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1. Introduction. Let (X,),>1 be independent random variables taking
the values +1 with probability 1/2. Given a random variable X independent
of (Xp)n>1 with density p, let us consider densities p,, of the normalized sums

1

vn

By the central limit theorem, the random variables Z,, are convergent weakly
in distribution to the standard normal law, which means that, as n — oo,

Z (X 4+ X1 4+ X,).

sup

b
/(pn(w)—go(x))da: — 0, where ¢(z)= 1 /2.
a<b a

Ver

Therefore, one may wonder whether this property can be sharpened as con-
vergence of p, to ¢ in a stronger sense. This question appears naturally in
the area of entropic limit theorems with involved problems of estimation of
the entropy of X, especially in a high-dimensional setting (here, we however
do not discuss such applications). When X = 0 and the X}’s are i.i.d., a cel-
ebrated result of Gnedenko provides necessary and sufficient conditions for
the uniform convergence of p, when these densities exist [4], [1]. Here, we
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will see that the presence of a nonzero noise X/y/n in Z, may enlarge the
range of applicability of local limit theorems. Let us focus on the possible
convergence in the L2-distance

pn — gll2 = ( JNZEE sO(fv)|2dfv> v

—00

and on the uniform convergence, i.e., for the L*-norm ||p, — ¢||co (which is
stronger than the L2-convergence). As it turns out, the answers essentially
depend on some delicate properties of the density p of X, as may be seen
from the following characterization in terms of the characteristic function

f(t) = EeX = / e p(x) de, teR.

— 00

Theorem 1.1. If
lpn —¢ll2 =0 as n— oo, (1.1)

then
f(mk) =0 forallkeZ, k#0. (1.2)

Conversely, if E|X| < oo, and f' is square integrable, then the L*-conver-
gence (1.1) holds under the condition (1.2).

Under a stronger assumption on f, the L?-convergence of densities may
be strengthened to the uniform convergence.

Theorem 1.2. Assume that the condition (1.2) is fulfilled. If E|X| < oo,
and ' is integrable, then the random wvariables Z, have continuous densi-
ties p, such that

sup |pn(z) —p(z)| =0 as n— oo. (1.3)

The square integrability assumption in Theorem 1.1 is not so restrictive.
By Plancherel’s theorem, it may be stated in terms of the density of X as
the property

oo
/ 2p(x)? dr < co.
—0o0
This holds true as long as p is bounded, and EX? < oo.

As for the condition (1.2), it is of a different nature and is also fulfilled
for a certain family of characteristic functions. This family includes, for
example, f(t) = t~!sint which corresponds to the uniform distribution U on
the interval [~1,1], and more generally f(t) = g(t)t~!sint with an arbitrary
characteristic function g, which means that the distribution of X contains U
as a component. The condition (1.2) may also be stated explicitly in terms
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of the density p, by virtue of the Poisson summation formula. As we will see,
if p has a bounded total variation, (1.2) is equivalent to the property that

22/

keZ”

o0

p(2k + x)p(z) dz = 1.

As a relatively large subfamily, one may involve all characteristic func-
tions f that are supported on [—m, 7], in which case we obtain the uniform
convergence (1.3). But, staying in a similar class, one may remove the as-
sumption that X, have a Bernoulli distribution and allow a multidimensional
setting. In the sequel, we use the standard notation (-,-) and | -| to denote,
respectively, the canonical inner product and the Euclidean norm in RY.
A random vector Y = (Y,...,Y;) in R? is said to have an isotropic distri-
bution, if

E(Y,0)% = 9> for all § € R

Equivalently, EY;Y}, = d;;, for all j, k < d, where d;;, is the Kronecker symbol.

In the following statement, we assume that X is a random vector in R?
with characteristic function f(t) = EevX) t € RY, and that (X, ),>1 are
mean zero, independent, identically distributed random vectors in R¢ with an
isotropic distribution (as before, it is meant that X is independent of all X,,).
By the central limit theorem, the normalized sums Z,, are convergent weakly
in distribution to the standard normal law in R¢ with density

1 2
— —lxl*/2 d
o(z) = (om)i72 e e x € R (1.4)
Theorem 1.3. There exists T > 0 depending on the distribution of X,
with the following property. If f is supported on the ball |t| < T, then the
random vectors Zy have continuous densities p, such that (1.3) holds true.
If
B3 = sup E|(X1,0)[
16]=1
is finite, one may take T =1/B3. If X1 has a nonlattice distribution, T may
be arbitrary.

Theorems 1.1, 1.2 also admit multidimensional extensions, which we dis-
cuss in sections 2, 3. Theorem 1.3 is proved in section 4. In sections 5, 6 we
recall the Poisson formula, including the multidimensional case, and discuss
its applications to (1.2). In the last section 7, we consider an asymptotic
behavior of densities p, in dimension one without the property (1.2). Under
mild regularity assumptions on the distribution of X, it will be shown in
particular that uniformly over all x

pA@:Amwﬂw+x(f§) Anla) =2 3 p(@m + v+ n).
meZ
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This asymptotic representation illustrates a strong oscillatory behavior of
the densities p,(x) for all points x # 0, which may actually be different for
even n versus odd values of n.

2. Multidimensional variant of Theorem 1.1. We denote by L,
r > 1, the space of all (complex-valued) functions v on R? with finite norm

foll = ([ o ao) "

Turning to the multidimensional variant of Theorem 1.1, suppose that
(Xn)n>1 are independent random vectors uniformly distributed in the dis-
crete cube {—1,1}%, so that their components (coordinates) represent inde-
pendent Bernoulli random variables. Also, let X be a random vector in R?
independent of (X,,),>1 with characteristic function

f@t) =B e R

Like the one-dimensional case, if X has an absolutely continuous distribution,
the normalized sums

_
S Vn

have (some) densities p,. In addition, the distributions of Z,, are convergent
weakly as n — oo to the standard normal law in R? with density ¢ given
in (1.4). We would like to strengthen this convergence with respect to the
L2-distance ||p, — ¢||2.

Theorem 2.1. If Z, have densities p, such that

Zn (X + X1+ + X))

lpn — ¢ll2 = 0 as n — oo, (2.1)
then
f(rk) =0 forallk € Z%, k #0. (2.2)
Conversely, suppose that E|X| < co and
SIS @)
— s~ dt < 00, (2.3)
/Rd [[¢]4=1

where ||t|| denotes the distance from the point t € R? to the lattice TZ<.
Then, Z,, have densities p,, and the L?-convergence (2.1) holds true under
the condition (2.2).

The moment assumption on X guarantees that the characteristic func-
tion f has a continuous derivative (gradient) f’ = V[ with its Euclidean
norm |f’|, so that (2.3) makes sense. This condition implies that f is in L?
as stated in Lemma 2.1 below, hence necessarily X and all Z,, have densities.
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In dimension one, the condition (2.3) is fulfilled as long as f and f’ are in L?
(by Cauchy’s inequality). If d > 2, then (2.3) is a bit more complicated; it is
fulfilled when

max | f(8)] |f'(t)] < oo,
kezd SQk

where Q = Q + 7k, Q = [-m/2,m/2]%. This is true, for example, under the
decay assumptions such as

(L [Eal) - (L + [tal))*

(L [Ea]) -+ (L + [tal))

FIQIRES PRGN

holding for all t = (t1,...,t4) € R? with some constants o > 1/2 and ¢ > 0.
For instance, this is the case, when X is uniformly distributed in the cube
[—1,1]4.

Lemma 2.1. If the characteristic function f of the random wvector X
in R with finite first absolute moment satisfies the condition (2.3), and
Speza | f(Tk)|> < oo, then X has an absolutely continuous distribution with
density in L?. Moreover, if

!
[ O
Rra [[t*!
and ) cza | f(mk)| < oo, then X has a bounded continuous density.

For the proof of the lemma, as well as of Theorem 2.1 and Theorem 3.1,
we partition R? into the cubes Q, = @ + 7k introduced above, so that
lt|| = |t — 7k]| for t € Q.

Proof. For a given C'-smooth function w on R, consider the functions
wi(t) = w(rk +t), k € Z%. Since wy,(t) = wy(0) + fol (wy.(&t),t) d§, we have

1
i (£)] < [ (0)] + / wl (£4)| d. (2.4)

Change of the variable £t = s leads to

1
_d /
/Q o) de = k) < /Q /0 ]l (£0)] di de
1 /
B / —d—1 ‘wk(s)‘
- /Q |wk<s>\|sr[ / L df} s <o [ N ds

with some constant ¢; depending on d only, where ||s||c = maxy |si| for
5= (s1,...,59) € R% It follows that

o |w' (1))
. 2.
/Rd| t)| dt < E |w(rk) |+cd/d”t”d_1 dt (2.5)
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For the first claim of the lemma, we apply this inequality with w(t) =
If®)]? = f(#)f(—t). Tt is Cl-smooth and satisfies |w'(t)] < 2|f(®)||f'(t)|.
Hence, the right-hand side of (2.5) is finite, which means that f € L?. Hence,
X has density in L? as well, by the Plancherel theorem. Choosing w(t) =
f(t), we obtain that f is integrable, so that the second claim follows from
the inverse Fourier formula. Lemma 2.1 is proved.

Before turning to the proof of Theorem 2.1, note that the property (2.1)
is equivalent to the convergence of the L?-norms

[pnlle = llellz as n — oo (2.6)

Indeed, formally the latter is weaker than (2.1). On the other hand, assum-
ing (2.6) and applying the central limit theorem with weak convergence, we
have

I — @lI3 = Ipall3 + I3 — 2Ep(Zn) — 2ll¢l3 — 2Ep(2) = 0,

where Z is a standard normal random vector in R
Now, (2.1) requires that, for all n large enough, the characteristic functions

; t t
() =E i(t,Zn) _ n
fnlt) = Ee Nom )"\
belong to L2, where
v(t) = cos(ty) - - -cos(tyg) for t=(t1,...,tq) € RY.

Thus, introducing the characteristic function g(t) = e~1t?/2 of Z and apply-
ing the Plancherel theorem, (2.1) can be restated as the property that

1£all3 = llgll3 = 2. (2.7)

Proof of Theorem 2.1. Necessity part. To explore the latter property, con-
sider the integrals

Sl = [ 5a0F @t = [ woeed ) =150
R4 R4
Using the partition of R? as before and the periodicity of the cosine function,

we have
|mwwMZ/ Pt = S D (2.8)

where

Iy = / w(mk + t)v?"(t) dt.
Q
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Given € > 0, choose ty > 0 small enough such that w(t) > 1—¢ in |¢| < .
We have

1-— t
Ino>(1- 8)/ V2" (t) dt = d;/ V2" () dt,
lt|<to n2 Jiy<toym n

implying that

n—0o0

lim inf[n¥/?1,, o] > (1 — 5)/ eI at = (1 — e)r /2.
R

Since € > 0 was arbitrary, we get

lim inf[n?/?1,, o] > n%2.
n—oo

A similar upper bound on lim sup is obvious, and we conclude that
n¥?1, 5 — T2, (2.9)

Now, suppose that (2.2) is violated for some k # 0, that is, w(wk) > 0.
By the continuity of w, there exist € > 0 and ¢y > 0 such that w(nk+t) > ¢
in |t| < to. Hence,

€ t
e[ a5 ()
" lt|<to €) n2 Jiy<tov/m vn

implying that

n—oo

lim inf[n%/21,, 4] > 5/ eIt dt = exd/?.
Rd

Combining this bound with (2.9), we eventually obtain in (2.8) that

liminf || f,[|2 > (1 + &)n%?,

n—oo

which contradicts (2.7). This proves the necessity part in Theorem 2.1.
Sufficiency part. By Lemma 2.1, the characteristic functions f, belong

to L%, so that the densities p, are in L? as well. To prove the required

relation (2.7), let us return to the representation (2.8). Recalling (2.9), our

task is therefore to show that

n/? ZIn,k =0 (n— o). (2.10)
k40

To this aim, for a fixed k # 0, using 0 < cos(u) < e~*/2 for |u| < 7/2, we
have

Lngp < Jop = / wi(t)e ™ at,
Q
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where wy(t) = w(mk+t), w(t) = |f(t)|? as in the proof of Lemma 2.1. Hence,
by (2.4), and changing the variable £t = s, and then £ = \/n |s|/u, we get

1
Tk <L/‘}/ It] |wp(€t) e~ dt de
QJo

1
< [ kcols [t a as

< nd/Q/ lwi, ()] |s| =@V [/ yd=te—w? du] ds
Q |s|v/n

e L AC)| LY

S cdn o 541

with some constant ¢4 depending on the dimension only. Performing sum-
mation over all k # 0, we get

!/
nd/2 Zln,k g Cd/ ’w (d(i)1| 67n||'3||2/2 dS. (211)
k£0 [I8]loo>m/2 sl

Since |w'(s)| < 2|f(s)||f'(s)|, and recalling the assumption (2.3), one may
apply the Lebesgue dominated convergence theorem and conclude that the
right-hand side of (2.11) tends to zero, and thus (2.7) and (2.10) hold true.
Theorem 2.1 is proved.

3. Multidimensional extension of Theorem 1.2. Keeping notation
and the setting of the previous section, the multidimensional variant of The-
orem 1.2 reads as follows.

Theorem 3.1. Let X be a random vector in R? with E|X| < co and with
characteristic function f such that

/‘ﬂmﬁ<m, (3.1)
R

a [e]|4=

where ||t|| denotes the distance from t € R? to the lattice 7Z%. If f(nk)=0
for all k € Z%, k # 0, then the normalized sums Z, have continuous densi-
ties pn such that

sup |pn(z) — p(z)| = 0 as n— co. (3.2)

In dimension one, (3.1) means that |f’| is integrable. If d > 2, this condi-
tion is fulfilled when
max | f'(t)] < oo,
keZd reQx
for example, under the decay assumptions such as

THOIES

C

(LA [Eal) -+ (L + [tal))

t=(t1,...,t3) € R,
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with some constants @ > 1 and ¢ > 0. Note that this is not the case, when
X is uniformly distributed in the cube [—1,1]%.

This claim is very similar to Theorem 2.1, and only minor modifications
should be done in the proof of the sufficiency part.

Proof. As before, put v(t) = cos(t1)---cos(tg). By Lemma 2.1, the char-

acteristic functions ; .
wo=1(7) ()

are integrable. Hence, Z,, have continuous densities given by the Fourier
inversion formula

1 —i(t,x
pu(e) = o [ e A= 5 ha), @9
where .
L p(z) = @) /Q k e~ LTV F ()" () dt. (3.4)

In particular,

Here, one may remove f from the integrand by using the bound
t |t]
— | = 1| < —=E|X]|.
‘f (\/ﬁ ) ’ < v o
More precisely, this can be done at the expense of an error not exceeding in
absolute value

1 t 1 2 c
E|Xy/ it 0" () it < E\X|/ e P2 g < S x|
vn Vo) vn vn Vo) vn

up to some absolute constant ¢ > 0. Hence

1 . t
nY21. o(z) = / e Hba) <> dt +6,(x), 3.5
o) = [ )o@, G

where sup, |0, (z)| — 0 as n — co. One can now turn to the approximation
of v™ by the Gaussian function. With some absolute constant ¢ > 0, we have

cos” <\;%> —eu/2
which implies

t 2
nf YV _ _—t]?/2
‘ <¢ﬁ> ‘

<Ze M <

9

il
2 Y

3

cd 2
<MLt =(h . te) € Q.
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Therefore, after another replacement, (3.5) is simplified to

1 .
n (@) = (oo /fQ e eIt 4 0,1 (x) = (@) + Ona(a),

where sup,, |0, ;(z)| — 0 as n — oo. Thus, the term in (3.3) corresponding
to k = 0 produces the desired normal approximation, and we are left to show
that ) 4o [Ink(2)] — 0 as n — oo uniformly over all z € R

For a fixed k # 0, put wi(t) = f(nk +t). Applying again 0 < cos(u) <
e/ for |u| < /2 in (3.4), we have

1 —-n
k(@) < s Ink = (27T)d/ . (t)|e "2 dt.
Q

Using (2.4), we therefore obtain in full analogy with the derivation from the
previous section that

N N C/AC) JNCI

Ink < can QW

)

with some constant c¢; depending on the dimension only. Performing sum-
mation over all k£ # 0, we get

0257 1 (2)] < ca / PO a2 g5 (36)

= Islleo>m/2 [I8]1471

Finally, by (3.1), one may apply the Lebesgue dominated convergence the-
orem and conclude that the right-hand side of (3.6) tends to zero, and
thus (3.2) holds true. Theorem 3.1 is proved.

4. Proof of Theorem 1.3. The argument is rather standard, cf., e.g.,
6], [7]. Let v(t) = Ee&X1) ¢t € R, be the common characteristic function
of Xy’s. If f is supported on the ball [t| < T, then the characteristic functions

o-1(5)e(3)

of the normalized sums Z,, are supported on the ball B,, of radius T/n.
Hence, Z,, have continuous densities given according to the Fourier inversion
formula

x) = 1 e—i(t,x) — L e—i(t,x)
pn(z) o) /Rd fa(t)dt (27T)d/3 falt)dt.  (4.1)

n

In order to explore an asymptotic behavior of these integrals, first note
that one may always choose a number T" > 0 such that, for any 0 < tg < T,

to) = t) <1 4.2
clto) = max_ [v(?) (4.2)
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Moreover, by the second moment assumption,
1
v(t) =1- §|15|2 +e(t)]t]?

with () — 0 as t — 0. Let us choose tg € (0,7] such that |e(t)] < 1/4 for
all |t| < to. Then |v(t)| <1 — |t|>/4 in this ball, and

1 " 2
ol < (1= ?) < <o

Combining this estimate with (4.2), we conclude that for any sequence T}, T 0o
with Tn < to\/ﬁ,

()] di < 2T/ wy + / Mg 0, (43)
5T,

/In<|t<T\/ﬁ

where ¢ = ¢(tp), and wy denotes the volume of the d-dimensional Euclidean
unit ball.

Using the principal value of the logarithm, by the Taylor expansion, for
|t| < to we also have

1 1
Inwv(t) = ln<1 — 5]75]2 - 6(16)]75]2) = —§\t\2 +e1(t)[t)?
with £1(t) — 0 as t — 0. Therefore,

" <\;ﬁ> = exp{—;yﬂ? +5<\/tﬁ> |t|2} — g(t) = e 1P/2,

where the convergence is uniform in the balls |t| < T, such that T,, = o(y/n)
as n — oco. Hence,

On = sup [fn(t) —g(t)] = 0.
[t1<Tn

Moreover, if T, 1 oo sufficiently slow, then
[ 100~ gl de < 5,0213)" 0
[t|<Tn
as n — oo. Thus, by (4.3),

/ Falt) — () di < / Falt) — g(t)] dt
Qn [t|<Tn

+/ fn(t)|dt+/ lg(t)| dt — 0.
Ta<|t|<Ty/a Ta<t|<Ty/a
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In view of (4.1), we obtain the desired relation (1.3), that is,

(@) = 9(0)| < gz [ 1) = a(o)]dt =0,

If X7 has a nonlattice distribution, the property (4.2) holds true with any
T > 0 (cf. [1, section 21]). Otherwise, let us mention how one can quantify
the choice of T satisfying (4.2). If £ is a mean zero random variable with
E|¢? < oo, then one has (cf., e.g., [2, Lemma 15.1])

iré r? 2 r? 3
|E€ | g exp —EEg + §E|§’ s r € R.

Applying this bound with & = (X1,0), 0 = t/|t], r = [t|, t € R?, we get

(AREAE: ARSIk
lu(t)] < exp{—‘; + !63(9)} < exp{—’; + ‘363},

where £3(0) = E[(X1,0)|3. If |t| < 1/f3, the above right-hand side does not
exceed e~ 1t17/6, Hence, T = 1/33 is admissible. Theorem 1.3 is proved.

Remark 4.1. One may remove the 3rd moment assumption and take T' = 7
in Theorem 1.3 (in dimension one) under the following hypotheses about the
distribution of X; (in addition to the basic moment assumptions EX; = 0
and EX? = 1):

(a) the distribution of X is symmetric about the origin;

(b) P{X; =0} =0;

(c) the distribution of X is different from the symmetric Bernoulli distri-
bution on {—1,1}.

In that case, the property (4.2) still holds true. Indeed, otherwise take
the smallest ¢y > 0 such that |v(t9)| = 1. This implies that X; has a lattice
distribution supported on a+ hZ with h = 27 /ty (cf. [7, Chap. 1, Lemma 3]).
Equivalently, X1 = a + h& for some integer-valued random variable £. By
the assumption (a), necessarily a = hm/2 for some integer m. Adding an
integer number to &, we may assume without loss of generality that m = 0
or m= 1.

In the first case, we have X; = h&, so that, by (b), |X1| > h and thus
1 = EX? > h% Hence tg = 27/h > 2, implying that (4.2) holds with any
T < 2m. In the second case, X7 = h(1/2 + &), hence | X;| > h/2 and thus
1 = EX? > h?/4. Here, by (a), the equality is only possible when ¢ takes the
values 0 and 1 with probability 1/2, which is excluded by (c). Hence h < 2
and top = 27 /h > m, implying that (4.2) holds with T" = 7.

5. Poisson formula. As we mentioned before, the property (1.2), needed
in Theorems 1.1, 1.2 and their multidimensional variants, may be stated
explicitly in terms of the density of X. Such a reformulation is based on the
Poisson formula which we recall in this section.
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Consider the Fourier transform
ft) = / ei<t’“>p(ac) dz, t e RY,
Rd

for a given integrable function p: R? — C. The Poisson formula indicates
that, under certain mild assumptions on p (or f), we have the equality

> p(m)= > f(2rk). (5.1)

meZd kcZd

In dimension d = 1, it is sufficient to require that p be continuous and have
a bounded total variation on the real line. In this case, the left series in (5.1)
is absolutely convergent, while the value of the right series is understood as
the limit of the corresponding symmetric sums (cf. [8, Theorem 13.5]). For
higher dimensions, (5.1) holds true as long as p belongs to the Schwarz space
of functions on R?, as mentioned in [5, Theorem 4.5|.

Recall a standard argument and indicate somewhat weaker conditions in
terms of f, enlarging the Schwarz class, but restricting ourselves to the case
where p or f are real-valued and nonnegative.

Proposition 5.1. Let p be an integrable nonnegative function on R% whosdl}
Fourier transform f is also integrable and has a continuous derivative f' =

Vf satisfying
/()]
dt < oo,
/Rd [£]|4=

where ||t|| denotes the distance from the point t to the lattice 2rZe. Then we
have the equality (5.1), in which the second series is absolutely convergent.

As the next proof shows, the differentiability assumption may slightly
be relaxed, assuming that f is locally Lipschitz and using the generalized
modulus of the gradient

o —f(®)]
() = liming L =S O] 5.2
£ @] = T inf == (5:2)

Note that the function p in Proposition 5.1 is bounded and continuous
(which we require below), by the integrability of f and by the inverse Fourier
formula which may be written as

L i(tx) £
p<2ﬂ_> /Rde f(=2mt) dt.

This formula also shows that the role of p and f in (5.1) may be interchanged.
In that case, Proposition 5.1 may be restated as follows.
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Proposition 5.2. Let p be an integrable, locally Lipschitz function on RY
whose Fourier transform f is integrable and nonnegative. Suppose that

/
/ p (§2|1 dx < oo,
re [z
where ||z|| denotes the distance from the point = to the lattice Z%. Then we
have the equality (5.1), in which the first series is absolutely convergent.
In dimension d = 1, the above condition on p just means that p has

bounded total variation on the real line, and then we arrive at the usual
one-dimensional formulation of (5.1) under an additional assumption that f

is nonnegative.
Proof of Proposition 5.1. Let us partition R into the cubes Q) = Q+ 27k,
Q = [, 7% k € Z¢, and apply the bound

1
F(2mk + 1) — f(2rk)| < |t|/0 fl(2rk +et)de,  teRL  (5.3)

It holds true as long as f is locally Lipschitz, with definition (5.2) of the

modulus of the gradient of f. Indeed, for any x,t € R?, the function u(¢) =

f(z + &t) — f(x) is locally Lipschitz on the real line, and therefore it is

absolutely continuous. If u’ is a Radon—Nikodym derivative of u, it follows

from (5.2) that |[u/ ()] < [t |f'(z + &) a.e., while |u(1)| < fo |u/(€)] d€.
Now, arguing as in the proof of Lemma 2.1, we have

1
/ F@rk 4+ 1) — f(2nk) dt < / / 2k + b)) t] de dt
Q 0

. / ! |f (27k + s
_ /Q [If(2ﬂk+8)l\8\ . gdﬂ] el

with some constant ¢; depending on d only. Hence

ds

(2m)" |f(2mh)] < /Q ()] dt+ cq /Q H{,"Efl .

The summation over all k£ leads to

ST |2k 3] [Rd F()|dt + (2;) /Rd |||{|/|(dt)1 dt < oo, (5.4)

kezd

so that the second series in (5.1) is absolutely convergent.
Next, consider the periodic function

P(z) = Z p(m + ), z € RY.

meZd
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It is a.e. finite and integrable on the unit cube K = [0, 1], since

/Z m—i—xdx—/ p(z) dz < .

meZd
Therefore, P admits a multiple Fourier series expansion ), za ape=2milk.z)
with coefficients
ak:/627ri(kx d$— Z / 2mi(k,x) a:—I—m)d
K meZd
=2 / (g dy = [ EIp(y) dy = f(2mb).
K+ R4

meZd

The Fourier series is thus absolutely convergent, and as a consequence,
P(z) = P(z) a.e., where

=) f@rk)e ke,

kezd

By (5.4), P represents a continuous function. Once P is finite and continuous
as well, we could conclude that P(z) = P(z) for all z € R%. But, for z =0,
the latter equality becomes the Poisson formula (5.1).

The boundedness and continuity of P (needed at zero only) may be ex-
plored in terms of smoothness properties of p. Instead, let us apply a smooth-
ing argument. Using the Fourier couple on the real line,

w(z) = (S“ff)f, () = ( —Q)+,

the function wr(x) = w(z/T) with a parameter T > 1 has the Fourier
transform wp(t) = Tw(Tt), z,t € R. Define

wr(x) = wp(xy) - - wp(xg), x=(x1,...,249) € RY,
with its Fourier transform
Wr(t) = Wp(ty) - - - Wp(ty), t=(t1,...,ty) € RL

Put pr(z) = p(x)wp(z) with the corresponding periodic function

Pp(z) = Z p(m + z)wr(m + x). (5.5)

mecZd

Since p is bounded, the above series is absolutely convergent. Indeed, using

x cT?
el < PG R7
MT)’ 1+a2 €
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we have, for any z = (1, ...,2q4) € R? with ||z < 1,
(1)
wr(m+x) <
T( ) (1+(m1 +x1)2)---(1+(md+xd)2)
T2 d
(cT%) m=(mq,...,mq) € Z%,

S (d+md)-(1+md)’

where ¢ denotes an absolute constant which may be different in different
places. It follows that the sum of the series in (5.5) is uniformly bounded.
Since all terms in (5.5) are continuous in x, we may conclude that Pr is
continuous as well.

It also follows from (5.5) and the property wr(0) = 1 that

lim_Pr(0) = P(0). (5.6)

It is the only place where the property that p is nonnegative is used. Since
0 < wr < 1, we have limsupy_, . Pr(0) < P(0). On the other hand, since
wr(x) — 1, for any fixed N > 1

lim inf Pp(0) > Tim inf ST pmywrm)= > p(m).
lImlloo <N [mllee<N

Since N is arbitrary, we get liminf7_,o, Pr(0) > P(0) and thus arrive at (5.6).
Now, the Fourier transform f7 of py represents the normalized convolution
(27) =4 f * @, which is integrable and satisfies

| f7 ()]
dt < oo
/Rd i

The latter follows from the equality f = (2m)~¢f" x Wy = (27)~¢f x W}
together with the bound

e (8)
Tl < (T
/Rd i = st < D)

holding true with a constant C'(T') independent of s. Thus,

> fr(2mk)| < oo,

kcZd

and we obtain the Poisson formula for the smoothed functions, that is,

Pr(0) = Pr(0) = Y fr(2rk). (5.7)

kezd
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In order to turn to the limit in this equality, note that

(2m) 4 /Rd wr(t) dt = wr(0) = w(0) =1,

so that we may write

fr(2nk) — f(2rk) = (2m) ¢ /R (J(2mk+1) — f(2mk)r (t) dt.

Hence, by (5.3),

| Fr(2mk) — F(2rk)| < (2m)" / / Nk + €8)| [Hr(t) de dt.

Changing the variable {¢ = s and using wr(t) = 0 for |t| = 27/T,
with [@7(t)] < (eT)? for ||t]|eo < 27m/T, the latter double integral may be
bounded by

(cT)d [|f 27k + s)| |s |/ }ds
lslloo<2m/T Tsflo §
!
cof ek )l
lslwos2n/T 18]

with some constant c¢; depending on d only. Hence, summing over all k, we
get

!
> \fr(2nk) - f2rk)| < cq(2m) / / ff_”l dt, (5.8)
2 e ]
where Ry = |, ([~27/T,27/T]% + 2rk). This region shrinks to the lattice
21Z? for growing T, while the integral on the right is finite, when the in-
tegration is performed over the whole space. Therefore, by the Lebesgue
dominated convergence theorem, both sides of (5.8) tend to zero. In partic-
ular, Pp(0) — P(0) as T — oo. Thus, in the limit (5.7) together with (5.6)
yield the desired equality P(0) = P(0). Proposition 5.1 is proved.

6. Poisson formula for convoluted densities. Let us restate once
more Propositions 5.1, 5.2, assuming that f is the characteristic function of
a random vector X in RY,

Proposition 6.1. Let E|X| < oo, and assume that f is integrable and

satisfies
/(2]
dt < oo, 6.1
e (01

where |[t|| denotes the distance from t to the lattice 2nZ®*. Then X has
a bounded continuous density p, and we have the equality (5.1), in which the
second series is absolutely convergent.
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Here, the moment assumption on X ensures that f has a continuous deriva-
tive f’.

Proposition 6.2. Let f be integrable and nonnegative, and assume that
the density p of X is locally Lipschitz and satisfies

/ p'()| dx < oo, (6.2)
R

a )4t

where ||z|| denotes the distance from x to the lattice Z?. Then we have the
equality (5.1), in which the sums of both series are finite.

By the integrability of f, the random vector X has a bounded continuous
density p given by the inverse Fourier formula. It implies in particular that p
has a bounded continuous derivative p" as soon as [ga [t||f'(t)]dt < co. The
latter condition is however not necessary.

Recall that in dimension d = 1, the assumptions in Proposition 6.2 may
be weakened. It is sufficient to require that X have a continuous density of
bounded total variation (removing any hypotheses on f). This requirement
may be related to the properties of the characteristic function. For example,
it is sufficient to have (cf., e.g., [3, Proposition 5.2|) that

| 20sOP 41507 de < oc.

In case d > 2, the assumptions (6.1) and (6.2) are respectively fulfilled
under decay bounds

JHOIES

(L [tal) -+ (L + [tal)) Lt fag]) - - (1 Jaal )™

holding for all t = (t1,...,t5) € R% and z = (z1,...,24) € R? with some
constants o > 1 and ¢ > 0. These bounds may be strengthened to

JHOIES

P'(z)| < «

C
(1+[e])e

C

P/ ()] < A+ [z

The latter is fulfilled for all functions on R? from the Schwarz space.

Now turn to the density description of the condition f(7k) = 0 forall k # 0
appearing in Theorems 1.1, 1.2 and Theorems 2.1, 3.1. It may equivalently
be stated as the property

S Ifrk)P =1. (6.3)
keZd

Note that v(t) = |f(¢/2)]? is nonnegative and represents the characteristic
function of the random vector Y = (X — X’)/2, where X’ is an independent
copy of X. If X has density p, the density of Y is given by

q(z) =2¢ /R P2z +y)p(y) dy.
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Hence, under the corresponding regularity assumptions, the Poisson for-
mula (5.1) for the couple (g, v) becomes

SRR = Y gk =20 Y /R p(2k + ap(a) d,

keZd keZd keZd

which is equivalent to (6.3), if and only if

Z /Rd p(2k + z)p(z) dz = 274, (6.4)

keZd

Let us precise the regularity assumptions. Since [v'(t)| < 2|f(¢)]|f'(¢)],
the condition (6.1) is fulfilled as long as

fOLrOl,
/Rd o di < . (6.5)

where ||t| denotes the distance from ¢ to the lattice 2rZ?. Hence, from
Proposition 6.1 we obtain the following corollary.

Corollary 6.1. Let E|X| < oo, and assume that f is square integrable
and satisfies the condition (6.5). Then f(mk) =0 for all k € Z¢, k # 0, if
and only if the equality (6.4) holds.

The assumption that f € L? implies that X has a square integrable den-
sity p, in which case the density ¢ is continuous. Note also that the con-
dition (6.5) is exactly the assumption (2.3) from Theorem 2.1. Hence, un-
der (6.5), the property (6.4) is equivalent to the local limit theorem (2.1),
that is, to the property

lpn — ¢ll2 =0 as n — oo.

One may also develop an application of Proposition 6.2 to the density ¢
(in place of p). Assuming that the density p has a continuous derivative, we
have that ¢ has the derivative

¢ (z) =2 /R P e+ y)p(y) dy.

To weaken the assumptions, consider the one-dimensional case. Then, the
only requirement we need to meet is that g is continuous and has a bounded
total variation on the real line. The continuity is met as long as p € L2,
while ||q||Tv < 2||p||Tv. Hence, we arrive at the following corollary.
Corollary 6.2. Assume that the random variable X has a density p with
bounded total variation. Then f(wk) =0 for allk € Z, k # 0, if and only if

Z /OO p(2k + x)p(z) de = % (6.6)

keZ” —
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7. Asymptotic behavior of densities without condition (1.2). Now
return to the setting of Theorem 1.2, thus restricting ourselves to dimension
d = 1. Without the condition (1.2), the densities p,(x) of the normalized
sums Z, have an oscillating character at all points x # 0. Here we describe
a typical situation, assuming that the density p of the random variable X is
sufficiently regular.

Theorem 7.1. Assume that X has a continuous density p of bounded
total variation, with finite second moment. If the characteristic function f =
Ee™X and its derivatives f' and f" are integrable, then Z, have uniformly
bounded densities p, satisfying uniformly over all x

pala) = An(w)pta) +0( 1), (7.1)

where

Ap(z) = e RV p(ak) =2 " p(2m + zv/n + n).

keZ meZ

Thus, the behavior of p,, might be different for n even and n odd. The
point £ = 0 turns out to be special, since then the oscillatory character
disappears along even and odd values of n, respectively.

Corollary 7.1. Under the same assumptions,

2
lim po,(0) = — 2m),
iy pn(0) = 2= 3 atem)
. 2
A pon0) = 752 ) plamo+ 1)

Proof of Theorem 7.1. Since f is integrable, the random variables Z,, have
bounded continuous densities described by the inverse Fourier formula

Pn () L /OO e_it”"fn(t) dt, z € R, (7.2)

2 J_ o
where

o-1(5)ow(5)

are the characteristic functions of Z,. As before, we split the integration
in (7.2) into the intervals Qx/v/n, Qi = [tk — /2, 7k + 7/2], k € Z, to get
the representation

pulz) = %\/ﬁ S (1)t VAL (), (7.3)
k
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with
/2 ] w/2 )
Ing(x) = / eIV f (k4 t) cos™(t) dt = f(rrk)/ e~V cos™(t) di
—7/2 —7/2
/2 )
+ / eV (F(nk 4 £) — f(mk)) cos™(£) dt. (7.4)
—7/2

Using 60, 0; to denote quantities bounded by an absolute constant, from
the asymptotic expression

0
cos™(1) = 2 e ] < T (7.5)

we obtain that

w/2 ) w/2 ) ) 91
/ e~ itEVn cos"(t) dt = / e oV ot /2 gy 4 7L
n

—7/2 —7/2
_ /oo 67itx\/ﬁ efnt2/2 dt + % _ N 277-673:2/2 + @

vn n’
(7.6)

This gives an asymptotic representation for the first integral in (7.4).

The second integral has a smaller order. Put €, = v2Inn/\/n (assuming
that e, < 7/2). We use 0 < cos(t) < e /2, |t| < /2, so that cos™(t) < 1/n
for e, < |t| < m/2. This implies that

/2 /2 t
/ (k4 1) — f(h)] cos” ()dtg/ [/ (ks + 5)| cos™ (£) ds| dt
En En 0

w/2 t ) 92 w/2
< / {/ |f/ (ke + s)|e /2 ds] dt < n/ |f'(mk + s)| ds.
€n 0 0

With a similar bound for the interval —7/2 < t < —&,,, we get
9 w/2
/ |f(mk +1t) — f(mk)| cos™ ()dté/ |f/(mk + s)|ds. (7.7)
en<|t|<m/2 nJ_x/2

For the interval |[t| < &,, we use the Taylor integral formula up to the
quadratic form,

t
f(rnk+1t) — f(rk) = f'(nk)t + / (t —s)f"(rk + s) ds.
0
By (7.5), the linear term makes a contribution

/En eV cos™ (t) dt = /En e~ itmVny et /2 gy bs

—En —€n n

L[ gy 0
- n n
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Hence, for the integral
Jnl@) = /| Y ) = k) o (1)
<én
we get
| Tk (2)] < —|f (k)| + ‘/ —mf/ (t—s)f"(mk + s) cos™(t) dt ds
—en
'(7k) y+/ / (It = |sDIf" (7k + s)| dt ds

<i\ <wk>|+/< — |52 k- 5) ds

w/2
< %\f’(wk)] + 2111”/ | (mk + 5)| ds.
n n —7/2

Together with (7.6), (7.7), we thus arrive at

Vi a(o) = (VEm 12 4 L)) £

~1 w/2
L g.lon

— "(mk + s "(wk + s)|) ds
N 77r/2(|f( + 8)| + | f7(7k + s)])

with bounded quantities 6; and 5]

To perform summation over all k& € Z, first note that ), |f(7k)| < oo, as
was emphasized in Proposition 6.1. Similarly, >, |f'(7k)| < oo, since f” is
integrable. Returning to (7.3), we thus obtain that

pata) = (@) +0( =) S e o

eljﬁ (17()] + 1£"()]) ds,

that is, uniformly over all x

pu(®) = An(@)pla) + OQ;’) Anle) = 3 IRV f(p).
kcZ

Since the factors A,, are uniformly bounded, so are p,. We now apply
Proposition 6.1 to the random variables

1
Enzi(X—x n—mn),
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whose characteristic functions and densities are given by

) ) t
Un(t) = Eeitén — efzt(x\/ﬁJrn)/?f <2> 7 an(y) = 2p(2y + xy/n + n).
With this choice we get
x) = Zvn(%rk) = Z qn(m) =2 Z p(2m + zv/n + n).
keZ meZ meZ

Theorem 7.1 is proved.

This observation implies that we cannot hope to obtain the convergence
of p, to ¢ even in L'. For example, consider the two-sided exponential
distribution with density p(z) = e~1*l /2. In this case, by Corollary 7.1,

1 e?+1
lim py,(0) —2m| — ct

1
n—00 B \/27‘('%: N V2T e2 -1
1 1 2
. - —|2m-+1| -
Jlim py,11(0) Nirs ; e Nk ©(0).

> ¢(0),

The same expressions are obtained for the values © = 2k/y/n. The func-
tion A, (z) has period 2/y/n. Let zv/n =2k + h, k € Z, 0 < h < 2. Then

along even indexes n,

e -|-62 h
_2 2 .
Z m+h) = 21
meZ

The latter expression is bounded away from zero for all A small enough.
Hence, according to (7.1), we have [ |pn(z) — ¢(x)|dz > ¢ > 0.
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