ 1/2. Sections 4-5 are devoted
to non-uniform bounds and the proof of Theorem 1.3, which is used to complete the
proof of Theorem 1.2 for large λ in the non-degenerate case. Uniform bounds for
large λ are discussed in Section 7. There we shall demonstrate that in a typical situ-
ation, namely when the ratio λ2/λ is small, the Poisson approximation considerably
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improves the rate of normal approximation described by the Berry-Esseen bound in
the central limit theorem. The remaining part of the paper is devoted to the proof of
Theorem 1.2 in the degenerate case (Section 8-11) and of Corollary 1.4 (Section 12).
Thus, the paper is structured as follows.

Contents

1. Introduction
2. General bounds on relative entropy and χ2

3. Elementary bounds
4. Generating functions
5. Proof Theorem 1.3
6. Consequences from Theorem 1.3
7. Uniform bounds. Comparison with normal approximation
8. Upper bounds on D and χ2 in the degenerate case
9. Lower bound on χ2 in the degenerate case
10. Lower bound on D in the degenerate case
11. Summarizing remarks. Proof of Theorem 1.2
12. Difference of entropies

2. General Bounds on Relative Entropy and χ2

Before turning to the problem of lower and upper bounds for the relative entropy
and χ2-distance, we first collect several useful general inequalities. If two discrete
random elements W and Z in a measurable space Ω take at most countably many
values ωk ∈ Ω with probabilities wk = P{W = ωk} and vk = P{Z = ωk}, the above
distances are defined canonically by

D(W ||Z) =
∑
k

wk log
wk
vk
, χ2(W,Z) =

∑
k

(wk − vk)2

vk
.

Proposition 2.1. We have

−
∑
wk<vk

wk log
wk
vk
≤ 1. (2.1)

Moreover,

D(W ||Z) ≥ 1

2

∑
k

(wk − vk)2

max{wk, vk}
. (2.2)

Proof. Using the Taylor formula for the logarithmic function, write∑
wk<vk

wk log
wk
vk

=
∑
wk<vk

(vk − (vk − wk)) log
(

1− vk − wk
vk

)
=

∑
wk<vk

(wk − vk) +
∑
wk<vk

∞∑
m=2

1

m(m− 1)

(vk − wk)m

vm−1k

.
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Here ∑
wk<vk

(wk − vk) = −1

2

∞∑
k=0

|wk − vk| ≥ −1,

thus proving the first assertion. Similarly, we have a second identity∑
wk>vk

wk log
wk
vk

= −
∑
wk>vk

wk log
vk
wk

= −
∑
wk>vk

wk log
(

1− wk − vk
wk

)
=

∑
wk>vk

(wk − vk) +
∑
wk>vk

∞∑
m=2

1

m

(wk − vk)m

wm−1k

.

Adding the two identities, we get∑
k

wk log
wk
vk
≥ 1

2

∑
wk>vk

(wk − vk)2

wk
+

1

2

∑
wk<vk

(wk − vk)2

vk
,

which is the desired inequality (2.2). �

Proposition 2.2. Let W1 and W2 be independent, non-negative, integer-valued
random variables with finite means, and let Z1 and Z2 be independent Poisson random
variables with EZ1 = EW1 and EZ2 = EW2. Then

D(W1 +W2||Z1 + Z2) ≤ D(W1||Z1) +D(W2||Z2). (2.3)

In addition,

χ2(W1 +W2, Z1 + Z2) + 1 ≤ (χ2(W1, Z1) + 1)(χ2(W2, Z2) + 1). (2.4)

For the proof, we refer to Johnson [13], pp. 133–134. Let us only mention that
(2.5) is obtained in [13] in the more general form

∞∑
k=0

P{W1 +W2 = k}α

P(Z1 + Z2 = k}α−1
≤

∞∑
k=0

P{W1 = k}α

P{Z1 = k}α−1
∞∑
k=0

P{W2 = k}α

P{Z2 = k}α−1

with arbitrary α ≥ 1, which represents a Poisson analog of weighted convolution
inequalities due to Andersen [1]. Here, for α = 1 there is an equality, and comparing
the derivatives of both sides at this point, we arrive at the relation (2.3).

When bounding the Poisson probabilities

vk = f(k) = P{Z = k} =
λk

k!
e−λ, k = 0, 1, . . . ,

with a fixed parameter λ > 0, it is convenient to use the well-known Stirling-type
two-sided bound:

√
2π kk+

1
2 e−k ≤ k! ≤ e kk+

1
2 e−k (k ≥ 1). (2.5)

In particular, it implies the following Gaussian type estimates.
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Lemma 2.3. For all k ≥ 1,

f(k) ≤ 1√
2πk

. (2.6)

Moreover, if 1 ≤ k ≤ 2λ, then

1

e
√
k
e−

(k−λ)2
λ ≤ f(k) ≤ 1√

2πk
e−

(k−λ)2
3λ . (2.7)

Here, the lower bound may be improved in the region k ≥ λ as

f(k) ≥ 1

e
√
k
e−

(k−λ)2
2λ . (2.8)

Proof. Applying the lower estimate in (2.5), we get

f(k) ≤ 1√
2πk

ek−λ
(λ
k

)k
(2.9)

=
1√
2πk

ek−λ e−k log(1+
k−λ
λ

) =
1√
2πk

eλh(θ), θ =
k − λ
λ

,

where

h(θ) = θ − (1 + θ) log(1 + θ).

This function is concave in θ ≥ −1, with h(0) = h′(0) = 0. Hence, h(θ) ≤ 0 for all θ,
thus proving the first assertion (2.6).

Assuming that 1 ≤ k ≤ 2λ (with λ ≥ 1
2), we necessarily have |θ| ≤ 1. In this

interval, consider the function Tc(θ) = h(θ) + cθ2 with parameter c > 0. The second
derivative

T ′′c (θ) = − 1

1 + θ
+ 2c (−1 < θ ≤ 1)

may change the sign at most at one point, say θ0, while T ′′c (−1) = −∞. Since
Tc(0) = T ′c(0) = 0, this means that either Tc is concave on [−1, 1] and therefore
non-positive, or it is concave on [−1, θ0] and convex on [θ0, 1]. In the second case,
Tc(θ) ≤ 0 for all θ ∈ [−1, 1], if and only if this inequality is fulfilled at θ = 1. But
Tc(1) = 1− 2 log 2 + c, so the optimal value is c = 2 log 2− 1 = 0.387... > 1/3. Hence,
h(θ) ≤ −1

3 θ
2, and we arrive at the upper bound in (2.7).

Similarly, applying the upper estimate in (2.5), we get

f(k) ≥ 1

e
√
k
ek−λ

(λ
k

)k
=

1

e
√
k
eλh(θ), θ =

k − λ
λ

.

Choosing c = 1, consider the function T (θ) = h(θ) + θ2 in the interval |θ| ≤ 1. Since
T ′′(−1

2) = 0, it is concave on [−1,−1
2 ] and is convex on [−1

2 , 1]. Since T (0) = T ′(0) = 0
and T (−1) = 0, this means that θ = 0 is the point of local and thus global minimum
of T . Therefore, T (θ) ≥ 0, that is, h(θ) ≥ −θ2 for all θ ∈ [−1, 1].

Finally, to get the refinement in the region k ≥ λ, consider the function T (θ) =
h(θ) + 1

2 θ
2 for θ ≥ 0. Since T (0) = 0 and T ′(θ) = θ − log(1 + θ) ≥ 0, this function is

increasing. Therefore, T (θ) ≥ 0, that is, h(θ) ≥ −1
2 θ

2 for all θ ≥ 0.
�
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3. Elementary Upper Bounds

We keep the same notations as before; in particular,

P{Z = k} =
λk

k!
e−λ, k = 0, 1, . . . ,

while

P{W = k} =
∑

pε11 (1− p1)1−ε1 . . . pεnn (1− pn)1−εn

with summation over all 0-1 sequences ε = (ε1, . . . , εn) such that ε1 + · · · + εn = k.
Clearly, P{W = k} = 0 for k > n. To eliminate this condition, one may always
assume that n is arbitrary, by extending the sequence (X1, . . . , Xn) to (X1, . . . , Xk)
in case n < k with pn+1 = · · · = pk = 0. Then the value W does not change.

First, let us consider the values k = 0 and k = 1.

Lemma 3.1. If maxj pj ≤ 1
2 , then

0 ≤ P{Z = 0} − P{W = 0} ≤ 0.8λ2 e
−λ,

0 ≤ P{W = 1} − P{Z = 1} ≤ 2λ2 e
−λ.

Proof. Expanding the function p→ − log(1−p) near zero according to the Taylor
formula as in the previous section, write

P{W = 0} =
n∏
j=1

(1− pj) = e−λ−S , S =
∞∑
s=2

1

s
λs. (3.1)

Using λs ≤ (maxj pj)
s−2 λ2 ≤ 2−(s−2) λ2 for s ≥ 2, we have

S ≤ λ2

∞∑
s=2

2−(s−2)

s
= (4 log 2− 2)λ2 ≤ 0.8λ2. (3.2)

Hence

P{Z = 0} − P{W = 0} = e−λ (1− e−S) ≤ e−λ S,
proving the first inequality.

Next, using the simple representation
pj

1−pj = pj + 2θjp
2
j with 0 ≤ θj ≤ 1, we have

P{W = 1} =

n∏
j=1

(1− pj)
n∑
j=1

pj
1− pj

≤ e−λ−S (λ+ 2λ2) ≤ e−λ (λ+ 2λ2) = P{Z = 1}+ 2λ2 e
−λ,

which yields the second inequality. �

Note that the condition of Lemma 3.1 is fulfilled automatically, if λ ≤ 1/2. In that
case, the upper bounds of the lemma may easily be reversed up to numerical factors,
for example, in the form

P{Z = 0} − P{W = 0} ≥ 0.47λ2 e
−λ,

P{W = 1} − P{Z = 1} ≥ 0.42λ2 e
−λ.
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Moreover, if λ ≤ 1/8, then also

P{Z = 2} − P{W = 2} ≥ 17

49
λ2 e

−λ.

Here, the value k = 2 turns out to be most essential for obtaining lower bounds,
since it immediately yields d(W,Z) ≥ cλ2 and D(W ||Z) ≥ c (λ2λ )2 with some absolute
constant c > 0.

Returning to upper bounds, in order to involve the values k ≥ 2, we will need the
following:

Lemma 3.2. If maxj pj ≤ 1/2, then for any k ≥ 2,∣∣P{W = k} − P{Z = k}
∣∣ ≤ λ2

(λk
k!

+
eλ − 1

λ

λk−1

(k − 1)!
+

λk−2

(k − 2)!

)
e−λ.

Proof. Representing the Poisson random variable Z ∼ Pλ as Z = Z1 + · · · + Zn
with independent summands Zj ∼ Ppj , we have that, for any k = 0, 1, . . . ,

P{Z = k} = e−λ
∑

ε1+···+εn=k

pε11 . . . pεnn
ε1! . . . εn!

,

where the summation is running over all integers εj ≥ 0 such that ε1 + · · ·+ εn = k.
Hence, with this assumption, we may start with the formula

P{Z = k} − P{W = k} = e−λ
∑

ε1+···+εn=k

1

ε1! . . . εn!
Uε −

∑
ε1+···+εn=k, εj≤1

UεVε,

where

Uε = pε11 . . . pεnn , Vε = (1− p1)1−ε1 . . . (1− pn)1−εn .

For a 0-1 sequence ε = (ε1, . . . , εn) put

Lε = ε1p1 + · · ·+ εnpn

By the Taylor formula once more,

V −1ε = eSε , Sε =
∞∑
s=1

1

s

n∑
j=1

(1− εj) psj .

Similarly to (3.1)-(3.2), we have

Sε = λ− Lε +
∞∑
s=2

1

s

n∑
j=1

(1− εj) psj = λ− Lε + θλ2, 0 ≤ θ ≤ 1.

Therefore,

eλ Vε = eLε−θλ2 ≥ 1 + (Lε − θλ2) ≥ 1 + Lε − λ2.

Moreover, since Lε ≤ λ, we have eLε−1
Lε

≤ eλ−1
λ ≡ cλ, which in turn implies eλ Vε ≤

eLε ≤ 1 + cλ Lε. The two bounds give Lε − λ2 ≤ eλ Vε − 1 ≤ cλ Lε, so that∣∣Uε − eλ UεVε∣∣ ≤ λ2 Uε + cλ UεLε.
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Next, applying the multinomial formula, we have∑
ε1+···+εn=k, εj≤1

Uε ≤
∑

ε1+···+εn=k

pε11 . . . pεnn
ε1! . . . εn!

=
λk

k!

and ∑
ε1+···+εn=k, εj≤1

Uε Lε =

n∑
i=1

∑
ε1+···+εn=k, εj≤1

εi p
ε1
1 . . . p

εi−1

i−1 p
εi+1
i p

εi+1

i+1 . . . p
εn
n

=
n∑
i=1

p2i
∑

ε1+···+εn=k, εi=1, εj≤1
pε11 . . . p

εi−1

i−1 p
εi+1

i+1 . . . p
εn
n

≤
n∑
i=1

p2i
1

(k − 1)!
(λ− pi)k−1 ≤ λ2

λk−1

(k − 1)!
.

Thus, ∑
ε1+···+εn=k, εj≤1

|Uε − eλ UεVε| ≤ λ2

(λk
k!

+ cλ
λk−1

(k − 1)!

)
.

For the remaining terms participating in P(Z = k), we have∑
ε1+···+εn=k, εn≥2

pε11 . . . pεnn
ε1! . . . εn!

=
k∑

m=2

pmn
m!

∑
ε1+···+εn−1=k−m

pε11 . . . p
εn−1

n−1
ε1! . . . εn−1!

≤
k∑

m=2

pmn
m!

(λ− pn)k−m

(k −m)!

≤ p2n

k∑
m=2

pm−2n

(m− 2)!

(λ− pn)k−m

(k −m)!
= p2n

λk−2

(k − 2)!
,

and similarly, for any i = 1, . . . , n,∑
ε1+···+εn=k, εi≥2

pε11 . . . pεnn
ε1! . . . εn!

≤ p2i
λk−2

(k − 2)!
.

Hence, summing over i ≤ n, we then get∑
ε1+···+εn=k,max εj≥2

pε11 . . . pεnn
ε1! . . . εn!

≤ λ2
λk−2

(k − 2)!
.

�

The obtained estimates are sufficient to establish Theorem 1.2 in the non-degenerate
case, where λ is not large. To compare the lower and upper bounds, we recall the
lower bound (1.7) of Harremoës, Johnson and Kontoyiannis [9].

Proposition 3.3. If maxj pj ≤ 1
2 , then

1

4

(λ2
λ

)2
≤ D(W ||Z) ≤ χ2(W,Z) ≤ Cλ

(λ2
λ

)2
,
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where Cλ depends on λ ≥ 0 as an increasing continuous function with C0 = 2. In
particular, if λ ≤ 1/2, then

χ2(W,Z) ≤ 16
(λ2
λ

)2
.

Proof. Applying Lemmas 3.1-3.2, we get

λ−22 eλ χ2(W,Z) ≤ 0.64 +
4

λ
+

∞∑
k=2

k!

λk

(λk
k!

+ cλ
λk−1

(k − 1)!
+

λk−2

(k − 2)!

)2
,

where cλ = eλ−1
λ . Opening the brackets, the above sum is equal to

∞∑
k=2

k!

λk

(λ2k
k! 2

+
2cλ λ

2k−1

k! (k − 1)!
+
c2λ λ

2k−2

(k − 1)! 2
+

2λ2k−2

k! (k − 2)!
+

2cλ λ
2k−3

(k − 1)! (k − 2)!
+

λ2k−4

(k − 2)! 2

)

=
∞∑
k=2

λk

k!
+ 2cλ

∞∑
k=2

λk−1

(k − 1)!
+ c2λ

∞∑
k=2

k
λk−2

(k − 1)!
+ 2

∞∑
k=2

λk−2

(k − 2)!

+ 2cλ

∞∑
k=2

k
λk−3

(k − 2)!
+
∞∑
k=2

k(k − 1)
λk−4

(k − 2)!
,

which is the same as

3eλ − 1− λ+ 2cλ (eλ − 1) + c2λ

∞∑
k=1

(k + 1)
λk−1

k!

+ 2cλ

∞∑
k=0

(k + 2)
λk−1

k!
+

∞∑
k=0

(k + 1)(k + 2)
λk−2

k!

= 3eλ − 1− λ+ 2cλ (eλ − 1) + 2cλe
λ 2 + λ

λ
+

2 + 4λ+ λ2

λ2
eλ.

Multiplying by λ2, this gives the desired inequality

λ2λ−22 χ2(W,Z) ≤ Cλ = (0.64λ2 + 4λ) +Bλ

with

Bλ = λ2 (3eλ − 1− λ) + 2λ (eλ − 1)2 + 2 (2 + λ) eλ (eλ − 1) + (2 + 4λ+ λ2) eλ

= λ (2− λ− λ2)− 2 (1 + λ− 2λ2) eλ + 4 (1 + λ) e2λ.

It is easy to check that d
dλ Bλ > 0, so that this function is increasing in λ. In addition,

C0 = B0 = 2 and C1/2 = 2.16 + 5
8 − 2

√
e+ 6 e < 16. �

4. Generating functions

The probability function f(k) = P{Z = k} of the Poisson random variable Z ∼ Pλ
satisfies the equation λf(k− 1) = kf(k) in integers k ≥ 1, which immediately implies

λEh(Z + 1) = EZh(Z)
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for any function h on Z (as long as the expectations exist). This identity was empha-
sized by Chen [5] who proposed to consider an approximate equality

λEh(X + 1) ∼ EXh(X)

as a characterization of a random variable X being almost Poisson with parameter
λ. This idea was inspired by a similar approach by Stein to the problems for normal
approximation on the basis of an approximate equality Eh′(X) ∼ EXh(X).

Another natural approach to the Poisson approximation is based on the comparison
of characteristic functions. Since the random variables W and Z take non-negative
integer values, one may equivalently consider the associated generating functions.

The generating function for the Poisson law Pλ with parameter λ > 0 is given by

ϕ(w) = EwZ =
∞∑
k=0

P{Z = k}wk = eλ(w−1) =
n∏
j=1

epj(w−1), (4.1)

which is an entire function of the complex variable w. Correspondingly, the generating
function for the distribution of the random variable W = X1 + · · ·+Xn in (1.1) is

g(w) = EwW =

∞∑
k=0

P{W = k}wk =

n∏
j=1

(qj + pjw), (4.2)

which is a polynomial of degree n. Hence, the difference between the involved prob-
abilities may be expressed via the contour integrals by the Cauchy formula

P{W = k} − P{Z = k} =

∫
|w|=r

w−k (g(w)− ϕ(w)) dµr(w), (4.3)

where µr is the uniform probability measure on the circle |w| = r of an arbitrary
radius r > 0.

Note that for w = eit with real t, the generating functions ϕ and g become the
characteristic functions of Z and W , respectively. Hence, closeness of the distribu-
tions of these random variables may be studied as a problem of the closeness of the
generating functions on the unit circle.

Let us now describe first steps based on the application of the formula (4.3). Given
complex numbers aj , bj (1 ≤ j ≤ n), we have an identity

a1 . . . an − b1 . . . bn =
n∑
j=1

(aj − bj)
∏
l<j

bl
∏
l>j

al (4.4)

with the convention that
∏
l<j bl = 1 for j = 1 and

∏
l>j al = 1 for j = n. It implies∣∣∣∣ n∏

j=1

aj −
n∏
b=1

bj

∣∣∣∣ ≤ n∑
j=1

|aj − bj |
∏
l<j

|bl|
∏
l>j

|al|.

According to the product representations (4.1)-(4.2) to be used in (4.3), one should

choose here aj = qj + pjw and bj = epj(w−1) with |w| = r. Then

|aj | ≤ qj + pjr ≤ epj(r−1), |bj | = epj(Rew−1) ≤ epj(r−1). (4.5)
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Therefore

|g(w)− ϕ(w)| ≤
n∑
j=1

|aj − bj |
∏
l 6=j

epl(r−1)

= eλ(r−1)
n∑
j=1

|aj − bj | e−pj(r−1). (4.6)

To estimate the terms in this sum, consider the function

ξ(u) = 1 + u− eu = −u2
∫ 1

0
etu (1− t) dt, u ∈ C, (4.7)

where the Taylor integral formula is applied in the second representation. If Reu ≤ 0,
then |u2 etu| = |u|2 exp{tReu} ≤ |u|2, so,

|ξ(u)| ≤ 1

2
|u|2, Reu ≤ 0. (4.8)

In particular, for u = pj(w − 1) with w = cos θ + i sin θ, we have

|w − 1|2 = (cos θ − 1)2 + sin2 θ = 2(1− cos θ),

hence |ξ(u)| ≤ p2j (1− cos θ), and (4.6) yields

|g(w)− ϕ(w)| ≤
n∑
j=1

|ξ(pj(w − 1))| ≤ (1− cos θ)

n∑
j=1

p2j ≤ (1− cos θ)λ2.

Integrating over the unit circle in (4.3), we then arrive at the uniform bound:

Proposition 4.1. We have

sup
k≥0
|P{W = k} − P{Z = k}| ≤ λ2. (4.9)

This is a weakened variant of Le Cam’s bound |P{W ∈ A} − P{Z ∈ A}| ≤ λ2,
specialized to the one-point set A = {k}. In order to get a similar bound with
arbitrary sets, or develop applications to stronger distances, we need sharper forms
of (4.9), with the right-hand side properly depending on k.

5. Proof of Theorem 1.3

Applying (4.4) with aj = qj + pjw and bj = epj(w−1) in (4.3), one may write this
formula as

∆k ≡ P{W = k} − P{Z = k} =
n∑
j=1

Tj(k), k = 0, 1, . . . , (5.1)

with

Tj(k) =

∫
|w|=r

w−k (aj − bj)
∏
l<j

bl
∏
l>j

al dµr(w), (5.2)
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where the integration is performed over the uniform probability measure µr on the
circle |w| = r. Let us write w = r(cos θ + i sin θ), |θ| < π, and estimate |Tj(k)| by
inserting the absolute value sign inside the integral. Then, using (4.5), we get

|Tj(k)| ≤ r−k
∫
|w|=r

|aj − bj |
∏
l<j

|epl (w−1)|
∏
l>j

|ql + plw| dµr(w)

= r−k
∫
|w|=r

|aj − bj | exp
{

(r cos θ − 1)

j−1∑
l=1

pl

} n∏
l=j+1

|ql + plw| dµr(w)

= r−ke(r−1)
∑j−1
l=1 pl

∫
|w|=r

|aj − bj | exp
{
− 2r sin2 θ

2

j−1∑
l=1

pl

} n∏
l=j+1

|ql + plw| dµr(w).

Here, in order to estimate |aj − bj |, let us return to the function ξ(u) introduced in
(4.7), which we need at the values uj = pj(w − 1) with |w| = r.

Case 1: r ≥ 1. Since Reuj ≤ pj(r − 1), we have, for any t ∈ (0, 1),

|u2j etuj | = |uj |2 etReuj ≤ |uj |2 epjt(r−1) ≤ |uj |2 epj(r−1),

so, by (4.7),

|aj − bj | = |ξ(uj)| ≤
1

2
p2j |w − 1|2 epj(r−1).

Case 2: 0 < r < 1. Then Reuj ≤ 0, so, by (4.8),

|aj − bj | = |ξ(uj)| ≤
1

2
p2j |w − 1|2.

Since |w − 1|2 = (r − 1)2 + 4r sin2(θ/2), we therefore obtain from (5.2) that

|Tj(k)| ≤ 1

2
p2j Rj(r) r

−k
(

(r − 1)2 Ij0(r) + 4rIj2(r)
)
, (5.3)

where

Rj(r) =

{
exp

{
(r − 1)

∑j
l=1 pl

} ∏n
l=j+1(ql + plr) for r ≥ 1,

exp
{

(r − 1)
∑j−1

l=1 pl
} ∏n

l=j+1(ql + plr) for r < 1,

and

Ijm(r) =
1

2π

∫ π

−π

∣∣∣ sin θ
2

∣∣∣m exp
{
− 2r sin2 θ

2

j−1∑
l=1

pl

} n∏
l=j+1

|ql + plr e
iθ|

ql + plr
dθ.

In order to estimate the last integrals, which we need with m = 0 and m = 2, let
us first note that

|ql + plre
iθ|2 = q2l + p2l r

2 + 2plql r cos θ = (ql + plr)
2 − 4qlpl r sin2 θ

2

= (ql + plr)
2
(

1− 4qlplr

(ql + plr)2
sin2 θ

2

)
.
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Hence, using 1− x ≤ e−x (x ∈ R), we have
n∏

l=j+1

|ql + plr e
iθ|

ql + plr
=

n∏
l=j+1

(
1− 4qlplr

(ql + plr)2
sin2 θ

2

)1/2
≤ exp

{
− 2 sin2 θ

2

n∑
l=j+1

qlpl r

(ql + plr)2

}
, (5.4)

so that

Ijm(r) ≤ 1

2π

∫ π

−π

∣∣∣ sin θ
2

∣∣∣m exp
{
− 2γj(r) sin2 θ

2

}
dθ

≤ 1

2π
2−m

∫ π

−π
|θ|m exp

{
− 2

π2
γj(r) θ

2
}
dθ. (5.5)

Here we applied the inequalities 2
π t ≤ sin t ≤ t (0 ≤ t ≤ π

2 ) and used the notation

γj(r) = r
( j−1∑
l=1

pl +

n∑
l=j+1

qlpl
(ql + plr)2

)
.

Thus, we need to bound γj from below. If r ≥ 1, then ql + plr ≤ r, so

n∑
l=j+1

qlpl r

(ql + plr)2
≥ 1

r

n∑
l=j+1

qlpl.

This gives

γj(r) ≥ r

j−1∑
l=1

pl +
1

r

n∑
l=j+1

qlpl

= r

j−1∑
l=1

pl +
1

r

n∑
l=1

(pl − p2l )−
1

r

j∑
l=1

(pl − p2l )

=
(
r − 1

r

) j−1∑
l=1

pl +
1

r

j−1∑
l=1

p2l +
1

r

n∑
l=1

(pl − p2l )−
1

r
qjpj ≥

1

r
(λ− λ2 − qjpj).

In case r ≤ 1, we use ql + plr ≤ 1, implying that
n∑

l=j+1

qlpl
(ql + plr)2

≥
n∑

l=j+1

qlpl.

Therefore in this range we have a similar lower bound, namely

γj(r) ≥ r

j−1∑
l=1

pl + r
n∑

l=j+1

qlpl

= r

j−1∑
l=1

pl + r

n∑
l=1

(pl − p2l )− r
j∑
l=1

(pl − p2l )

= −rpj + r

j∑
l=1

p2l + r
n∑
l=1

(pl − p2l ) ≥ r (λ− λ2 − qjpj).
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Since qjpj ≤ 1
4 , both lower bounds yield

γj(r) ≥ ψ(r)− 1

4
, ψ(r) = min{r, 1/r} (λ− λ2).

As a result, (5.5) is simplified to

Ijm(r) ≤ 1

2π
2−m
√
e

∫ π

−π
|θ|m exp

{
− 2

π2
ψ(r) θ2

}
dθ

=
√
e
πm

4m+1
ψ(r)−

m+1
2

∫ 2
√
ψ(r)

−2
√
ψ(r)
|x|m e−

1
2
x2 dx.

The last integral may be extended to the whole real line, which makes sense for large
values of ψ(r), or one may bound the exponential term in the integrand by 1, which
makes sense for small values of ψ(r). These two ways of estimation lead to

Ijm(r) ≤
√
e
πm

4m+1
ψ(r)−

m+1
2 min

{√
2π E |ξ|m, 2m+2

m+ 1
ψ(r)

m+1
2

}
≤
√
e
πm

4m+1
max

{√
2π E |ξ|m, 2m+2

m+ 1

}
min

{
1, ψ(r)−

m+1
2

}
,

where ξ is a standard normal random variable. In particular, we get the upper bounds

Ij0(r) ≤
√
e min

{
1, ψ(r)−1/2

}
, Ij2(r) ≤

√
e π2

12
min

{
1, ψ(r)−3/2

}
.

In view of ql + plr ≤ e(r−1)pl , from the definition of Rj(r) we also have the bound

Rj(r) ≤ exp
{

(r − 1)
n∑
l=1

pl

}
= eλ(r−1)

in case r ≥ 1, while for r ≤ 1

Rj(r) ≤ exp
{

(r − 1)
∑
l 6=j

pl

}
= eλ(r−1) e−pj(r−1) ≤ eλ(r−1)+1.

Applying these bounds in (5.3), we therefore obtain that |Tj(k)| may be bounded
from above by

δr
2
p2j e

λ(r−1)+ 1
2 r−k

(
(r − 1)2 min

{
1, ψ(r)−1/2

}
+
π2

3
rmin

{
1, ψ(r)−3/2

})
,

where δr = 1 in case r ≥ 1 and δr = e for r < 1. Summing over j ≤ n and recalling
(5.1), one can estimate |∆k| from above by

λ2 δr e
λ(r−1) r−k

(√e
2

(r−1)2 min
{

1, ψ(r)−1/2
}

+

√
e π2

6
r min

{
1, ψ(r)−3/2

})
. (5.6)

Letting r → 1 (r > 1), (5.6) leads to

|∆k| ≤
√
e π2

6
λ2 e

−λ < 3λ2 e
−λ,

which gives the inequality in (1.10). In case k ≥ 1, one may also use (5.5) with r = k
λ

and apply k! ≤ e kk+
1
2 e−k, cf. (2.5), giving

eλ(r−1) r−k =
(eλ
k

)k
e−λ ≤ e

√
k f(k), f(k) =

λk

k!
e−λ.
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To simplify the numerical constants, note that 1
2 e

5/2 < 6.1 and 1
6 e

5/2 π2 < 20.1.
Recalling that ψ(r) = ρ for r = k/λ, we finally get the second inequality (1.11),

|∆k| ≤ λ2
√
k f(k)

(
7
(k − λ

λ

)2
min

{
1, ρ−1/2

}
+ 21

k

λ
min

{
1, ρ−3/2

})
. (5.7)

�

6. Consequences of Theorem 1.3

Under the natural requirement that λ2 is bounded away from λ, the bound (5.7) on
∆k = P{W = k} − P{Z = k} may be simplified. As before, we use the notations

f(k) = P{Z = k} =
λk

k!
e−λ, λ = p1 + · · ·+ pn, λ2 = p21 + · · ·+ p2n.

Note that λ2 ≤ λ and recall that ρ = (λ− λ2) min{ kλ ,
λ
k}.

Corollary 6.1. If λ2 ≤ κλ, κ ∈ (0, 1), then for any integer k ≥ 0,

|∆k| ≤
7

(1− κ)3/2

((k − λ)2

λ
+ 3
) λ2
λ

max
{(k

λ

)3
, 1
}
f(k). (6.1)

In particular, if k ≤ 2λ, then

|∆k| ≤
56

(1− κ)3/2

((k − λ)2

λ
+ 3
) λ2
λ
f(k). (6.2)

If k ≥ λ ≥ 1/2, we also have

|∆k| ≤
49

(1− κ)3/2

(k
λ

)3
λ2f(k). (6.3)

Proof. The assumption λ2 ≤ κλ ensures that ρ ≥ (1− κ)λ min{ kλ ,
λ
k}.

If 1 ≤ k ≤ Kλ (K ≥ 1), then k
λ ≤ K

2 λ
k and ρ ≥ 1−κ

K2 k, so that the right-hand side
of (5.6) may be bounded from above by

λ2
√
k f(k)

(
7
(k − λ

λ

)2 K√
(1− κ) k

+ 21
k

λ

K3

(1− κ)3/2 k3/2

)
.

Choosing K = max{ kλ , 1}, this expression does not exceed the right-hand side of (6.1).
Thus, the inequality (1.11) yields (6.1), which in turn immediately implies (6.2).

In case k = 0, we apply the inequality (1.10). Since (k−λ)2
λ + 3 ≥ λ for k = 0,

the right-hand side of (1.10) is dominated by the right-hand side of (6.1). Thus, we
obtain (6.1) without any constraints on k, and (6.2) for all k ≤ 2λ.

In case k ≥ λ, necessarily ρ ≥ (1 − κ)λ2/k. Hence, the right-hand side of (5.6)
may be bounded from above by

λ2
√
k f(k)

(
7
(k − λ

λ

)2 √
k

λ
√

1− κ
+ 21

k

λ
· k3/2

λ3 (1− κ)3/2

)
.

Using (k−λλ )2 ≤ k2

λ2
to bound the first term in the brackets and k

λ ≤ 2k to bound the
second term (using λ ≥ 1/2), we obtain the bound (6.3). �
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We are now prepared to extend Proposition 3.3 to larger values of λ under the
additional assumption that λ2/λ is bounded away from 1. The next assertion, being
combined with Proposition 3.3, yields Theorem 1.2 in the non-degenerate case.

Proposition 6.2. If λ ≥ 1/2 and λ2 ≤ κλ with κ ∈ (0, 1), then

1

4

(λ2
λ

)2
≤ D(W ||Z) ≤ χ2(W,Z) ≤ cκ

(λ2
λ

)2
. (6.4)

where one may take cκ = c (1− κ)−3 with some absolute constant, e.g. c = 7 · 106.

Proof. The left lower bound in (6.4) is added according to (1.7) (using the Pinsker
inequality, it also follows with some constant from Barbour-Hall’s lower bound in
Theorem 1.1). Hence, one may only focus on the right upper bound in (6.4). Write

χ2(W,Z) =
∞∑
k=0

∆2
k

f(k)
= S1 + S2 =

( [2λ]∑
k=0

+
∞∑

k=[2λ]+1

)
∆2
k

f(k)
.

In the range 0 ≤ k ≤ [2λ], we apply the inequality (6.2) which gives

∆2
k ≤

562

(1− κ)3

((k − λ)4

λ2
+ 6

(k − λ)2

λ2
+ 9
)(λ2

λ

)2
f(k)2.

Hence

S1 ≤
562

(1− κ)3

(E (Z − λ)4

λ2
+ 6

E (Z − λ)2

λ
+ 9
)(λ2

λ

)2
.

Using the moment formula EZm = λ(λ+ 1) . . . (λ+m− 1), we have E (Z − λ)2 = λ
and E (Z − λ)4 = 3λ(λ+ 2), so that

S1 ≤ 562

(1− κ)3

(3 (λ+ 2)

λ2
+ 15

)(λ2
λ

)2
=

18 816

(1− κ)3
(
λ−1 + 3

) (λ2
λ

)2
≤ C1

(1− κ)3

(λ2
λ

)2
(6.5)

with C1 = 94 080 (where we used the assumption λ ≥ 1/2 on the last step).
In order to estimate S2, we use the following elementary bound

∞∑
k=k0

kdf(k) ≤ kd0 f(k0)
(

1− λ

k0

(k0 + 1

k0

)d−1)−1
, (6.6)

which holds for any d = 1, 2, . . . as long as kd0/(k0 + 1)d−1 > λ. For the proof, write
∞∑

k=k0

kdf(k) = kd0f(k0)
(
1 + θ1 + θ1θ2 + · · ·+ θ1 . . . θm + . . .

)
,

where

θm =
( k0 +m

k0 +m− 1

)d λ

k0 +m
, m = 1, 2, . . .

Since the function (x + 1)d−1 x−d is decreasing in x > 0, we have 1 > θ1 > θ2 > . . .
This gives

∞∑
k=k0

kdf(k) ≤ kd0f(k0)
(

1 +

∞∑
m=1

θm1

)
,
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that is, (6.6). In particular, for k0 = [2λ] + 1 and λ ≥ 8 (with d = 6),(
1− λ

k0

(k0 + 1

k0

)5)−1
<
(

1− 1

2

(2λ+ 1

2λ

)5)−1
< 3.1.

So, by (6.6), and using [2λ] + 1 ≤ 17
8 λ for the chosen range of λ, we have

∞∑
k=[2λ]+1

k6f(k) ≤ 3.1 ([2λ] + 1)6 f([2λ] + 1) ≤ 3.1 · (17λ/8)6 f([2λ] + 1).

Hence, by (6.3),

S2 =

∞∑
k=[2λ]+1

|∆k|2

f(k)
≤ 492

(1− κ)3

∞∑
[2λ]+1

(k
λ

)6
λ22 f(k) ≤ C2 λ

2
2

(1− κ)3
f([2λ] + 1) (6.7)

with C2 = 492 · 3.1 · (17/8)6 < 685 343. Asymptotically with respect to large λ, this
bound is much better than (6.4). Applying f(k) ≤ 1√

2πk
ek−λ (λk )k as in (2.9) with

k = [2λ] + 1 and using 2λ ≤ k ≤ 2λ+ 1, we have

f([2λ] + 1) ≤ e

2
√
λπ

(e/4)λ ≤ e

2
√
π

83/2
(e

4

)8 1

λ2
<

1

λ2
.

This gives

S2 ≤
C2

(1− κ)3

(λ2
λ

)2
.

As a result, we arrive at the desired upper bound in (6.4).
Finally, let us estimate S2 for the range 1

2 ≤ λ ≤ 8. Returning to (6.6), we have

S2 ≤
282

(1− κ)3

∞∑
k=1

(k
λ

)6
λ22 f(k) ≤ 282

(1− κ)3
λ−6 λ22 EZ6 ≤ C ′2

(1− κ)3

(λ2
λ

)2
,

where C ′2 = 492 sup 1
2
≤λ≤4 ψ(λ), ψ(λ) = λ−4 EZ6. Here

ψ(λ) =
(λ+ 1) . . . (λ+ 5)

λ3
= ψ1(λ)ψ2(λ)ψ3(λ)

with ψ1(λ) = 5 + λ+ 4
λ , ψ2(λ) = 7 + λ+ 10

λ , ψ3(λ) = 1 + 3
λ . All these three functions

are convex, while ψ3 is decreasing. In addition, ψi(1/2) ≥ ψi(8) for i = 1, 2. Hence
ψ(λ) ≤ ψ(1/2) = 1

4 · 11!! It follows that C ′2 = 492 · 14 · 11!! < 6 239 560, and thus
c = C1 + C ′′2 is the resulting constant in (6.4). �

Remark 6.3. Assume that λ ≥ 1/2, and let us recall that χ2 is a stronger distance
than the total variation in view of the general relation d(W,Z)2 ≤ 1

2 D(W,Z). Hence,
the upper bound in (6.4) implies the inequality d(W,Z) ≤ cκλ2/λ (like in Chen’s
result), provided that λ2 ≤ κλ. But, in the other case λ2 ≥ κλ, there is nothing to
prove, since d(W,Z) ≤ 1.

Also let us recall that, for λ ≤ 1/2, the correct upper bound on the total variation
distance is of the form d(W,Z) ≤ Cλ2. It may be obtained by elementary methods,
as already illustrated in Proposition 3.3.
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7. Uniform Bounds. Comparison with Normal Approximation

A different choice of the parameter r in the proof of Theorem 1.3 may provide various
uniform bounds in the Poisson approximation, like in the next assertion. Using the
L∞(µ)-norm with respect to the counting measure µ on Z, let us focus on the devia-
tions of the densities of W and Z and the deviations of their distribution functions.
These distances are thus given by

M(W,Z) = sup
k≥0
|P{W = k} − P{Z = k}|,

K(W,Z) = sup
k≥0
|P{W ≤ k} − P{Z ≤ k}|.

Putting r = 1 in (5.6), we arrive at the next assertion which sharpens Proposition 4.1.

Theorem 7.1. We have

M(W,Z) ≤
√
e π2

6
λ2 min

{
1, (λ− λ2)−3/2

}
. (7.1)

This uniform bound is not new; with a non-explicit numerical factor, it corresponds
to Theorem 3.1 in Cekanavicius [4], p. 53. For λ ≤ 1, this relation is simplified to

M(W,Z) ≤
√
e π2

6
λ2,

which cannot be improved (modulo a numerical factor) in view of the lower bounds
on |∆k| with k = 0, 1, 2 mentioned in Section 3. We also have a similar bound for the
Kolmogorov distance, K(W,Z) ≤ Cλ2, which follows from the upper bound for the
stronger total variation distance as in Theorem 1.1.

When, however, λ is large (and say all pj ≤ 1/2), it is commonly believed that
it will be more accurate, if we replace the Poisson approximation for PW by the
normal law N(λ, λ) with mean λ and variance λ. Indeed, suppose, for example, that
pj = 1/2, so that W has a binomial distribution with parameters (n, 1/2), while the
approximating Poisson distribution has parameter λ = n/2 with λ2 = n/4. Here
the inequality (1.2) only yields d(W,Z) ∼ 1, which means that there is no Poisson
approximation with respect to the total variation! Nevertheless, the approximation
is still meaningful in a weaker sense in terms of the Kolmogorov distance K, as well
as in terms of M . In this case, both PW and Pλ are almost equal to N(λ, λ), and
the Berry-Esseen theorem provides a correct bound K(W,Z) ≤ c√

n
via the triangle

inequality for K. Since M ≤ 2K (which holds true for all probability distributions on
Z), we also have M(W,Z) ≤ c√

n
. Note that this inequality also follows from Theorem

7.1. Indeed, when λ2 ≤ 1
2 λ, (7.1) is simplified to

M(W,Z) ≤
√

2e π2

3

λ2

λ3/2
, (7.2)

which yields a correct order for growing n. Thus, the two approaches are equivalent
for this particular (i.i.d.) example.

To realize whether or not the normal approximation is better or worse than the
Poisson approximation in the general non-i.i.d. situation (that is, with different pj ’s),
let us evaluate the corresponding Lyapunov ratio in the central limit theorem and
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apply the Berry-Esseen bound K(W,Nλ) ≤ cL3, where the random variable Nλ is
distributed according to N(λ, λ). Since Var(W ) =

∑n
j=1 pjqj = λ−λ2, the Lyapunov

ratio for the sequence X1, . . . , Xn is given by

L3 =
1

Var(W )3/2

n∑
j=1

E |Xj − EXj |3

=
1

(λ− λ2)3/2
n∑
j=1

(p2j + q2j ) pjqj ≤
1√

λ− λ2

(note that 1
2 ≤ p

2
j +q2j ≤ 1). Hence K(W,Nλ) ≤ c√

λ−λ2
, up to some absolute constant

c > 0. A similar bound holds for Z as well when representing W as the sum of
n independent Poisson random variables Zj with parameters pj . Namely, for the
sequence Z1, . . . , Zn, we have

L3 =
1

Var(Z)3/2

n∑
j=1

E |Zj − EZj |3 ≤
c

λ3/2

n∑
j=1

pj =
c√
λ
.

Therefore, K(Z,Nλ) ≤ c√
λ

and hence, by the triangle inequality, K(W,Z) ≤ c√
λ−λ2

.

In particular, in a typical situation where λ2 ≤ 1
2 λ, the normal approximation yields

M(W,Z) ≤ c√
λ

(7.3)

with some absolute constant c. But, this bound is surprisingly worse than (7.2) as
long as λ2 = o(λ).

Consider as an example pj = 1/(2
√
j) for j = 1, . . . , n. Then λ ∼

√
n, λ2 ∼ log n,

and we get M(W,Z) ≤ cn−3/4 log n in (7.2), while (7.3) only yields M(W,Z) ≤
cn−1/4. This example is also illustrative when comparing Theorem 1.2 with (1.5).

The first one provides a correct asymptotic D(W,Z) ∼ log2 n
n (within absolute factors),

while (1.5) only gives D(W,Z) ≤ c.

8. Upper Bounds on D and χ2 in the Degenerate Case

We now turn to Theorem 1.2 in the degenerate case, where the optimal bounds on
the relative entropy and χ2 have a different behavior. As an intermediate step, let
us derive the following upper bounds for the χ2-distance and the relative entropy, by
involving the quantity

Q = λ/max{1, λ− λ2}.

Proposition 8.1. For λ ≥ 1/2, we have

χ2(W,Z) ≤ 19
√
Q, (8.1)

D(W ||Z) ≤ 23 log(eQ). (8.2)

These bounds turn out to be sharp when λ2 ≥ κλ, cf. Propositions 9.1 and 10.1.
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Proof. Setting g(w) =
∏n
l=1(ql + plw) as before, we exploit the representation

P{W = k} =

∫
|w|=r

w−kg(w) dµr(w) =
1

2π
r−k

∫ π

−π
g(reiθ) e−ikθ dθ,

which is valid for all r > 0. Like in Section 6, we have an upper bound

P{W = k} ≤ Rk(r) I(r) with Rk(r) = r−k
n∏
l=1

(ql + plr)

and

I(r) =
1

2π

∫ π

−π

n∏
l=1

|ql + plre
iθ|

ql + plr
dθ.

Let us choose r = k/λ as before. Since qj + pjr ≤ epj(r−1),

Rk(r) ≤ r−k
n∏
j=1

(qj + pjr) ≤ eλ(r−1)−k log r =
(eλ
k

)k
e−λ.

Moreover, applying ( ek )k ≤ e
√
k 1
k! as in (2.5), the above is simplified to

Rk(r) ≤ e
√
k
λk

k!
e−λ = e

√
k f(k),

where f(k) is the density of Z ∼ Pλ with respect to the counting measure on non-
negative integers k = 0, 1, . . .

On the other hand, repeating the arguments from Section 5, or just applying (5.4)
with j = 0, we have for all |θ| ≤ π,

n∏
l=1

|ql + plr e
iθ|

ql + plr
=

n∏
l=1

(
1− 4qlplr

(ql + plr)2
sin2 θ

2

)1/2
≤ exp

{
− 2 sin2 θ

2

n∑
l=1

qlpl r

(ql + plr)2

}
≤ exp

{
− 2θ2

π2

n∑
l=1

qlpl r

(ql + plr)2

}
.

Here
n∑
l=1

qlpl r

(ql + plr)2
≥ 1

r

n∑
l=1

qlpl =
1

r
(λ− λ2) in case r ≥ 1

and
n∑
l=1

qlpl r

(ql + plr)2
≥ r

n∑
l=1

qlpl = r (λ− λ2) in case r ≤ 1.

These right-hand sides have the form

ψ(r) = min{r, 1/r} (λ− λ2),

and we get

I(r) ≤ 1

2π

∫ π

−π
exp

{
− 2

π2
ψ(r) θ2

}
dθ =

1

4ψ(r)1/2

∫ 2
√
ψ(r)

−2
√
ψ(r)

e−
1
2
x2 dx

≤ 1

4ψ(r)1/2
min

{√
2π, 4ψ(r)1/2

}
≤ min

{
1, ψ(r)−1/2

}
.
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First, we consider the region 1
4 λ ≤ k ≤ 4λ, in which case 1

4 ≤ r ≤ 3 and ψ(r) ≥
1
4 (λ− λ2) and thus

I(r) ≤ min
{

1,
2√

λ− λ2

}
≤ 2

√
Q0, Q0 = 1/max{1, λ− λ2}.

Hence

P{W = k} ≤ 2e
√
Q0

√
k f(k). (8.3)

As for for the regions 1 ≤ k < 1
4 λ and k > 4λ, we use the property |I(r)| ≤ 1, which

yields simpler upper bounds

P{W = k} ≤
(eλ
k

)k
e−λ ≤ e

√
k f(k). (8.4)

Now, recall that P{W = 0} ≤ f(0) (according to Lemma 3.1) and write

χ2(W,Z) =
∞∑
k=0

P{W = k}2

f(k)
− 1 ≤ S1 + S2 + S3

=

( ∑
1≤k< 1

4
λ

+
∑

1
4
λ≤k≤4λ

+
∑
k>4λ

)
P{W = k}2

f(k)
.

By (8.3),

S2 ≤ 2e
√
Q0

∑
1
4
λ≤k≤4λ

√
k P{W = k} ≤ 4e

√
Q

∑
1
4
λ≤k≤4λ

P{W = k} ≤ 4e
√
Q.

To estimate S1, first note that S1 = 0 for λ < 4. For λ ≥ 4, using the property
that the function k → ( eλk )k is increasing for k < λ, we obtain from (8.4) that

S1 ≤ e−λ+1
∑
k< 1

4
λ

√
k
(eλ
k

)k
≤ 1

2

√
λ e−λ+1

∑
1≤k< 1

4
λ

(eλ
k

)k
≤ 1

2

√
λ e−λ+1

∑
1≤k< 1

4
λ

(4e)λ/4 ≤ e
(λ

4

)3/2 ( 4

e3

)λ/4
≤ e

( 3

2e log(e3/4)

)3/2
< 0.544.

Here we applied the inequality

xp cx ≤
( p

e log(1/c)

)p
p, x > 0, 0 < c < 1, (8.5)

with p = 3/2 and c = 4/e3.

To estimate S3, one may bound the sequence
√
k ( eλk )k for k > 4λ ≥ 2 by the

geometric progression Abk with suitable parameters A > 0 and 0 < b < 1. To this
aim, consider the function

u(x) = log
(√

x
(eλ
x

)x)
− log(bx)

=
1

2
log x+ x+ x log λ− x log x− x log b, k ≥ 4λ.
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We have

u′(x) =
1

2x
+ log λ− log x− log b ≤ 1

4
+ log

1

4b
≤ 0,

if b ≥ 1
4 e

1/4 which we assume. In this case, u is decreasing, so that u(x) ≤ u(4λ) =

log
(
2
√
λ ( eλ4b )4λ

)
≤ logA, where

A = 2 sup
λ≥1/2

√
λ
( e

4b

)4λ
= sup

y≥2

√
y
( e

4b

)y
=
( 1

2e log(3/e)

)1/2
< 1.366,

where on the last step we choose b = 3/4 and applied (8.5) with p = 1/2 and c = e/3.
Thus, putting k0 = [4λ] + 1 and noting that k0 ≥ 2, we get

S3 ≤ e−λ+1
∑
k>4λ

√
k
(eλ
k

)k
≤
√
e
∑
k≥k0

A
(3

4

)k
= 4A

√
e
(3

4

)k0
≤ 9

4
A
√
e < 5.067.

Finally, using Q = λQ0 ≥ 1/2 (due to λ ≥ 1/2), we get S1 + S3 < 5.611 ≤
5.611

√
2Q. This gives S1 +S2 +S3 < (5.611

√
2 + 4e)

√
Q < 18.81

√
Q, so (8.1) follows.

Turning to the second assertion and using P{W = 0} ≤ f(0), write similarly

D(W ||Z) =

∞∑
k=0

P{W = k} log
P{W = k}
P{Z = k}

= T1 + T2 + T3

≤
( ∑

1≤k< 1
4
λ

+
∑

1
4
λ≤k≤4λ

+
∑
k>4λ

)
P{W = k} log

P{W = k}
f(k)

.

For the region 1
4 λ ≤ k ≤ 4λ, we can apply the bound (8.3) again, which gives

P{W = k} ≤ 2
√
Q0 e

√
k f(k) ≤ 4e

√
Qf(k),

and therefore, using Q ≥ 1/2,

T2 ≤ log(4e) +
1

2
logQ ≤

log(4e)− 1
2 log 2

log(e/2)
log(eQ) < 6.65 log(eQ).

Using also (8.4) together with the inequality log(et) ≤ t (t > 0), we obtain, similarly
to the derivation of the bound on T1 in the χ2-case, that

T1 ≤ e−λ
∑

1≤k< 1
4
λ

(eλ
k

)k
log(e

√
k) ≤ e−λ log(e

√
λ/4)

∑
1≤k< 1

4
λ

(eλ
k

)k
≤

(λ
4

)3/2 ( 4

e3

)λ/4
≤
( 3

2e log(e3/4)

)3/2
< 0.2.

Putting again k0 = [3λ] + 1 similarly to the derivation of the bound on S3 in the
χ2-case, we also get

T3 ≤ e−λ
∑
k>4λ

(eλ
k

)k
log(e

√
k) ≤ e−λ+1

∑
k≥k0

√
k
(eλ
k

)k
< 5.067.

Hence, T1 + T3 < 5.087 < 16.578 log(eQ), and (8.2) follows as well. �
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9. Lower Bound on χ2 in the Degenerate Case

Here, we complement Proposition 8.1 with a similar lower bound about χ2-distance
in terms of the same quantity Q = λ/max{1, λ− λ2}. Put c0 = 2.5 · 10−6.

Proposition 9.1. If λ ≥ 1/2, then with some absolute constant c ∈ [c0, 1)

1 + χ2(W,Z) ≥ c
√
Q. (9.1)

Moreover,

χ2(W,Z) ≥ c

9

√
Q (9.2)

as long as λ2 ≥ (1− c2

4 )λ.

Suppose that λ2 ≥ (1 − c2

4 )λ. To derive the second inequality of Proposition 9.1

from the first one, it is sufficient to require that c
√
Q ≥ 2, since then c

√
Q−1 ≥ c

2

√
Q.

This condition is fulfilled, as long as λ ≥ λ0 = 4
c2

and then we obtain (9.2). In the

remaining case 1
2 ≤ λ ≤ λ0, the inequality (9.2) follows from Harremoës’ lower bound

χ2(W,Z) ≥ 1
4 (λ2λ )2. Indeed, in this case, λ− λ2 ≤ c2

4 λ ≤ 1, so that Q = λ ≤ 4
c2

, and

thus c
9

√
Q ≤ 2

9 , while 1
4 (λ2λ )2 ≥ 1

4 (1− c2

4 )2.
Thus, we may focus on the first inequality (9.1). First we prove it, assuming that

λ− λ2 is sufficiently large. As in Section 9, for any fixed r > 0, we apply the Cauchy
theorem and write

P{W = k} =

∫
|w|=r

w−k
n∏
l=1

(ql + plw) dµr(w) = Rk(r) Ik(r)

with integration over the uniform distribution µr on the circle |w| = r of the complex
plane. Here and below

Rk(r) = r−k
n∏
l=1

(ql + plr)

and

Ik(r) =
1

2π

∫ π

−π

n∏
l=1

|ql + plr e
iθ|

ql + plr
exp

{
− ikθ + i

n∑
l=1

Im
(

log(ql + plr e
iθ)
)}
dθ.

We split the integration over the two regions so that to work with the representation

P{W = k} = Rk(r) Ik(r) = Rk(r) (Ik1(r) + Ik2(r)),

where

Ik1(r) =
1

2π

∫ π
2

−π
2

n∏
l=1

|ql + plr e
iθ|

ql + plr
exp

{
− ikθ + i

n∑
l=1

Im
(

log(ql + plr e
iθ)
)}
dθ,

Ik2(r) =
1

2π

∫
π
2
<|θ|<π

n∏
l=1

|ql + plr e
iθ|

ql + plr
exp

{
− ikθ + i

n∑
l=1

Im
(

log(ql + plre
iθ)
)}
dθ.
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Here we choose the radius r = r(k) > 0 by the condition R′k(r) = 0, or equivalently

F (r) ≡
n∑
l=1

plr

ql + plr
= k. (9.3)

Since the function F is monotone and F (0) = 0, F (∞) = n, there is a unique solution,
say r, to this equation as long as n > k (which may be assumed). We also assume
that not all pk are equal to 0 or 1, so that λ2 < λ.

Let us also emphasize that F is concave on the positive half-axis. Since F (1) = λ,
we necessarily have r(k) < 1 in case k < λ, and r(k) > 1 in case k > λ.

Lemma 9.2. For any k = 0, . . . , n− 1, the solution r = r(k) to the equation (9.3)
satisfies

r ≥ 1 +
k − λ
λ− λ2

.

Moreover, in case |k − λ| ≤ 1
6 (λ − λ2), we have 5

6 ≤ r ≤ 6
5 , and actually with some

0 ≤ bi ≤ 1

r = 1 +
(6

5

)2
b1

k − λ
λ− λ2

= 1 +
k − λ
λ− λ2

+
(6

5

)9
b2
λ2 − λ3
λ− λ2

( k − λ
λ− λ2

)2
.

Proof. We have

F ′(r) =
n∑
l=1

plql
(ql + plr)2

, F ′(1) = λ− λ2.

The inverse function F−1 : [0, n) → [0,∞) is increasing and convex. Hence, for any
s ∈ [0, n),

F−1(s) ≥ F−1(λ) + (F−1)′(λ) (s− λ)

= F−1(λ) +
1

F ′(F−1(λ))
(s− λ) = 1 +

1

λ− λ2
(s− λ).

Plugging s = k, we obtain the first inequality.
Now, since ql + plr ≤ 1 for r ≤ 1, we conclude that F ′(r) ≥

∑n
l=1 plql = λ − λ2

and F (1)− F (r) ≥ (1− r)(λ− λ2). Thus, if k ≤ λ, we obtain that

1

6
(λ− λ2) ≥ |k − λ| = F (1)− F (r(k)) ≥ (1− r(k))(λ− λ2),

implying r(k) ≥ 5
6 . For r ≥ 1, one may use ql+plr ≤ r, which gives F ′(r) ≥ 1

r2
(λ−λ2)

and F (r)− F (1) ≥ (1− 1
r ) (λ− λ2). Hence, again by the assumption,

1

6
(λ− λ2) ≥ k − λ = F (r(k))− F (1) ≥

(
1− 1

r(k)

)
(λ− λ2),

implying r(k) ≤ 6
5 . In both cases, 5

6 ≤ r(k) ≤ 6
5 , proving the second assertion of the

lemma.
Now, in the interval 5

6 ≤ r ≤
6
5 , we necessarily have 5

6 ≤ ql + plr ≤ 6
5 , so(5

6

)2
(λ− λ2) ≤ F ′(r) ≤

(6

5

)2
(λ− λ2).
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In addition,

−F ′′(r) = 2

n∑
l=1

p2l ql
(ql + plr)3

≤ 2 ·
(6

5

)3 n∑
l=1

p2l ql = 2 ·
(6

5

)3
(λ2 − λ3).

Let us now write the Taylor expansion up to the linear and quadratic terms for
the inverse function F−1(s) around the point λ. Then we get

F−1(s) = 1 +
1

F ′(F−1(s1))
(s− λ)

= 1 +
1

F ′(1)
(s− λ)− 1

2F ′(F−1(s2))3
F ′′(F−1(s2)) (s− λ)2,

where the points s1 and s2 lie between λ and s. Putting r = F−1(s) and ri = F−1(si),
the above is simplified as

r = 1 +
1

F ′(r1)
(s− λ)

= 1 +
1

λ− λ2
(s− λ)− 1

2F ′(r2)3
F ′′(r2) (s− λ)2

where r1 and r2 lie between 1 and r. It remains to apply these equalities with s = k,
that is, r = r(k), and note that 1

F ′(r1)
≤ (65)2 1

λ−λ2 , while

1

2F ′(r2)3
|F ′′(r2)| ≤

1

2 (56)6 (λ− λ2)3
· 2 ·

(6

5

)3
(λ2 − λ3) =

(6

5

)9 λ2 − λ3
(λ− λ2)3

.

Note that (65)2 = 1.44 and (65)9 < 5.16. �

Lemma 9.3. Let r = r(k) be the solution of (9.3) for 0 ≤ λ − k ≤ 1
6 (λ − λ2).

Then

Rk(r) = r−k
n∏
l=1

(ql + plr) ≥ exp
{
− 4

(λ− k)2

λ− λ2

}
.

Proof. The function

ψk(r) = logRk(r) =

n∑
l=1

log(ql + plr)− k log r, r > 0,

is vanishing at r = 1 and has derivative

ψ′k(r) =
n∑
l=1

pl
ql + plr

− k

r
=
F (r)− k

r
=
F (r)− F (r(k))

r
.

Since F is increasing and concave, F (a) − F (b) ≤ F ′(b) (a − b) whenever a ≥ b > 0.
In particular, in the interval r(k) ≤ r ≤ 1, we have

ψ′k(r) ≤
F ′(r(k))

r
(r − r(k)) ≤ F ′(r(k))

r(k)
(1− r(k)),

which implies

ψk(r(k)) = ψk(r(k))− ψk(1) ≥ −F
′(r(k))

r(k)
(1− r(k))2.
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By Lemma 9.2, 5
6 ≤ r(k) ≤ 6

5 and 1 − r(k) ≤ (65)2 k−λ
λ−λ2 . Moreover, as was shown in

the proof, F ′(r(k)) ≤ (65)2 (λ− λ2). Hence

F ′(r(k))

r(k)
(1− r(k))2 ≤

(65)2 (λ− λ2)
5/6

((6

5

)2 k − λ
λ− λ2

)2
=
(6

5

)7 (k − λ)2

λ− λ2
.

Here the constant (65)7 < 3.6. �

Lemma 9.4. Let λ− λ2 ≥ 100. Then, for 0 ≤ λ− k ≤ 1
6 (λ− λ2),

Ik(r(k)) ≥ 1

10
√
λ− λ2

.

Proof. By Lemma 9.2, 1 ≥ r(k) ≥ 5
6 . Recalling (6.4) which is needed with j = 0,

note that, for r > 0 and −π ≤ θ ≤ π,
n∏
l=1

|ql + plr e
iθ|

ql + plr
=

n∏
l=1

(
1− 4qlplr

(ql + plr)2
sin2 θ

2

)1/2
≤ exp

{
− 2

n∑
l=1

qlplr

(ql + plr)2
sin2 θ

2

}
.

For 5
6 ≤ r ≤ 1, necessarily ql + plr ≤ 1 and

n∑
l=1

qlplr

(ql + plr)2
≥

n∑
l=1

qlplr = (λ− λ2) r ≥
5

6
(λ− λ2).

Hence

Ik2(r) ≤
1

2π

∫
π
2
≤|θ|≤π

n∏
l=1

|ql + plr e
iθ|

ql + pl r
dθ

≤ 1

2π

∫
π
2
≤|θ|≤π

exp
{
− 5

3
(λ− λ2) sin2 θ

2

}
dθ ≤ 1

2
e−

5
6
(λ−λ2).

Let us now estimate Ik1. Using 4qlplr ≤ (ql+plr)
2 (since (ql−plr)2 ≥ 0), we have,

for |θ| ≤ π/2,
4qlplr

(ql + plr)2
sin2 θ

2
≤ 1

2
, l = 1, . . . , n.

In the region 0 ≤ ε ≤ ε0 < 1, there is a lower bound 1− ε ≥ e−cε with best attainable
constant when ε = ε0. In the case ε0 = 1

2 , this constant is given by c = 2 log 2.
Therefore, for |θ| ≤ π

2 ,

n∏
l=1

|ql + plr e
iθ|

ql + plr
≥ exp

{
− log 2

n∑
l=1

4qlplr

(ql + plr)2
sin2(θ/2)

}
.

But, any function wl(r) = r
(ql+plr)2

is increasing in 0 < r ≤ rl ≡ ql/pl and decreasing

in r ≥ rl. Hence, if rl ≥ 1, then max 5
6
≤r≤1wl(r) = w(1) = 1. If rl ≤ 5

6 , that is, when

pl ≥ 6
11 , we have

max
5
6
≤r≤1

wl(r) = wl(5/6) =
5
6

(ql + pl
5
6)2
≤ 6

5
.
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Finally, if 5
6 ≤ rl ≤ 1, which is equivalent to 1

2 ≤ pl ≤
6
11 , we have

max
5
6
≤r≤1

wl(r) = wl(rl) =
1

4plql
≤ 1

4 · 6
11 ·

5
11

=
121

120
.

Thus, in all cases, w(r) ≤ 6
5 on the interval 5

6 ≤ r ≤ 1, so that

n∏
l=1

|ql + plr e
iθ|

ql + plr
≥ exp

{
− 6

5
log 2

n∑
l=1

4qlpl sin2(θ/2)
}
≥ exp

{
− 6

5
(log 2) (λ−λ2) θ2

}
and thus

1

2π

∫ π
2

−π
2

n∏
l=1

|ql + plr e
iθ|

ql + plr
dθ ≥ 1

2π

∫ π
2

−π
2

exp
{
− 6

5
(log 2) (λ− λ2) θ2

}
dθ

=
1

2π
√

6
5 (log 4) (λ− λ2)

∫ π
2

√
6
5
(log 4) (λ−λ2)

−π
2

√
6
5
(log 4) (λ−λ2)

exp
{
− 1

2
x2
}
dx

= 0.3093
1√

λ− λ2
.

Here we used λ− λ2 ≥ 100, which ensures that

1

2π
√

6
5 log 4

∫ π
2

√
6
5
(log 4) (λ−λ2)

−π
2

√
6
5
(log 4) (λ−λ2)

e−
1
2
x2 dx ≥ 1

2π
√

6
5 log 4

∫ 5π
√

6
5
log 4

−5π
√

6
5
log 4

e−
1
2
x2 dx

=
1√

2π 6
5 log 4

P
{
|ξ| ≤ 5π

√
6

5
log 4

}
> 0.3093,

where ξ ∼ N(0, 1). In addition (recalling one of the upper bounds when bounding

the integral Ik2 from above), and using sin(θ/2) ≥
√
2
π θ for 0 ≤ θ ≤ π/2, we get that

1

π

∫ π
2

−π
2

n∏
l=1

|ql + plr e
iθ|

ql + plr
θ6 dθ ≤ 1

π

∫ π
2

−π
2

exp
{
− 5

3
(λ− λ2) sin2 θ

2

}
θ6 dθ

≤ 1

π

∫ π
2

−π
2

exp
{
− 10

3π2
(λ− λ2) θ2

}
θ6 dθ

≤ 1

π

( 20

3π2
(λ− λ2)

)−7/2 ∫ ∞
−∞

e−x
2/2 x6 dx

= π
13
2

( 3

20

)7/2
15
√

2
1

(λ− λ2)7/2
<

48

(λ− λ2)7/2
.

The assumption (9.1) may be rewritten as

Im
( n∑
l=1

log(ql + plr e
iθ)
)′∣∣∣

θ=0
=
( n∑
l=1

Im
(

log(ql + plr e
iθ)
))′∣∣∣

θ=0
= k.

Note that the functions Im
(

log(ql + plr e
iθ)
)

are odd, so their 2nd derivatives are
vanishing at zero. We now apply the Taylor formula up to the cubic term to the



Relative entropy and χ2 divergence from the Poisson law 31

function

Ak(r, θ) = −kθ + Im

n∑
l=1

log(ql + plre
iθ)

on the interval θ ∈ [−π/2, π/2] to get that

Ak(r, θ) =
1

6

(
Im

n∑
l=1

log(ql + plre
iv)
)′′′∣∣∣

v=θ0
θ3

with some θ0 ∈ [−π/2, π/2]. To perform the differentiation, consider a function of
the form

h(v) = log(q + pr eiv), p, q, r > 0.

We have

h′(v) =
pr ieiv

q + pr eiv
= i

(
1− q

q + pr eiv

)
= i− iq (q + pr eiv)−1,

h′′(v) = −pqr eiv (q + pr eiv)−2,

h′′′(v) = −pqr
(
ieiv (q + pr eiv)−2 − 2i pr e2iv (q + pr eiv)−3

)
.

Therefore,

−
(

Im

n∑
l=1

log(ql+plr e
iθ)
)′′′

= Im
(
i

n∑
l=1

plqlr e
iθ

(ql + plr eiθ)2

)
−2 Im

(
i

n∑
l=1

qlp
2
l r

2 e2iθ

(ql + plr eiθ)3

)
,

implying that∣∣∣∣(Im

n∑
l=1

log(ql + plr e
iθ)
)′′′∣∣∣∣ ≤ n∑

l=1

plqlr

|ql + plr eiθ|2
+ 2

n∑
l=1

qlp
2
l r

2

|ql + plr eiθ|3
.

But, for 5
6 ≤ r ≤ 1 and |θ| ≤ π

2 ,

|ql + plre
iθ|2 = (ql + plr)

2(1− 4qlplr

(ql + plr)2
sin2 θ

2

)
≥ (ql + plr)

2 − 2qlplr = q2l + p2l r
2.

Hence
r

|ql + plr eiθ|2
≤ r

q2l + p2l r
2

= ul(r) ≤
121

60
.

Here we used the property that ul(r) is increasing in r ≤ rl = ql/pl and is de-
creasing in r ≥ rl. If rl ≥ 1, this gives ul(r) ≤ ul(1) = 1

q2l +p
2
l
≤ 2. If rl ≤ 5

6 , that is,

when pl ≥ 6
11 , we get ul(r) ≤ ul(5/6) = 5/6

q2l +
5
6
p2l

. The latter expression is minimized

at pl = 6
11 where it has the value 121

66 . Finally, if 5
6 ≤ rl ≤ 1, which is equivalent to

1
2 ≤ pl ≤

6
11 , we have

ul(r) ≤ ul(rl) =
1

2plql
≤ 1

2 · 6
11 ·

5
11

=
121

60
.

From this,

r2

|ql + plr eiθ|3
≤
( r4/3

q2l + p2l r
2

)3/2
≤
( r

q2l + p2l r
2

)3/2
= ul(r)

3/2 ≤
(121

60

)3/2
,
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so that∣∣∣∣(Im
n∑
l=1

log(ql + plr e
iθ)
)′′′∣∣∣∣ ≤ 121

60

n∑
l=1

plql + 2
(121

60

)3/2 n∑
l=1

qlp
2
l ≤ c0 (λ− λ2)

with c0 = 121
60 + 2 (12160 )3/2 < 7.744438. Thus,

|Ak(r, θ)| ≤
c0
6

(λ− λ2) |θ|3,
5

6
≤ r ≤ 1, |θ| ≤ π

2
.

Now, as we mentioned before, the function Ak is odd in θ, so that

Ik1(r) =
1

2π

∫ π
2

−π
2

n∏
l=1

|ql + plr e
iθ|

ql + plr
cos(Ak(r, θ)) dθ

=
1

2π

∫ π
2

−π
2

n∏
l=1

|ql + plre
iθ|

ql + plr
dθ − 1

π

∫ π
2

−π
2

n∏
l=1

|ql + plre
iθ|

ql + plr
sin2(A(r, θ)/2) dθ.

Hence, using

sin2(A(r, θ)/2) ≤ 1

4
Ak(r, θ)

2 ≤ c20
144

(λ− λ2)2 θ6,

from the previous estimates we may deduce the lower bound

Ik1(r) ≥ 0.3093
1√

λ− λ2
− c20

144
(λ− λ2)2

48

(λ− λ2)7/2

= 0.3093
1√

λ− λ2
− c20

3

1

(λ− λ2)3/2

≥ 1√
λ− λ2

(
0.3093− 20

λ− λ2

)
≥ 0.1093

1√
λ− λ2

,

where on the last step we assume that λ− λ2 ≥ 100. Together with the upper bound
on Ik2, we arrive at the lower bound

Ik(r) ≥ 0.1093
1√

λ− λ2
− 1

2
e−

5
6
(λ−λ2)

≥
(
0.1093− 5 e−

500
6
) 1√

λ− λ2
>

0.1√
λ− λ2

.

Thus, Lemma 9.4 is proved. �

Proof of Proposition 9.1. We conclude from Lemmas 9.3 and 9.4 that

P{W = k} ≥ 1

10
√
λ− λ2

e
−4 (λ−k)2

λ−λ2 (9.4)

for 0 ≤ λ− k ≤ 1
6 (λ− λ2) under the assumption λ− λ2 ≥ 100.

On the other hand, according to Lemma 2.3, f(k) = P{Z = k} ≤ 1√
2πk

. Since

k ≥ λ− 1
6 (λ− λ2) ≥ 5

6 λ, we have

f(k) ≤
√

6/5√
2πλ

<
1

2
√
λ
.
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As a consequence,

1 + χ2(W,Z) ≥
∑

0≤λ−k≤ 1
6

√
λ−λ2

P{W = k}2

f(k)

≥
√
λ

50 (λ− λ2)
∑

0≤λ−k≤ 1
6

√
λ−λ2

e
−8 (λ−k)2

λ−λ2 ≥ 0.001

√
λ

λ− λ2
.

In order to clarify the last inequality, note that the condition λ − λ2 ≥ 100 implies
that λ > 100. The above summation is performed over all integers k from the interval
λ− 1

6

√
λ− λ2 ≤ x ≤ λ of length at least 10/6. It contains at least one integer point,

and actually, the number of integer points in it is at least h = 1
6

√
λ− λ2. Moreover,

∑
0≤λ−k≤h

e
−8 (λ−k)2

λ−λ2 ≥
∑

[λ−h]+1≤k≤[λ]

∫ λ−k+1

λ−k
e
− 8 x2

λ−λ2 dx

=

∫ λ−[λ−h]

λ−[λ]
e
− 8x2

λ−λ2 dx ≥ 1

4

√
λ− λ2

∫ 2/3

2/5
e−y

2/2 dy

=

√
2π

4

√
λ− λ2

(
Φ(2/3)− Φ(2/5)

)
≥ 0.056

√
λ− λ2.

Here, we used the bounds 4 λ−[λ]√
λ−λ2

≤ 2
5 and 4 λ−[λ−h]√

λ−λ2
≥ 4 λ−[λ−10/6]

10 ≥ 2
3 , together

with Φ(2/3)− Φ(2/5) > 0.09.
In order to treat the region λ− λ2 ≤ 100, we apply Proposition 2.2. Let W1 = W

and W2 = Y1 + · · ·+Ym, where Y1, . . . Ym are independent Bernoulli random variables
taking the values 1 and 0 with probabilities 1/2 and m = 400. Assume as well that W

and W2 are independent. Then λ̃ = λ+m/2 and λ̃2 = λ2 +m/4 satisfy the condition

λ̃− λ̃2 ≥ 100.
Denote by Z2 a Poisson random variable with EZ2 = m/2 which is independent

of Z1 = Z. By the previous step and the inequality (2.4) of Proposition 2.2,

0.001

√
λ̃

λ̃− λ̃2
≤ χ2(W1 +W2, Z1 + Z2) + 1

≤ (χ2(W1, Z1) + 1)(χ2(W2, Z2) + 1).

Here, by (8.1), χ2(W2, Z2) ≤ 19
√

2. Moreover, since λ− λ2 ≤ 100, we have√
λ̃

λ̃− λ̃2
=

√
λ+m/2

λ− λ2 +m/4
≥
√
λ+ 200

200
≥ 1

10
√

2

√
λ

max{1, λ− λ2}
.

It follows that

1 + χ2(W,Z) ≥ 0.001

10
√

2 (19
√

2 + 1)

√
λ

max{1, λ− λ2}
> 2.5 · 10−6

√
λ

max{1, λ− λ2}

Hence, Proposition 9.1 holds in the case λ− λ2 ≤ 100 as well.
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10. Lower Bound for D in the Degenerate Case

An analogue of Proposition 9.1 is the following statement about the relative entropy.
Recall that Q = λ/max{1, λ− λ2}.

Proposition 10.1. If λ2 ≥ κ0λ and λ ≥ λ0, then

D(W ||Z) ≥ c0 log(eQ). (10.1)

where κ0 = 1− exp{−109}, λ0 = exp{2 · 107}, and c0 = e−14.

Proof. Let us recall the two estimates from the previous section,

wk ≡ P{W = k} ≥ 1

10
√
λ− λ2

e
−4 (λ−k)2

λ−λ2 , vk ≡ P{Z = k} ≤ 1√
2πk

,

The first one is valid under the conditions 0 ≤ λ− k ≤ 1
6 (λ− λ2) and λ− λ2 ≥ 100,

cf. (9.4). Clearly, they are fulfilled if 0 ≤ λ− k ≤ 5
3

√
λ− λ2 and λ− λ2 ≥ 100, and if

additionally λ2 ≥ κλ, 0 < κ < 1, then we have

wk ≥
1

10
√
λ− λ2

e−100/9 ≥ 1

10
√

(1− κ)λ
e−100/9.

Since k ≥ 5
6 λ, we also have an upper bound

vk ≤
1√

5πλ/3
.

In order that wk ≥ vk, it is therefore sufficient to require that 1
10
√
1−κ e

−100/9 ≥ 1√
5π/3

,

that is, 1− κ ≤ π
60 e
−200/9. We have, moreover,

log
wk
vk
≥ 1

2
log

eλ

λ− λ2
+ log

(√5π/3e

10
e−100/9

)
≥ 1

2
log

λ

λ− λ2
− 14.

Now, applying the general inequality (2.1) of Proposition 2.1, we get

D(W ||Z) ≥
∑
wk≥vk

wk log
wk
vk
− 1

≥
∑

0≤λ−k≤ 5
3

√
λ−λ2

wk log
wk
vk
− 1

≥
∑

0≤λ−k≤ 5
3

√
λ−λ2

wk

(1

2
log

λ

λ− λ2
− 14

)
− 1

≥ 1

2
log

λ

λ− λ2

∑
0≤λ−k≤ 5

3

√
λ−λ2

1

10
√
λ− λ2

e
−4 (λ−k)2

λ−λ2 − 15.

Note that, if λ − λ2 ≥ 100, the x-interval 0 ≤ λ − x ≤ 5
3

√
λ− λ2 has length at

least 50/3, so, the total number of integer points in this interval is also at least 50/3.
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Hence, the last sum can be bounded from below by

50/3

10
√
λ− λ2

e−100/9
∑

0≤λ−k≤ 5
3

√
λ−λ2

1 ≥ 5

3
e−100/9 > e−11.

Thus,

D(W ||Z) ≥ 1

2
e−11 log

eλ

λ− λ2
− 15 ≥ 1

4
e−11 log

eλ

λ− λ2
,

where the second inequality holds true true when 1− κ is sufficiently small. Namely,

1

4
e−11 log

eλ

λ− λ2
≥ 1

4
e−11 log

1

1− κ
≥ 15,

if 1− κ ≤ exp{−60 e11}. Let us assume that.
The proposition is thus proved under the conditions λ−λ2 ≥ 100 and λ2 ≥ κλ. It

remains to eliminate the first condition, assuming that λ − λ2 < 100 and again that
λ2 ≥ κλ. To this aim, we appeal to Proposition 2.2 again like on the last step of the
proof of Proposition 9.1. Namely, using the same notations and assumptions, from
the inequality (2.3) and using the previous step, we obtain that

1

4
e−11 log

eλ

max{1, λ− λ2}
≤ D(W1 +W2||Z1 + Z2)

≤ D(W1||Z1) +D(W2||Z2), (10.2)

whereW1 = W and Z1 = Z. It holds, as long as λ̃2 ≥ κλ̃, i.e., λ2+m/4 ≥ κ (λ+m/2).
Since λ− λ2 < 100, the latter would follow from

λ− 100 +m/4 ≥ κ (λ+m/2)

which is solved as λ ≥ 50 κ
1−κ .

Moreover, by (9.2), we have D(W2||Z2) ≤ 23 log(2e). This bound may be used in
(10.2), which gives

D(W ||Z) ≥ 1

4
e−11 log

eλ

max{1, λ− λ2}
− 23 log(2e)

≥ 1

8
e−11 log

eλ

max{1, λ− λ2}
,

where the second inequality holds true true when 1− κ is sufficiently small. Namely,

1

8
e−11 log

eλ

λ− λ2
≥ 1

8
e−11 log

1

1− κ
≥ 23 log(2e),

if 1 − κ ≤ exp{−8 · 23 · log(2e) · e11}. Since the product in the exponent is smaller
than 18 700 000, we may choose κ = κ1 = 1− exp{−18 700 000}. In this case,

D(W ||Z) ≥ c1 log
eλ

λ− λ2
, c1 =

1

8
e−11,

assuming that λ ≥ 50 κ1
1−κ1 . It remains to note 50 κ1

1−κ1 < λ0, κ1 < κ0, c1 > c0. �
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11. Summarizing Remarks. Proof of Theorem 1.2

Let us summarize. Using an additional quantity

F = F (λ, λ2) =
max(1, λ)

max(1, λ− λ2)
,

the obtained results on Poisson approximation for different regions of λ and λ2 are
united in Theorem 1.2 in the form of two-sided bounds

c1

(λ2
λ

)2
(1 + logF ) ≤ D(W ||Z) ≤ c2

(λ2
λ

)2
(1 + logF ), (11.1)

c1

(λ2
λ

)2√
F ≤ χ2(W,Z) ≤ c2

(λ2
λ

)2√
F , (11.2)

which are valid up to some absolute positive constants c1 and c2. Let us give final
comments on the proof of Theorem 1.2 and indicate these constants explicitly. As we
will see, (11.1)-(11.2) hold with c1 = 10−7 and c2 = 5.6 · 107.

An upper bound in (12.1).
If λ ≤ 1/2, these bounds are simplified and may be precised as

1

4

(λ2
λ

)2
≤ D(W ||Z) ≤ χ2(W,Z) ≤ 16

(λ2
λ

)2
. (11.3)

Here, the left inequality is true for all λ and λ2, cf. [H-J-K], while the right inequality
is proved in Proposition 3.3. Note that λ ≤ 1/2 implies λ2 ≤ 1

2 λ.

In the case where λ ≥ 1/2 and λ2 ≤ 1
2 λ, we have, by Proposition 6.2,

D(W ||Z) ≤ χ2(W,Z) ≤ 56 · 106
(λ2
λ

)2
,

so that

D(W ||Z) ≤ 56 · 106
(λ2
λ

)2
(1 + logF ) (11.4)

In the case where λ ≥ 1/2 and λ2 >
1
2 λ, one may apply (8.2) which gives

D(W ||Z) ≤ 23 (1 + logF ) ≤ 4 · 23
(λ2
λ

)2
(1 + logF ).

Here, the right-hand side contains a better numerical constant in comparison with
(11.4), and we finally get (11.1) with constant c2 = 56 · 106.

A lower bound in (12.1).
If λ ≤ 1, then F = 1, so that the lower bound in (11.3) yields (11.1) with c1 = 1/4.
Assume that λ ≥ 1. The inequality (11.4) may be reversed by virtue of (10.1),

which gives

D(W ||Z) ≥ c0(1 + logF ) ≥ c0

(λ2
λ

)2
(1 + logF ) (11.5)

with c0 = e−14, provided that λ2 ≥ κ0λ and λ ≥ λ0, where κ0 = 1 − exp{−2 · 107}
and λ0 = exp{2 · 107}.

But, the remaining regions belong to the non-degenerate case, where F is bounded
by a quantity which depends on κ0 or λ0, and then the lower bound in (11.3) is
asymptotically optimal. Indeed, if λ2 ≤ κ0λ, then logF ≤ − log(1− κ0) = 2 · 107, so,

D(W ||Z) ≥ 1

4 (1 + 2 · 107)

(λ2
λ

)2
(1 + logF ).
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This means that the left inequality in (11.1) holds true with constant c1 = 1
4 (1+2·107)

which is better than c0 in the analogous inequality (11.5). Similarly, if 1 ≤ λ < λ0,
then F ≤ λ < λ0, and we get, by the lower bound in (11.3),

D(W ||Z) ≥ 1

4 (1 + log λ0)

(λ2
λ

)2
(1 + logF ).

This means that the left inequality in (11.1) holds true with the same constant c1 as
above. Thus, the lower bound in (11.1) holds with constant c0 (> 10−7).

An upper bound in (11.2).
If λ ≤ 1/2, we have (11.3), which implies (11.2) with c2 = 14. In the case λ ≥ 1/2

and λ2 ≤ 1
2 λ, a stronger version of (11.4) is still provided by Proposition 6.2, which

gives

χ2(W,Z) ≤ χ2(W,Z) ≤ 56 · 106
(λ2
λ

)2
,

so that (12.2) holds true with c2 = 56 · 106. In the case where λ ≥ 1/2 and λ2 >
1
2 λ,

one may apply (8.1) which gives

χ2(W,Z) ≤ 76
(λ2
λ

)2√
F .

Here, the right-hand side contains a better numerical constant, and we finally get
(11.2) with the same constant c2 as in (11.1).

A lower bound in (11.2).
If λ ≤ 1, then F = 1, so that the lower bound in (11.3) yields (11.1) with c1 = 1/4.
Assume that λ ≥ 1, in which case F = Q = λ/max(1, λ − λ2). By Proposition

9.1, cf. (9.2), we have

χ2(W,Z) ≥ c0
9

√
F

with c0 = 2.5 · 10−6, provided that λ2 ≥ κ0λ, κ0 = 1− c20/4. This gives

χ2(W,Z) ≥ c0
9

(λ2
λ

)2√
F , (11.6)

and we obtain the left inequality in (11.2) with c1 = c0/9 > 10−7.
The remaining region belongs to the non-degenerate case, where F is bounded,

and then the lower bound in (11.3) is asymptotically optimal. Indeed, if λ2 ≤ κ0λ,

then 1/
√
F ≥

√
1− κ0 = c0

2 = 0.8 · 10−6, so that, by the left inequality in (11.3),

χ(W,Z) ≥ 1

4

(λ2
λ

)2
≥ 0.2 · 10−6

(λ2
λ

)2√
F

This means that the left inequality in (11.1) holds true with constant c1 = 2 · 10−7

which is slightly better than the constant in the analogous inequality (10.6). Thus,
the lower bound in (11.2) holds true with constant c1 = 10−7. �

12. Difference of Entropies

For the proof of Corollary 1.4, we shall use another functional

H2(Z) =
(
E (log v(Z))2

)1/2
=
(∑

k

vk (log vk)
2
)1/2

,
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where Z is an integer-valued random variable with probability function vk = P{Z =
k}, k ∈ Z. Thus, while the Shannon entropy H(Z) = −E log v(Z) describes the
average of the informational content − log v(Z), the informational quantity H2(Z)
represents the 2nd moment of this random variable.

An application of Theorem 1.2 is based upon the following elementary relation.

Proposition 12.1. For all integer-valued random variables W and Z with finite
entropies, we have

H(W ||Z) ≤ χ2(W,Z) +H2(Z)
√
χ2(W,Z). (12.1)

Proof. We may assume that the distribution of W is absolutely continuous with
respect to the distribution of Z (since otherwise χ2(W,Z) =∞). Equivalently, for all
k ∈ Z, vk = 0 ⇒ wk = 0, where wk = P{W = k}. Define tk = wk/vk in case vk > 0.
Recalling the definition (1.12), we then have

H(W ||Z) =
∑
vk>0

(tk log tk) vk +
∑
vk>0

(tk − 1) vk log vk.

We now apply the inequality t log t ≤ (t− 1) + (t− 1)2 (t ≥ 0), obtaining

H(W ||Z) ≤
∑
vk>0

(tk − 1) vk +
∑
vk>0

(tk − 1)2 vk +
∑
vk>0

(tk − 1)vk log vk

=
∑
k

(wk − vk)2

vk
+
∑
vk>0

(wk − vk) log vk.

Here, the first sum in the last bound is exactly χ2(W,Z), while, by Cauchy’s inequal-
ity, the square of the last sum is bounded from above by∑

k

(wk − vk)2

vk

∑
k

vk (log vk)
2 = χ2(W,Z)H2

2 (Z).

�

In view of (12.1), we also need:

Proposition 12.2. If Z ∼ Pλ, then

H2(Z) ≤

{√
50 log(1 + λ), if λ ≥ 1,

5
√
λ log(e/λ), if λ ≤ 1.

Proof. As before, let vk = P{Z = k}. In particular, v0 (log v0)
2 = λ2 e−λ and

v1 (log v1)
2 = λe−λ (λ+ log(1/λ))2. This shows that the above upper bound for small

λ can be reversed up to a constant. For λ ≤ 1, given k ≥ 1, from

log
1

vk
= λ+ log k! + k log

1

λ
≤ k2 log

e

λ
,

we get ∑
k≥1

vk (log vk)
2 ≤ EZ4 log2

( e
λ

)
≤ 24λ log2

( e
λ

)
,
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Hence, H2
2 (Z) ≤ 25λ log2(e/λ), thus proving the second upper bound of the lemma.

Now, assuming that λ ≥ 1, let us apply the lower bounds (2.7)-(2.8) from Lemma
2.3, which for all k ≥ 1 give

log
1

vk
≤ 1 +

1

2
log k +

1

λ
(k − λ)2 ≤ log(ek) +

1

λ
(k − λ)2

and

log2
1

vk
≤ 2 log2(e(k + 1)) +

2

λ2
(k − λ)4.

Note that this bound is also true for k = 0. Using the concavity of the function log2 x
in x ≥ e and applying Jensen’s inequality, we therefore obtain that

∞∑
k=0

vk (log vk)
2 ≤ 2E log2(e(Z + 1)) +

2

λ2
E (Z − λ)4

≤ 2 log2(e(λ+ 1)) +
6 (λ+ 2)

λ
≤ 2

(
1 + log(1 + λ)

)2
+ 18.

Hence H2(Z) ≤ Cx, x = log(1 + λ) ≥ log 2, with C2 = 2 (1 + 1
x)2 + 18

x2
< 50.

Applying the upper bound (2.7) from Lemma 2.3, we also see that this upper
bound on H2 can also be reversed up to a constant.

�

Remark 12.3. With similar arguments, it follows that

H(Z) ≤

{
c log(1 + λ), if λ ≥ 1,

cλ log(e/λ), if λ ≤ 1,

which can also be reversed modulo an absolute factor c > 0. Hence, H2(Z) ∼ H(Z)
as long as λ stays bounded away from zero.

Proof of Corollary 1.4. By Theorem 1.2 with W as in (1.1) and Z ∼ Pλ, we
have

χ2(W,Z) ≤ C
(λ2
λ

)2√
2 + λ

with some absolute constant C. Using this estimate in (13.1) and applying Proposition
13.2, the desired inequality (1.11) immediately follows (in view of λ2 ≤ λ).

To derive a more precise inequality illustrating the asymptotic behaviour in λ in
the typical case λ2 ≤ 1

2 λ, let us apply once more Theorem 1.2 with its sharper bound

χ2(W,Z) ≤ C
(λ2
λ

)2
.

By Proposition 12.1, this gives

H(W ||Z) ≤ C (1 +H2(Z))
λ2
λ
,

and it remains to note that 1 +H2(Z) ≤ C log(2 + λ), according to Proposition 12.2.
�
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