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Abstract

Stochastic gradient descent (SGD) has been widely used in machine learning due
to its computational efficiency and favorable generalization properties. Recently, it
has been empirically demonstrated that the gradient noise in several deep learning
settings admits a non-Gaussian, heavy-tailed behavior. This suggests that the
gradient noise can be modeled by using α-stable distributions, a family of heavy-
tailed distributions that appear in the generalized central limit theorem. In this
context, SGD can be viewed as a discretization of a stochastic differential equation
(SDE) driven by a Lévy motion, and the metastability results for this SDE can then
be used for illuminating the behavior of SGD, especially in terms of ‘preferring
wide minima’. While this approach brings a new perspective for analyzing SGD,
it is limited in the sense that, due to the time discretization, SGD might admit
a significantly different behavior than its continuous-time limit. Intuitively, the
behaviors of these two systems are expected to be similar to each other only when
the discretization step is sufficiently small; however, to the best of our knowledge,
there is no theoretical understanding on how small the step-size should be chosen
in order to guarantee that the discretized system inherits the properties of the
continuous-time system. In this study, we provide formal theoretical analysis
where we derive explicit conditions for the step-size such that the metastability
behavior of the discrete-time system is similar to its continuous-time limit. We
show that the behaviors of the two systems are indeed similar for small step-sizes
and we identify how the error depends on the algorithm and problem parameters.
We illustrate our results with simulations on a synthetic model and neural networks.

1 Introduction

Stochastic gradient descent (SGD) is one of the most popular algorithms in machine learning due
to its scalability to large dimensional problems as well as favorable generalization properties. SGD
algorithms are applicable to a broad set of convex and non-convex optimization problems arising
in machine learning [1, 2], including deep learning where they have been particularly successful
[3, 4, 5]. In deep learning, many key tasks can be formulated as the following non-convex optimization
problem:

minw∈Rd f(w) =
1

n

n∑
i=1

f (i)(w), (1)

where w ∈ Rd contains the weights for the deep network to estimate, f (i) : Rd 7→ R is the typically
non-convex loss function corresponding to the i-th data point, and n is the number of data points
[6, 7, 5]. SGD iterations consist of

W k+1 = W k − η∇f̃k(W k), k ≥ 0, (2)
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Figure 1: Illustration of SαS (left), Lαt (middle), wide-narrow minima (right).

where η is the step-size, k denotes the iterations, W 0 ∈ Rd is the initial point, ∇f̃k(W k) is an
unbiased estimator of the actual gradient ∇f(W k), estimated from a subset of the component
functions {fi}ni=1. In particular, the gradients of the objective are estimated as averages of the form

∇f̃k(W k) , ∇f̃Ωk(W k) ,
1

b

∑
i∈Ωk

∇f (i)(W k), (3)

where Ωk ⊂ {1, . . . , n} is a random subset that is drawn with or without replacement at iteration k,
and b = |Ωk| denotes the number of elements in Ωk [1].

The popularity and success of SGD in practice have motivated researchers to investigate and analyze
the reasons behind; a topic which has been an active research area [6, 4]. One well-known hypothesis
[8] that has gained recent popularity (see e.g. [4, 9]) is that among all the local minima lying on the
non-convex energy landscape defined by the loss function (1), local minima that lie on wider valleys
generalize better compared to sharp valleys, and that SGD is able to converge to the “right local
minimum" that generalizes better. This is visualized in Figure 1(right), where the local minimum
on the right lies on a wider valley with width w2 compared to the local minimum on the left with
width w1 lying in a sharp valley of depth h. Interpreting this hypothesis and the structure of the local
minima found by SGD clearly requires a deeper understanding of the statistical properties of the
gradient noise Zk , ∇f̃(W k)−∇f(W k) and its implications on the dynamics of SGD. A number
of papers in the literature argue that the noise has Gaussian structure [10, 7, 11, 12, 13, 3]. Under the
Gaussian noise assumption, the following continuous-time limit of SGD has been considered in the
literature to analyze the behavior of SGD:

dW (t) = −∇f(W (t))dt+
√
ησdB(t) (4)

where B(t) is the standard Brownian motion and σ is the noise variance and η is the step-size. The
Gaussianity of the gradient noise implicitly assumes that the gradient noise has a finite variance with
light tails. In a recent study, [6] empirically illustrated that in various deep learning settings, the
gradient noise admits a heavy-tail behavior, which suggests that the Gaussian-based approximation is
not always appropriate, and furthermore, the heavy-tailed noise could be modeled by a symmetric
α-stable distribution (SαS(σ)). Here, α ∈ (0, 2] is called the tail-index and characterizes the heavy-
tailedness of the distribution and σ is a scale parameter that will be formally defined in Section 2. This
α-stable model generalizes the Gaussian model in the sense that α = 2 reduces to the Gaussian model,
whereas smaller values of α quantify the heavy-tailedness of the gradient noise (see Figure 1(left)).
Under this noise model, the resulting continuous-time limit of SGD becomes [6]:

dW (t) = −∇f(W (t))dt+ η
α−1
α σdLα(t), (5)

where Lα(t) is the d-dimensional α-stable Lévy motion with independent components (which will
be formally defined in Section 2). This process has also been investigated for Bayesian posterior
sampling [14] and global non-convex optimization [15].

The sample paths of the Lévy-driven SDE (5) have a fundamentally different behavior than the
ones of Brownian motion driven dynamics (4). This difference is mainly originated by the fact that,
unlike the Brownian motion which has almost surely continuous sample paths, the Lévy motion can
have discontinuities, which are also called ‘jumps’ [16] (cf. Figure 1(middle)). This fundamental
difference becomes more prominent in the metastability properties of the SDE (5): consider a basin in
which a particle is initialized and undergoes fluctuations continually. The particle persists in the basin
for a long time before exiting it by the influence of fluctuations. This relative instability phenomenon
is described by the term ‘metastability’.

More formally, the metastability studies consider the case where W (0) is initialized in a basin and
analyze the minimum time t such that W (t) exits that basin. It has been shown that when α < 2 (i.e.
the noise has a heavy-tailed component), this so called first exit time only depends on the width of the
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basin and the value of α, and it does not depend on the height of the basin [17, 18, 19]. The empirical
results in [6] showed that, in various deep learning settings the estimated tail index α is significantly
smaller than 2, suggesting that the metastability results can be used as a proxy for understanding the
dynamics of SGD in discrete time, especially to shed more light on the hypothesis that SGD prefers
wide minima.

While this approach brings a new perspective for analyzing SGD, approximating SGD as a continuous-
time approach might not be accurate for any step-size η, and some theoretical concerns have already
been raised for the validity of such approximations [20]. Intuitively, one can expect that the metastable
behavior of SGD would be similar to the behavior of its continuous-time limit only when the
discretization step-size is small enough. Even though some theoretical results have been recently
established for the discretizations of SDEs driven by Brownian motion [21], it is not clear that how
the discretized Lévy SDEs behave in terms of metastability.

In this study, we provide formal theoretical analyses where we derive explicit conditions for the
step-size such that the metastability behavior of the discrete-time system (7) is guaranteed to be close
to its continuous-time limit (6). More precisely, we consider a stochastic differential equation with
both a Brownian term and a Lévy term, and its Euler discretization as follows [22]:

dW (t) = −∇f(W (t−))dt+ εσdB(t) + εdLα(t) (6)

W k+1 = W k − η∇f(W k) + εση1/2ξk + εη1/αζk, (7)

with independent and identically distributed (i.i.d.) variables ξk ∼ N (0, I) where I is the identity
matrix, the components of ζk are i.i.d with SαS(1) distribution, and ε is the amplitude of the noise.
This dynamics includes (4) and (5) as special cases. Here, we choose σ as a scalar for convenience;
however, our analyses can be extended to the case where σ is a function of W (t).

Understanding the metastability behavior of SGD modeled by these dynamics requires understanding
how long it takes for the continuous-time process W (t) given by (6) and its discretization W k (7) to
exit a neighborhood of a local minimum w̄, if it is started in that neighborhood. For this purpose, for
any given local minimum w̄ of f and a > 0, we define the following set

A ,
{

(w1, . . . , wK) ∈ Rd × . . .× Rd : max
k≤K
‖wk − w̄‖ ≤ a

}
, (8)

which is the set of K points in Rd, each at a distance of at most a from the local minimum w̄. We
formally define the first exit times, respectively for W (t) and W k as follows:

τξ,a(ε) , inf{t ≥ 0 : ‖W (t)− w̄‖ 6∈ [0, a+ ξ]}, (9)

τ̄ξ,a(ε) , inf{k ∈ N : ‖W k − w̄‖ 6∈ [0, a+ ξ]}, (10)

where the processes are initialized at W (0) ≡W 0 such that ‖W (0)− w̄‖ ∈ [0, a]. Our main result
(Theorem 2) shows that with sufficiently small discretization step η, the probability of exiting a given
neighborhood of the local optimum at a fixed time t of the discretization process approximates that
of the continuous process. This result also provides an explicit condition for the step-size, which
explains certain impacts of the other parameters of the problem, such as dimension d, noise amplitude
ε, variance of Gaussian noise σ, towards the similarity of the discretization and continuous processes.
We validate our theory on a synthetic model and neural networks.

Notations. For z > 0, the gamma function is defined as Γ(z) ,
∫∞

0
xz−1e−xdx. For any Borel

probability measures µ and ν with domain Ω, the total variation (TV) distance is defined as follows:
‖µ− ν‖TV , 2 supA∈B(Ω) |µ(A)− ν(A)|, where B(Ω) denotes the Borel subsets of Ω.

2 Technical Background

Symmetric α-stable distributions. The SαS distribution is a generalization of a centered Gaussian
distribution where α ∈ (0, 2] is called the tail index, a parameter that determines the amount of
heavy-tailedness. We say that X ∼ SαS(σ), if its characteristic function E[eiωX ] = e−|σ|ω

α

where
σ ∈ (0,∞) is called the scale parameter. In the special case, when α = 2, SαS(σ) reduces to
the normal distribution N (0, 2σ2). A crucial property of the α-stable distributions is that, when
X ∼ SαS(σ) with α < 2, the moment E[|X|p] is finite if and only if p < α, which implies that
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SαS has infinite variance as soon as α < 2. While the probability density function does not have
closed form analytical expression except for a few special cases of SαS (e.g. α = 2: Gaussian,
α = 1: Cauchy), it is computationally easy to draw random samples from it by using the method
proposed in [23].

Lévy processes and SDEs driven by Lévy motions. The standard α-stable Lévy motion on the
real line is the unique process satisfying the following properties [22]:

(i) For any 0 ≤ t1 < t2 < t2 < · · · < tN , its increments Lαti+1
− Lαti are independent for

i = 1, 2, . . . , N and Lα0 = 0 almost surely.

(ii) Lαt−s and Lαt − Lαs have the same distribution SαS
(
(t− s)1/α

)
for any t > s.

(iii) Lαt is continuous in probability: ∀δ > 0 and s ≥ 0, P(|Lαt − Lαs | > δ)→ 0 as t→ s.

When α = 2, Lαt reduces to a scaled version of the standard Brownian motion
√

2Bt. Since Lαt for
α < 2 is only continuous in probability, it can incur a countable number of discontinuities at random
times, which makes is fundamentally different from the Brownian motion that has almost surely
continuous paths.

The d-dimensional Lévy motion with independent components is a stochastic process on Rd where
each coordinate corresponds to an independent scalar Lévy motion. Stochastic processes based on
Lévy motion such as (5) and their mathematical properties have also been studied in the literature,
we refer the reader to [24, 16] for details.

First Exit Times of Continuous-Time Lévy Stable SDEs. Due to the discontinuities of the Lévy-
driven SDEs, their metastability behaviors also differ significantly from their Brownian counterparts.
In this section, we will briefly mention important theoretical results about the SDE given in (6).

For simplicity, let us consider the SDE (6) in dimension one, i.e. d = 1. In a relatively recent
study [17], the authors considered this SDE, where the potential function f is required to have a
non-degenerate global minimum at the origin, and they proved the following theorem.
Theorem 1 ([17]). Consider the SDE (6) in dimension d = 1 and assume that it has a unique strong
solution. Assume further that the objective f has a global minimum at zero, satisfying the conditions
f ′(x)x ≥ 0, f(0) = 0, f ′(x) = 0 if and only if x = 0, and f ′′(0) = M > 0. Then, there exist
positive constants ε0, γ, δ, and C > 0 such that for 0 < ε ≤ ε0, the following holds:

e−uε
α θ
α (1+Cεδ)(1− Cεδ) ≤ P(τ0,a(ε) > u) ≤ e−uε

α θ
α (1−Cεδ)(1 + Cεδ) (11)

for all W (0) initialized uniformly in [−a+ εγ , a− εγ ] and u ≥ 0, where θ = 2
aα . Consequently,

E[τ0,a(ε)] =
α

2

aα

εα
(1 +O(εδ)), for all W(0) initialized uniformly in [−a+ εγ , a− εγ ]. (12)

This result indicates that the first exit time of W (t) needs only polynomial time with respect to the
width of the basin and it does not depend on the depth of the basin, whereas Brownian systems need
exponential time in the height of the basin in order to exit from the basin [25, 18]. This difference
is mainly due to the discontinuities of the Lévy motion, which enables it to ‘jump out’ of the basin,
whereas the Brownian SDEs need to ‘climb’ the basin due to their continuity. Consequently, given that
the gradient noise exhibits similar heavy-tailed behavior to an α-stable distributed random variable,
this result can be considered as a proxy to understand the wide-minima behavior of SGD.

We note that this result has already been extended to Rd in [19]. Extension to state dependent noise
has also been obtained in [26]. We also note that the metastability phenomenon is closely related to
the spectral gap of the forward operator corresponding to the SDE dynamics (see e.g. [25]) and it is
known that this quantity scales like O(εα) for ε small which determines the dependency to ε in the
first term of the exit time (12) due to Kramer’s Law [27, 28]. Burghoff and Pavlyukevich [28] showed
that similar scaling in ε for the spectral gap would hold if we were to restrict the SDE dynamics to a
discrete grid with a small enough grid size.

3 Assumptions and the Main Result

In this study, our main goal is to obtain an explicit condition on the step-size, such that the first exit
time of the continuous-time process τξ,a(ε) (9) would be similar to the first exit time of its Euler
discretization τ̄ξ,a(ε) (10).
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We first state our assumptions.
A 1. The SDE (6) admits a unique strong solution.

A 2. The process φt , − b(W )+∇f(W (t))
εσ satisfies E exp

(
1
2

∫ T
0
φ2
tdt
)
<∞.

A 3. The gradient of f is γ-Hölder continuous with 1
2 < γ < min{ 1√

2
, α2 }:

‖∇f(x)−∇f(y)‖ ≤M‖x− y‖γ , ∀x, y ∈ Rd.
A 4. The gradient of f satisfies the following assumption: ‖∇f(0)‖ ≤ B.
A 5. For some m > 0 and b ≥ 0, f is (m, b, γ)-dissipative: 〈x,∇f(x)〉 ≥ m‖x‖1+γ − b, ∀x ∈ Rd.

We note that, as opposed to the theory of SDEs driven by Brownian motion, the theory of Lévy-driven
SDEs is still an active research field where even the existence of solutions with general drift functions
is not well-established and the main contributions have appeared in the last decade [29, 30]. Therefore,
A1 has been a common assumption in stochastic analysis, e.g. [17, 19, 31]. Nevertheless, existence
and uniqueness results have been very recently established in [30] for SDEs with bounded Hölder
drifts. Therefore A1 and A2 directly hold for bounded gradients and extending this result to Hölder
and dissipative drifts is out of the scope of this study. On the other hand, the assumptions A3-A5 are
standard conditions, which are often considered in non-convex optimization algorithms that are based
on discretization of diffusions [32, 33, 34, 35, 36, 37, 38].

Now, we identify an explicit condition for the step-size, which is one of our main contributions.
A 6. For a given δ > 0, t = Kη, and for some C > 0, the step-size satisfies the following condition:

0 < η ≤ min
{

1,
m

M2
,
( δ2

2K1t2

) 1
γ2+2γ−1

,
( δ2

2K2t2

) 1
2γ

,
( δ2

2K3t2

) α
2γ

,
( δ2

2K4t2

) 1
γ
}
,

where ε is as in (7), the constants m,M, b are defined by A3– A5 and

K1 = O(dε2γ2−2), K2 = O(ε−2), K3 = O(d2γε2γ−2), K4 = O(d2γε2γ−2).

A 6 will be stated in more details in the supplementary document. We now present our main result,
its proof can be found in the supplementary material.
Theorem 2. Under assumptions A1- A6, the following inequality holds:

P[τ−ξ,a(ε) > Kη]− CK,η,ε,d,ξ − δ ≤ P[τ̄0,a(ε) > K] ≤ P[τξ,a(ε) > Kη] + CK,η,ε,d,ξ + δ,

where,

CK,η,ε,d,ξ ,
C1(Kη(dε+ 1) + 1)γeMηMη

ξ
+ 1−

(
1− Cde−ξ

2e−2Mη(εσ)−2/(16dη)
)K

+ 1−
(

1− Cαd1+α/2ηeαMηεαξ−α
)K

,

for some constants C1, Cα and C that does not depend on η or ε, M is given by A3 and ε is as in
(6)–(7).

Remark. Theorem 2 enables the use of the metastability results for Lévy-driven SDEs for their
discretized counterpart, which is our most important contribution.

Exit time versus problem parameters. In Theorem 2, if we let η go to zero for any δ fixed, the
constant CK,η,ε,d,ξ will also go to zero, and since δ can be chosen arbitrarily small, this implies
that the probability of the first exit time for the discrete process and the continuous process will
approach each other when the step-size gets smaller, as expected. If instead, we decrease d or ε, the
quantity CK,η,ε,d,ξ also decreases monotonically, but it does not go to zero due to the first term in the
expression of CK,η,ε,d,ξ.

Exit time versus width of local minima. Popular activation functions used in deep learning such
as ReLU functions are almost everywhere differentiable and therefore the cost function has a well-
defined Hessian almost everywhere (see e.g. [39]). The eigenvalues of the Hessian of the objective
near local minima have also been studied in the literature (see e.g. [40, 41]). If the Hessian around a
local minimum is positive definite, the conditions for the multi-dimensional version of Theorem 1
in [19]) are satisfied locally around a local minimum. For local minima lying in wider valleys, the
parameter a can be taken to be larger; in which case the expected exit time Eτ0,a(ε) ∼ O(aα) will
be larger by the formula (12). In other words, the SDE (5) spends more time to exit wider valleys.
Theorem 2 shows that SGD modeled by the discretization of this SDE will also inherit a similar
behavior if the step-size satisfies the conditions we provide.
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4 Proof Overview

Relating the first exit times forW (t) andW k often requires obtaining bounds on the distance between
W (kη) and W k. In particular if ‖W k −W (kη)‖ is small with high probability, then we expect that
their first exit times from the set A will be close to each other as well with high probability.

For objective functions with bounded gradients, in order to relate τξ,a(ε) to τ̄ξ,a(ε), one can attempt to
use the strong convergence of the Euler scheme (cf. [42] Proposition 1): limη→0 E‖W k−W (kη)‖ =
0. By using Markov’s inequality, this result implies convergence in probability: for any δ > 0 and
ε > 0, there exists η such that P(‖W k −W (kη)‖ > ε) < δ/2. Then, if W (kη) ∈ A then one of the
following events must happen:

1. W k ∈ A,
2. W k 6∈ A and ‖W k −W (kη)‖ > ε (with probability less than δ/2),

3. W k /∈ A and distance from W k to A is at most ε (with probability less than δ/2).

By using this observation, we obtain: P[W (kη) ∈ A] ≤ P[W k ∈ A] + δ. Even though we could use
this result in order to relate τξ,a(ε) to τ̄ξ,a(ε), this approach would not yield a meaningful condition
for η since the bounds for the strong error E‖W k −W (kη)‖ often grows exponentially in general
with k, which means η should be chosen exponentially small for a given k. Therefore, in our strategy,
we choose a different path where we do not use the strong convergence of the Euler scheme.

Our proof strategy is inspired by the recent study [21], where the authors analyze the empirical
metastability of the Langevin equation which is driven by a Brownian motion. However, unlike the
Brownian case that [21] was based on, some of the tools for analyzing Brownian SDEs do not exist
for Lévy-driven SDEs, which increases the difficulty of our task.

We first define a linearly interpolated version of the discrete-time process {W k}k∈N+
, which will be

useful in our analysis, given as follows:

dŴ (t) = b(Ŵ )dt+ εσdB(t) + εdLα(t), (13)

where Ŵ ≡ {Ŵ (t)}t≥0 denotes the whole process and the drift function b(Ŵ ) is chosen as follows:

b(Ŵ ) , −
∞∑
k=0

∇f(Ŵ (kη))I[kη,(k+1)η)(t).

Here, I denotes the indicator function, i.e. IS(x) = 1 if x ∈ S and IS(x) = 0 if x /∈ S. It is easy to
verify that Ŵ (kη) = W k for all k ∈ N+ [43, 32].

In our approach, we start by developing a Girsanov-like change of measures [24] to express the
Kullback-Leibler (KL) divergence between µt and µ̂t, which is defined as follows:

KL(µ̂t, µt) ,
∫

log
dµ̂t
dµt

dµ̂t,

where µt denotes the law of {W (s)}s∈[0,t], µ̂t denotes the law of {Ŵ (s)}s∈[0,t], and dµt/dµ̂t is
the Radon–Nikodym derivative of µt with respect to µ̂t. Here, we require A2 for the existence of a
Girsanov transform between µ̂t and µt and for establishing an explicit formula for the transform. In
the supplementary document, we show that the KL divergence between µt and µ̂t can be written as:

KL(µ̂t, µt) =
1

2ε2σ2
E
[∫ t

0

‖b(Ŵ ) +∇f(Ŵ (s))‖2ds

]
. (14)

While this result has been known for SDEs driven by Brownian motion [16], none of the references
we are aware of expressed the KL divergence as in (14). We also note that one of the key reasons that
allows us to obtain (14) is the presence of the Brownian motion in (6), i.e. σ > 0. For σ = 0 such a
measure transformation cannot be performed [44].

In the next result, we show that if the step-size is chosen sufficiently small, the KL divergence
between µt and µ̂t is bounded.
Theorem 3. Assume that the conditions A1-A6 hold. Then the following inequality holds:

KL(µ̂t, µt) ≤ 2δ2.

6



The proof technique is similar to the approach of [43, 32, 15]: The idea is to divide the integral in
(14) into smaller pieces and bounding each piece separately. Once we obtain a bound on KL, by
using an optimal coupling argument, the data processing inequality, and Pinsker’s inequality, we
obtain a bound for the total variation (TV) distance between µt and µ̂t as follows:

PM[(W (η), . . . ,W (Kη)) 6= (Ŵ (η), . . . , Ŵ (Kη))] ≤ ‖µKη − µ̂Kη‖TV ≤
(1

2
KL(µ̂Kη, µKη)

) 1
2

.

where the TV distance is defined in Section 1. Besides, M denotes the optimal coupling between
{W (s)}s∈[0,Kη] and {Ŵ (s)}s∈[0,Kη], i.e., the joint probability measure of {W (s)}s∈[0,Kη] and
{Ŵ (s)}s∈[0,Kη], which satisfies the following identity [45]:

PM[{W (s)}s∈[0,Kη] 6= {Ŵ (s)}s∈[0,Kη]] = ‖µKη − µ̂Kη‖TV .

Combined with Theorem 3, this inequality implies the following useful result:

P[(W (η), . . . ,W (Kη)) ∈ A]− δ ≤ P[τ̄0,a(ε) > K] ≤ P[(W (η), . . . ,W (Kη)) ∈ A] + δ (15)

where we used the fact that the event (Ŵ (η), . . . , Ŵ (Kη)) ∈ A is equivalent to the event (τ̄0,a(ε) >
K). The remaining task is to relate the probability P[(W (η), . . . ,W (Kη)) ∈ A] to P[τξ,a(ε) > Kη].
The event (W (η), . . . ,W (Kη)) ∈ A ensures that the process W (t) does not leave the set A when
t = η, . . . ,Kη; however, it does not indicate that the process remains in A when t ∈ (kη, (k + 1)η).
In order to have a control over the whole process, we introduce the following event:

B ,
{

max
0≤k≤K−1

sup
t∈[kη,(k+1)η]

‖W (t)−W (kη)‖ ≤ ξ
}
,

such that the event [(W (η), . . . ,W (Kη)) ∈ A] ∩B ensures that the process stays close to A for the
whole time. By using this event, we can obtain the following inequalities:

P[(W (η), . . . ,W (Kη)) ∈ A] ≤P[(W (η), . . . ,W (Kη)) ∈ A ∩B] + P[(W (η), . . . ,W (Kη)) ∈ Bc]
=P[τξ,a(ε) > Kη] + P[(W (η), . . . ,W (Kη)) ∈ Bc].

By using the same approach, we can obtain a lower bound on P[(W (η), . . . ,W (Kη)) ∈ A] as well.
Hence, our final task reduces to bounding the term P[(W (η), . . . ,W (Kη)) ∈ Bc], which we perform
by using the weak reflection principles of Lévy processes [46]. This finally yields Theorem 2.

5 Numerical Illustration

Synthetic data. To illustrate our results, we first conduct experiments on a synthetic problem,
where the cost function is set to f(x) = 1

2‖x‖
2. This corresponds to an Ornstein-Uhlenbeck-type

process, which is commonly considered in metastability analyses [22]. This process locally satisfies
the conditions A1-A5.

Since we cannot directly simulate the continuous-time process, we consider the stochastic process
sampled from (7) with sufficiently small step-size as an approximation of the continuous scheme.
Thus, we organize the experiments as follows. We first choose a very small step-size, i.e. η = 10−10.
Starting from an initial point W 0 satisfying ‖W 0‖ < a, we iterate (7) until we find the first K
such that ‖WK‖ > a. We repeat this experiment 100 times, then we take the average Kη as the
‘ground-truth’ first exit time. We continue the experiments by calculating the first exit times for larger
step-sizes (each repeated 100 times), and compute their distances to the ground truth.

The results for this experiment are shown in Figure 2. By Theorem 2, the distance between the first
exit times of the discretization and the continuous processes depends on two terms CK,η,ε,d,ε̄ and δ,
which are used for explaining our experimental results.

We observe from Figure 2(a) that the error to the ground-truth first exit time is an increasing function
of η, which directly matches our theoretical result. Figure 2(b) shows that, with small noise limit
(e.g., in our settings, ε < 1 versus η ≈ 10−8), the error decreases with the parameter ε. By A6,
with increased ε, we have the term δ to be reduced. On the other hand, CK,η,ε,d,ε̄ increases with
ε. However, at small noise limit, this effect is dominated by the decrease of δ, that makes the error
decrease overall. The decreasing speed then decelerates with larger ε, since, the product εη becomes
so large that the increase of CK,η,ε,d,ε̄ starts to dominate the decrease of δ. Thus, it suggests that for
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Figure 2: Results of the synthetic experiments.

a large ε, a very small step-size η would be required for reducing the distance between the first exit
times of the processes. In Figure 2(c), the error decreases when the variance σ increases. The reason
for the performance is the same as in (b), and can be explained by considering the expression of δ
and CK,η,ε,d,ε̄ in the conclusion of Theorem 2.

In Figure 2(d), for small dimension, with the same exit time interval, when we increase d, both
processes escape the interval earlier, with smaller exit times. Hence, the distance between their exit
times becomes smaller. With larger d, the increasing effect of δ and CK,η,ε,d,ε̄ starts to dominate the
above ‘early-escape’ effect, thus, the decreasing speed of the error diminish. We observe that the
error even slightly increases when α = 1.2 and d grows from 70 to 100.
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Figure 3: Results of the neural network experiments.

Neural networks. In our
second set of experiments, we
consider the real data setting
used in [6]: a multi-layer fully
connected neural network with
ReLu activations on the MNIST
dataset. We adapted the code
provided in [6] and we provide
our version in https://
github.com/umutsimsekli/
sgd_first_exit_time. For
this model, we followed a
similar methodology: we
monitored the first exit time by
varying the η, the number of layers (depth), and the number of neurons per layer (width). Since a
local minimum is not analytically available, we first trained the networks with SGD until a vicinity of
a local minimum is reached with at least 90% accuracy, then we measured the first exit times with
a = 1 and ε = 0.1. In order to have a prominent level of gradient noise, we set the mini-batch size
b = 10 and we did not add explicit Gaussian or Lévy noise. The results are given in Figure 3. We
observe that, even with pure gradient noise, the error in the exit time behaves very similarly to the
one that we observed in Figure 2(a), hence supporting our theory. We further observe that, the error
has a better dependency when the width and depth are relatively small, whereas the slope of the error
increases for larger width and depth. This result shows that, to inherit the metastability properties of
the continuous-time SDE, we need to use a smaller η as we increase the size of the network. Note
that this result does not conflict with Figure 2(d), since changing the width and depth does not simply
change d, it also changes the landscape of the problem.

6 Conclusion

We studied SGD under a heavy-tailed gradient noise model, which has been empirically justified
for a variety of deep learning tasks. While a continuous-time limit of SGD can be used as a proxy
for investigating the metastability of SGD under this model, the system might behave differently
once discretized. Addressing this issue, we derived explicit conditions for the step-size such that the
discrete-time system can inherit the metastability behavior of its continuous-time limit. We illustrated
our results on a synthetic model and neural networks. A natural next step four our study would be
analyzing the generalization properties of SGD under such heavy-tailed gradient noise.
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[15] Thanh Huy Nguyen, Umut Şimşekli, and Gaël Richard. Non-Asymptotic Analysis of Fractional
Langevin Monte Carlo for Non-Convex Optimization. In International Conference on Machine
Learning, 2019.

[16] Bernt Karsten Øksendal and Agnes Sulem. Applied stochastic control of jump diffusions, volume
498. Springer, 2005.

9



[17] Peter Imkeller and Ilya Pavlyukevich. First exit times of sdes driven by stable Lévy processes.
Stochastic Processes and their Applications, 116(4):611–642, 2006.

[18] P. Imkeller, I. Pavlyukevich, and T. Wetzel. The hierarchy of exit times of Lévy-driven Langevin
equations. The European Physical Journal Special Topics, 191(1):211–222, 2010.

[19] Peter Imkeller, Ilya Pavlyukevich, and Michael Stauch. First exit times of non-linear dynamical
systems in rd perturbed by multifractal Lévy noise. Journal of Statistical Physics, 141(1):94–
119, 2010.

[20] S. Yaida. Fluctuation-dissipation relations for stochastic gradient descent. In International
Conference on Learning Representations, 2019.

[21] B. Tzen, T. Liang, and M. Raginsky. Local optimality and generalization guarantees for the
langevin algorithm via empirical metastability. In Proceedings of the 2018 Conference on
Learning Theory, 2018.

[22] J. Duan. An Introduction to Stochastic Dynamics. Cambridge University Press, New York,
2015.

[23] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random
variables. Journal of the american statistical association, 71(354):340–344, 1976.

[24] Peter Tankov. Financial modelling with jump processes. Chapman and Hall/CRC, 2003.

[25] Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability in
reversible diffusion processes i: Sharp asymptotics for capacities and exit times. Journal of the
European Mathematical Society, 6(4):399–424, 2004.

[26] Ilya Pavlyukevich. First exit times of solutions of stochastic differential equations driven by
multiplicative Lévy noise with heavy tails. Stochastics and Dynamics, 11(02n03):495–519,
2011.

[27] Nils Berglund. Kramers’ law: Validity, derivations and generalisations. arXiv preprint
arXiv:1106.5799, 2011.

[28] Toralf Burghoff and Ilya Pavlyukevich. Spectral analysis for a discrete metastable system driven
by lévy flights. Journal of Statistical Physics, 161(1):171–196, 2015.

[29] Enrico Priola et al. Pathwise uniqueness for singular SDEs driven by stable processes. Osaka
Journal of Mathematics, 49(2):421–447, 2012.

[30] Alexei M Kulik. On weak uniqueness and distributional properties of a solution to an sde with
α-stable noise. Stochastic Processes and their Applications, 129(2):473–506, 2019.

[31] Mingjie Liang and Jian Wang. Gradient estimates and ergodicity for sdes driven by multiplicative
l\’{e} vy noises via coupling. arXiv preprint arXiv:1801.05936, 2018.

[32] M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via stochastic gradient
Langevin dynamics: a nonasymptotic analysis. In Proceedings of the 2017 Conference on
Learning Theory, volume 65, pages 1674–1703, 2017.

[33] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin dynamics
based algorithms for nonconvex optimization. In Advances in Neural Information Processing
Systems, pages 3125–3136, 2018.

[34] M. A. Erdogdu, L. Mackey, and O. Shamir. Global non-convex optimization with discretized
diffusions. In Advances in Neural Information Processing Systems, pages 9693–9702, 2018.

[35] Xuefeng Gao, Mert Gurbuzbalaban, and Lingjiong Zhu. Breaking Reversibility Accel-
erates Langevin Dynamics for Global Non-Convex Optimization. arXiv e-prints, page
arXiv:1812.07725, Dec 2018.

10



[36] Xuefeng Gao, Mert Gürbüzbalaban, and Lingjiong Zhu. Global Convergence of Stochastic Gra-
dient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Per-
formance Bounds and Momentum-Based Acceleration. arXiv e-prints, page arXiv:1809.04618,
Sep 2018.
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[38] Antoine Liutkus, Umut Şimşekli, Szymon Majewski, Alain Durmus, and Fabian-Robert Stoter.
Sliced-Wasserstein flows: Nonparametric generative modeling via optimal transport and diffu-
sions. In International Conference on Machine Learning, 2019.

[39] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu
activation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 597–607.
Curran Associates, Inc., 2017.

[40] Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the Hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

[41] Vardan Papyan. The full spectrum of deep net Hessians at scale: Dynamics with sample size.
arXiv preprint arXiv:1811.07062, 2018.
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