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Abstract—In this paper, we propose a new dynamic reliability man-
agement (DRM) approach with deep reinforcement learning (DRL) for
multi-core processors considering device reliability effects (hard error)
and transient error of signal (soft error). The proposed method is based
on a recently proposed physics-based three-phase electromigration model
and an exponential soft error model that considers dynamic voltage and
frequency scaling (DVFS) effects. Our work has been inspired by the
recent advancements in DRL for various control and game applications.
Compared with the traditional Q-learning based method, DRL has better
scalability, lower memory and lower computational complexity. A large
class of multi-threaded applications are used as the benchmark to validate
and compare the proposed dynamic reliability management methods.
Experimental results show that the proposed method can significantly
reduces memory footprint and computational time compared to the
traditional Q-learning based method. Furthermore, we show that the
DRL-based DRM method can save 53.50% more energy than the Q-
learning based method and 61.29% more than the simple DVFS based
method.

I. INTRODUCTION

With the development of nanometer VLSI design and technology
scaling, more cores have been integrated on the chip. However, chip
power density is increasing in technology nodes since transistor and
voltage scaling are no longer linear. In this case, only a portion of
the cores can be powered on the chip to meet power and temperature
limits. Power budget and temperature constraints do not allow all
cores to work together. In addition, reliability is also one of the
dominant issues need to consider for multi-core systems.

For the reliability of VLSI chips, it mainly consists of aging-related
permanent hard errors and transient soft errors. Electromigration
(EM) is one of the critical aging-related reliability issues (hard errors)
[1]. Because of higher voltage and power consumption, interconnects
are more vulnerable to hard errors. On the other hand, soft or transient
reliability has quite different impact on VLSI chips compared to the
aging-related hard errors. This is especially true for chips operating at
very low voltage or even near threshold voltage regions. As a result,
we need to consider both reliability effects at the same time during
the system-level reliability management to find the best trade-offs.
Model based approaches are not suitable for this kind of optimization
problems because the remaining lifetime and software profiles are
changing transiently. So dynamic management methods are required
for hard error and softerror optimization since real-time reactions are
required.

Reliability management methods for multi-core scaling have been
studied in [2], [3]. The work in [2] considers negative-bias tem-
perature instability (NBTI) and time-dependent dielectric breakdown
(TDDB), while [3] mainly focuses on mitigating the thermal cycling
induced reliability at the operating system level. All of those methods
did not have impacts of soft-errors. Recently, dynamic reliability
management (DRM) for multi-core system has been proposed [4],
[5]. In this work, hard errors and soft errors based on EM have
been considered. Due to the conflict of hard error and soft error re-
quirements, the author employs Q-learning as a management method
to obtain an optimized working state. However, a large Q-table is
required in the traditional Q-learning method, which takes up a large
amount of memory space and has a long time to access Q-table, so
it is not suitable for run time operations if dimension of state-action
space is high.
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Deep reinforcement learning (DRL) using neural network instead
of large Q-table has recently been proposed. It is suitable to handle
problems in high-dimensional state-action spaces like game playing
Atari [6] and Alpha Go [7]. It is also employed to solve embedded
system problems such as cloud computing resource allocation, resi-
dential smart grid task scheduling, and hybrid electric vehicles [8]. As
can be seen from these works, deep reinforcement learning achieves
faster run time with better memory utilization and is more suitable
to solve online optimization problems with high dimension of state-
action space.

In this paper, we propose a new deep reinforcement learning
dynamic reliability management framework considering both hard
errors and soft errors for multi-core processors. We formulate the
DRM problem as online minimizing the energy consumption subject
to the reliability including hard and soft errors, power, performance
and thermal constraints. The hard error model is based on a recently
proposed physics-based EM model. The deep reinforcement learning
based control method is applied to solve the aforementioned online
optimization problem. Experimental results show that compared with
the traditional Q-learning DRM method, the proposed method signif-
icantly reduces memory footprint and computational time compared
to the traditional Q-learning DRM method. Additionally, we show
that the DRL-based method can save 53.50% more energy than the
Q-learning based method and 61.29% more than the simple dynamic
voltage and frequency scaling (DVFS) based method.

The rest of the paper is organized as follows. Section II reviews
hard and soft error models employed in this work. Section III reviews
the deep reinforcement learning method and analyzes the advantage
of that model over traditional Q-learning method and presents our
proposed optimization framework for multi-core system. Section IV
provides numerical experimental results on the simulation framework.
Section V concludes the paper.
II. REVIEW OF THE EM AND SOFT ERROR RELIABILITY MODELS

Reliability is one of the most important design considerations
in modern microprocessors with aggressive design strategies and
decreasing feature size. In more advanced nanoscale technologies,
it is a major challenge and limiting factor for VLSI design as
temperature, current, and voltage increase. Nowadays, with larger
and more complex multi-core systems, both hard and soft errors may
occur and damage the system. Hard errors such as EM effect are
long term issues and soft errors are short term issues. Even though
they have different reliability effects, both of them are very critical
issues in current VLSI designs. However, they have opposite failure
conditions. High voltages and power cause hard errors while low
voltages even near threshold regions cause soft errors. As can be seen
from Fig. 1, when the power is high, which means a high operation
voltage, the soft error rate (SER) is small but EM lifetime is also
short. In the other hand, when power is low, the SER is high but EM
lifetime is long.

In order to get reliability information of the multi-core system,
system-level EM and soft errors will be discussed in the following
subsections.

A. New physics-based three-phase EM modeling and analysis

EM is a physical phenomenon of the migration of metal atoms
along a direction of applied electrical field. Atoms (either lattice
atoms or defects/impurities) migrate toward the anode end of metal
wire along the trajectory of conducting electrons, leading to the
formation of voids and consequently causing resistance to change.
However, if the void is smaller than the critical void size of the
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wire, no change in resistance will be observed. In order to model
this phenomenon, a recently proposed three-phase EM model [1] has
been employed in this work.
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Fig. 1. Comparison between EM-induced lifetime and
system-level soft error rate

In this model,
the EM wear-out
process consists
of three phases:
(a) nucleation
phase; (b)
incubation phase;
(c) growth phase.
During the three
phases, the stress
in the confined
copper wire is
modeled by the
stress diffusion
equations with
blocked material flux boundaries at the via terminals. In the
nucleation phase, stress starts to build-up over time. When it exceeds
the critical stress, a void is formed and the wire enters the incubation
phase. When the void is larger than the critical size, the wire
resistance starts to change and the growth phase begins. The growth
phase persists until the void reaches its saturation volume. The
new three-phase EM model gives a more accurate time-to-failure
estimation and can be applied to more general multi-segment wires
since it is based on the stress diffusion physics in the confined
copper wires.

In the system-level EM analysis, we assume that each core can
have its own voltage (voltage island) and frequency settings, and
DVFS can be done locally for each core. For the microarchitecture
of EM failures we focus on power grid since it is the most vulnerable
part to EM failure. A simple mesh-structured power grid is generated
for each core, and each of them has its power island with its power
regulator. We assume that power grids for each core are the same
and are less coupled as far as EM effects are concerned. When the
voltage drop caused by resistance increase of the power grid reaches
a certain level, the core is considered to be fail.

In order to consider lifetime impacts of different tasks, a system-
level model is proposed in [9]:

MTTFEM =
1

(
∑n

m=1
(∆tm

1

MTTFm
))/T

(1)

where MTTFm is the actual MTTF (mean time to failure) under
the m-th task for ∆tm period, assuming the chip works through n
different power and frequency settings and T =

∑n

m=1
∆tm.

B. Soft error reliability model considering DVFS impacts

Soft errors, or single event upset, are defined as transient faults
inside the logic or memory on a chip, and result in an incorrect
system output. Soft errors may be caused by cosmic radiation, alpha
particle decay, and thermal neutrons. SER is the rate at which a chip
or system encounters a soft error and typically can be expressed as
the number of failures at the given time. While there is still a lack
of consensus on the exact SER for a particular chip and system, it
is obvious that the SER per chip is practically increasing due to the
increasing number of components or cores on the chip. Recently a
new exponential soft error model has been introduced to explain those
effects [10].

For our problem, we employ an existing exponential model con-
sidering DVFS effects on the SER, which assumes that the radiation
induced failure follows a Poisson distribution. Average SER can be
expressed in terms of operating frequency f , voltage V dd and SER0

which is the average failure rate at the maximum frequency fmax and
voltage Vmax, (so, fmin < f < fmax , Vmin < V < Vmax) in (2).

SER(f, Vdd) = SER0e
d(fmax−f)

(fmax−fmin) (2)

where d is an architecture dependent constant, which is the sensitivity
of failure rate with DVFS. We also employ model of relationship be-
tween operating frequency and supply voltage to further simplify (2).

DVFS-aware SER equation can then be derived as the function of
only supply voltage Vdd [10]:

SER(Vdd) = SER0e

d(fmax−βVdd−2Vth+
V 2
th

Vdd
)

fmax−fmin

(3)

III. DRL FRAMEWORK FOR DARK SILICON OPTIMIZATION

In this section, a multi-core processor framework based on the DRL
method will be introduced. The background of the DRL method will
be reviewed and the DRL-based framework applied to this work will
be discussed in detail.

A. Background of deep reinforcement learning

Reinforcement learning is a learning method whose goal is to map
situations to actions so as to maximize the rewards or minimize
the penalties [11]. It can handle problems with stochastic transition
without any adaptation and is a method able to converge close to
the optimal solution of a state-action function (s, a) for an arbitrary
policy. After each action, a Q-value (Q(s, a)) will be calculated with
reward/penalty function. The Q-value depends only on the current
state and action takes, and stores in a large Q-table to determine the
next optimal state. The dimension of the Q-table is (|A||S|) where
A is the number of actions and S is the number of states since each
(s, a) pair has a corresponding Q-value. The iterative steps to get the
final result will be in O(|A||S|2). When the (s, a) space is large, the
Q-learning algorithm consumes a lot of memory and requires many
steps to converge to the optimized state.

In order to resolve these problems, the DRL is usually used in
order to handle large state action space [8]. A Q-function in Eq. (4)
is used to estimate the Q-value of the (s, a) pair.

Q(s, a) ≈ f(s, a) (4)

As can be seen in Eq. (4), only when the result of the Q-function
is accurate, Q-learning process can find the optimal choice. Neural
network is employed so as to achieve the accurate Q-function and it
can lead to an accurate Q-value. The input parameters for training
are (st, at, rt, st+1) and the output corresponds Q(s, a). Since the
training goal is to make the estimated Q-value closer to the real Q-
value, so the loss function can be written as:

L = E[(Q(s, a)−Q∗(s, a))]. (5)

Here Q(s, a) is the real Q-value and Q∗(s, a) is the estimated Q-
value.

B. Deep reinforcement learning based optimization framework

In this subsection, we develop new dynamic reliability management
for multi-core processors based on deep reinforcement learning. The
purpose is minimizing energy considering a hard and soft error
induced lifetime by controlling the p-state of cores. p-state is the
performance state subject to power budget, performance deadline,
and temperature constraints. The dynamic reliability management
method including the DRL is implemented in software which is used
to control the hardware performance. Learning platform formulation
and and implementation details will be discussed next.

1) DRL method framework based formulation and solution: Based
on the DRL algorithm proposed in [6], a framework is developed in
Fig. 2. In the first step, a learning agent is put in a random initial
state. In the proposed framework, the state is the set of cores at
different p-states. Since each core has its own unique power, EM and
SER, p-state and its associated penalty function. The agent will be
transferred from state to state and each action will provide a penalty
for the agent. The learning process will stop when the minimized total
penalty is achieved. After initializing the learning agent, transition
profiles (st, at, rt, st+1) and its corresponding Q-value Q(st, at),
these data are restored in an experience memory D and used for
neural network training (NN ). This training is done offline which
means the dataset used to in this step is static.

With the offline trained NN model, we can perform the online
learning process, which means training is performed as the data
comes in. The agent selects the action based on a ε greedy policy,
which is used to control the level of greed [11]. The probability of



Fig. 2. The proposed deep learning framework for reliability management
flow

selecting an action is 1−ε, and the action is to maximize the estimated
Q-value at = argmaxaQ(st, a). Otherwise, a random action is
selected. This random selection is used to avoid sub-optimal decisions
such that the learning agent does not get stuck in the local optimized
point and will perform global optimized results. After performing the
selected action, the agent will take the action and go to the next state.
New transition profiles and their Q-values are observed and stored
in memory D. If the agent does not reach the end of the execution
sequence, a new learning step is performed and a new action will
be selected. Then the loop will continue until it reaches the end of
an execution sequence and then the NN model will be updated.
Experience replay is performed and data are randomly picked from
memory D to update NN if the agent reach the end of an execution.
By using the experience replay, the behavior distribution is averaged
over previous states so that the learning result can be smoother and
avoid the oscillations in the output.

2) Implementation of multi-core system evaluation platform: In
order to evaluate the proposed DRL-based dynamic reliability, an
evaluation platform is implemented as shown in Fig. 3. In this work,

Fig. 3. The evaluation platform for multi-core system based on DRL method

p-state of cores are defined by DVFS. In that state, a microarchitecture
simulator is used to obtain the performance and cycles per instruction
(CPI), which are passed to power simulator. The power simulator
provides dynamic and static power estimation with performance and
CPI. A thermal simulator uses all the information from the simulator
described above to estimate thermal traces. Power and thermal trace
are passed to reliability models discussed in Section II to calculate
the EM lifetime and SER.

After obtaining all the results, they are passed to the DRL-based
framework, as shown in Fig. 2. Energy is the primary goal of
optimization, while other factors such as temperature, performance,
EM and SER are served as constraints. With the constrains and
optimization goal, we can define the penalty function. The portion of
the factor greater than its constraint is multiplied by a large penalty
coefficient and all these penalties and energy are used to calculate
the penalty function of each action as shown in Eq. (6).

PT = PTenergy + C ×
∑

PTconstraint (6)

Here PT is the total penalty, PTenergy is the penalty from energy.
C is a large penalty coefficient and PTconstraint is the penalty from
constraints. The system will run at this state for an execution period.
The model then calculates the updated parameters and selects a new
optimal working state.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Experiment Setup

The proposed platform is implemented in Python with the nu-
merical library Numpy. Neural network is trained with tensorflow.
The microarchitectural simulator is Sniper, the power estimator is
McPAT, and the thermal simulator is HotSpot. In this work, SPLASH-
2 benchmark is used for evaluation.

Two performance states (p-state) with the clustered DVFS [12] are
chosen which have been employed to reduce the simulation time with
small solution quality degradation. . Global DVFS method is used
as the baseline to compare the energy optimization. In this work,
the full power mode is (2.0GHz, 1.2V) and the low power mode is
(1.0GHz, 0.9V). In the experiment, 150 states are used and there are
150 actions. The states and actions are decided by realistic processor
running conditions.

B. Memory Usage

In this subsection, the memory efficiency of proposed DRL al-
gorithm will be discussed. In the experiment, N =150 states are
used. As shown in Fig. 4(a), Q-learning requires an N ×N , which
is 150 × 150 size Q-table to store Q-value because the number of
states is equal to the number of states in the framework. The space
complexity is Q(N2). Memory used by the DRL method includes the
memory for NN model and Q-value. Assume there are Ai elements
in each layer. Weight between hidden layers can be calculated as
Ai × Ai+1, where the element in hidden layer i is Ai and the
element in the next hidden layer is Ai+1. Space complexity of this
part is O(1). The space taken by the first hidden layer connected
with input layer is (2×N +1)×A1 and in this case is 2×150+1.
Space complexity of this part is O(N). In the Q-value part, Q-value
estimated by the neural network of (st, a) pair needs to be stored so
as to find the minimum of them. N × 1 space is used to store these
Q-values. The size here is 150 and the space complexity is O(N).
Therefore, as shown in Fig. 4(b), the total space complexity of DRL
method is O(N).

(a) (b)

Fig. 4. (a) Memory used of q-learning (b) Memory used of DRL

It can be seen that the DRL algorithm reduces the space complexity
from Q(N2) to O(N).

C. Energy Consumption

In this subsection, energy consumption of the working state se-
lected by DRL method and Q-learning method will be compared. In
transient runtime applications, the time for state switching is limited.
So the learning process needs to be completed before the deadline.
In the experiment, the time to finish the learning is set to be 0.008s,
which is the limit of the runtime operation. Energy consumption at
the selected state with loose and tight constraint of DRL method,
Q-learning and DVFS will be compared in Fig. 5. Constraints are
selected based on realistic processor running conditions.

Fig. 5(a) shows the results using a loose bound for constraints.
Power budget is 800W , performance constraint is 40.3ms, tempera-
ture constraint is 345K, EM lifetime constraint is more than 3 years



DRL Qlearning DVFS

E
n
er
gy

(J
)

0

5

10

15

(a)

DRL Qlearning DVFS

E
n
er
gy

(J
)

0

5

10

15

20

(b)

Fig. 5. (a) Energy consumption with loose bound (b) Energy consumption
with tight bound

and SER constraint is smaller than 0.6. As we can see, the DRL-based
method is 27.79% more energy efficient than the Q-learning based
method and 42.01% more energy efficient than the DVFS method.
Note that the energy reduction ratio Energyr−ratio between the two
methods is calculated using the following equation:

Energyr−ratio =
EQ−learning − EDRL

EQlearning

(7)

Fig. 5(b) uses a tight bound for constraints. Power budget is
400W , performance constraint is 24.1ms, temperature constraint
is 340K, EM lifetime constraint is more than 5 years and SER
constraint is smaller than 0.4. In this case, the DRL-based method
can reduce energy by 53.50% compared to the Q-learning method
and by 61.29% compared to the DVFS method. From the results
we can see that the DRL method significantly outperforms the Q-
learning method and DVFS method in terms of energy reduction.
In addition, the energy saving of the DRL method is even more
significant compared to the two methods with the tight constraints as
tight constraints can help the DRL method converge faster.

D. Steps to converge

In this subsection, we compare the convergence steps of the DRL
method and the Q-learning method. In the comparison, no deadline is
set so both methods can converge. The steps for the convergence of
the two methods are shown in Fig. 6. We can see that the DRL
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Fig. 6. (a) Time to converge of DRL method (b) Time to converge of Q-
learning method

method in Fig. 6(a) reaches a steady state after several hundred
iterations. This means that it does not take very long time to reach the
selected state. The jump after steady state is caused by random action
selection, whose probability is 1 − ε, mentioned in Section III-B1.
That can help the learning agent find the global optimization action
instead of local optimization one. So the spikes on top do not mean
the optimization is not finished. Final state with highest possibility
to appear is selected. However, the Q-learning based method keeps
oscillating until approximately 2700 iterations as shown in Fig. 6(b),
which explains why the DRL method has better energy savings.
With limited learning time, Q-learning method cannot converge to
optimized state while DRL method can reach the optimized state
quickly.

V. CONCLUSION

In this paper, we propose a new dynamic optimization approach
with deep reinforcement learning for multi-core processors consid-
ering both hard and soft errors. The reliability model is based on a
recently proposed physics-based three-phase electromigration model
and an exponential soft error model. Proposed DRL model which
has better scalability and has lower memory complexity and compu-
tational complexity comparing with traditional reinforcement learning
is applied so as to obtain cost-effective solutions for online optimiza-
tion. This dynamic reliability management method is validated and

compared using a large class of multi-threaded applications. Experi-
mental results on a 64-core processor show that the proposed DRL
method based framework significantly reduce memory consumed and
computational time in comparison to traditional Q-learning based
method. DRL-based method can lead to energy reduction of 53.50%
better than the Q-learning based method and 61.29% better than the
simple DVFS based method. Furthermore, the DRL-based method
also shows much smaller memory print and fewer steps to converge
than the Q-learning based method.
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