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Abstract—Runtime power and thermal control is crucial in
any modern processor. However, these control schemes require
accurate real-time temperature information, ideally of the entire
die area, in order to be effective. On-chip temperature sensors
alone cannot provide the full-chip temperature information since
the number of sensors that are typically available is very limited
due to their high area and power overheads. Furthermore, as
we will demonstrate, the peak locations within hot-spots are
not stationary and are very workload dependent, making it
difficult to rely on fixed temperature sensors alone. Therefore,
we propose a novel approach to real-time estimation of full-
chip transient heatmaps for commercial processors based on
machine learning. The model derived in this work supplements
the temperature data sensed from the existing on-chip sensors,
allowing for the development of more robust runtime power
and thermal control schemes that can take advantage of the
additional thermal information that is otherwise not available.
The new approach involves offline acquisition of accurate spatial
and temporal heatmaps using an infrared thermal imaging
setup while nominal working conditions are maintained on the
chip. To build the dynamic thermal model, we apply Long-
Short-Term-Memory (LSTM) neutral networks with system-level
variables such as chip frequency, instruction counts, and other
performance metrics as inputs. To reduce the dimensionality of
the model, 2D spatial discrete cosine transformation (DCT) is first
performed on the heatmaps so that they can be expressed with
Jjust their dominant DCT frequencies. Our study shows that only
6x 6 DCT coefficients are required to maintain sufficient accuracy
across a variety of workloads. Experimental results show that the
proposed approach can estimate the full-chip heatmaps with less
than 1.4°C root-mean-square-error and take only ~19ms for each
inference which suits well for real-time use.

I. INTRODUCTION

With the continuing trend of rapid integration and technol-
ogy scaling, today’s high performance processors have become
more thermally constrained than ever before. Increase in tem-
perature has been shown to exponentially degrade reliability
of semiconductor chips [1], and hence has become one of
the leading concerns in the industry today. To address this
trend, runtime power and thermal control schemes are being
implemented in most, if not all new generations of processors
[2], [3]. These control schemes depend on accurate real-time
temperature information of the entire die area in order to be
effective [4], [5].

On-chip temperature sensors alone cannot provide the full-
chip temperature information since the number of sensors
that can be placed on a chip is limited due to their high
area and power overheads. A better solution is to develop
thermal models that can estimate the temperature distribution
across the entire chip during runtime [6]—[8]. The model can
then be used to supplement the data from the few on-chip
sensors, expanding the overall thermal information available
during runtime. However, accurate online estimation of full-
chip heatmaps is challenging, especially when it comes to
commercial off-the-shelf multi-core processors.
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Fig. 1. Peak locations of a single hotspot on an Intel i5-3337U

Full-chip thermal characterization and estimation have been
well studied in the past. In general, two kinds of strategies
have been explored. One strategy is based on the placement
of on-chip temperature sensors and reconstruction of the full-
chip heatmaps from the sensor data [9]-[11]. However, these
methods need to find the optimum number of sensors and their
locations. This still remains a challenging task as sensors incur
significant overheads and they cannot be inserted in arbitrary
locations. The overheads and thermal estimation accuracy has
always been a trade-off. Furthermore, the localized thermal
hot-spots are often not stationary. The thermal peak migrates
significantly depending on the workload that the processor is
under. For example, Fig. 1 shows the peak locations (from
experimental data) of a single hot-spot at different time
instances. As a result, accurate heatmaps with exact hot-spot
locations are very difficult to estimate based on fixed thermal
sensors alone (unless if the sensors are uniformly placed as
shown in [9], which is difficult if not impossible to achieve
given the design restrictions).

The second strategy is to estimate the full-chip heatmaps
from a thermal model and power related information. These
thermal models can be built using the so-called “bottom-
up” approaches such as HotSpot [6] based simplified finite
difference methods, finite element methods [12], equivalent
thermal RC networks [13], and recently proposed behavioral
thermal models based on the matrix pencil method [14] and
the subspace identification method [15], [16]. However, the
existing thermal modeling methods still have a few draw-
backs. First, many need accurate power-traces as inputs; but
estimating the power of each functional unit (FU) of a real
processor under varying workloads is not a trivial task, if not
infeasible [17], [18]. On the other hand, from the system-level
thermal or power management perspective, the parameters
that can be easily accessed are core frequency, voltage, and
many other performance metrics natively supported by most
commercial processors [19]. Thermal models that are functions
of these parameters will be more desirable and practical.



Second, it is difficult to calibrate these models for practical
use due to simplified modeling, boundary conditions, and the
lack of sufficient accuracy. Lastly, most such models employ
numerical methods to solve, which are not suitable for real-
time use. In contrast, neural network based models are much
more lightweight, making them ideal for online inference.

A machine learning based method has been proposed in the
past to predict the future temperature of the chip based on the
current on-chip temperature sensor data [20]. However, this
method lacks spatial resolution as the prediction is limited
to the locations on the chip where temperature sensors are
present. As previously mentioned, the number of temperature
sensors available in the chip is extremely limited due to their
area and power overheads. Case in point, in [21] the authors
identify 18 hot-spots on a commercial processor that only has 2
on-chip temperature sensors. Hence, a new technique capable
of real-time estimation of the temperatures across the entire
chip area is more desirable. A prior attempt at this goal showed
promising results [22], [23], however this method has couple
of drawbacks. First, the model only works on a predetermined
set of applications, which is not realistic for general purpose
processors. Second, the model is validated using only the on-
chip temperature sensor data, not measured full-chip heatmaps.
Third, the model had an inference time in the order of
seconds, which is too slow for use with thermal/power control
algorithms which are typically reactive in nature. Ideally, we
want inference times in the order of milliseconds to match the
thermal time constant of semiconductor chips.

To overcome the aforementioned challenges, we propose a
novel approach for real-time estimation of full-chip heatmaps
for commercial microprocessors based on machine learning.
This work exploits the correlation between the processor’s
temperature and system-level variables such as frequency,
voltage, and other performance metrics that have been shown
to be effective in the past [24]-[26]. However, the existing
methods relied on manually identifying the low-level perfor-
mance metrics that are correlated with each functional-unit
(FU) on the chip. Additionally, for a FU-wise prediction, at
least one low-level performance metric must be recorded for
each FU at all times. However, only a hand full of performance
counting registers are available in the processor (typically
about 10), hence a full-chip estimation is not feasible using
this method. Alternatively, in this work we use high-level
performance metrics that give us a comprehensive view of
the processor’s utilization in real-time. The correlation be-
tween the transient behavior of high-level performance metrics
and the processor’s thermal profile is automatically learned.
This work is inspired by the recent rapid advancements in
Recurrent Neural Networks (RNN) for time-series system
modeling. In our method, we first obtain the accurate spatial
and temporal heatmaps of a commercial microprocessor using
a lucid infrared thermal imaging setup, while nominal working
conditions are maintained on the chip. We then compress the
heatmaps using 2D Discrete Cosine Transformation (DCT)
such that they can be expressed with just their dominant DCT
frequencies. This greatly reduces the dimensionality of the
model, consequently improving accuracy and performance. To
build the dynamic thermal model, we apply Long-Short-Term-
Memory (LSTM) networks with system-level variables such
as chip frequency, instruction counts and other performance
metrics as inputs. Once trained, the model will be capable
of real-time estimation of full-chip heatmaps. Experimental
results validated with measured thermal data show that the
proposed approach can estimate the full-chip heatmaps with
less than 1.4°C root-mean-square (RMS) error with approxi-
mately 19ms of processing time for each inference.

II. PROPOSED APPROACH

A brief overview of the proposed approach will be presented
in this section, along with a description of the thermal setup
used for collecting the necessary data from a commercial
microprocessor while it is under load.

A. Overview

The proposed approach requires two critical pieces of data
that has to be collected in synchronous while the processor
is under load. First is the time-stamped heatmaps collected
from the chip at a steady sampling rate, and second is a
suite of high-level performance metrics captured at the same
time instances as the temperature data. To this end, we have
built an advanced IR thermography setup that records lucid
heatmaps of the processor under test. This setup will be
discussed in detail in the next subsection. At the same time,
a suite of high-level performance metrics will be recorded in
synchronous with the capture rate of the IR camera. Once
sufficient data is acquired, a specialized Recurrent-Neural-
Network (RNN) architecture called Long-Short-Term-Memory
(LSTM) network will be employed to train the online thermal
model. Fig. 2(a) illustrates the data preparation and training
phase of the proposed approach. Once trained, the thermal
model will use the performance metrics as inputs to estimate
the full-chip heatmaps in real-time. The testing phase of
the proposed approach is illustrated in Fig. 2(b). Each step
illustrated in Fig. 2 will be discussed in detail in the following

sections.
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Fig. 2. Proposed algorithm flow: (a) Training (b) Testing.

B. Our IR Thermography Setup

As mentioned, the proposed approach relies on accurate
time-series data of the full-chip heatmaps measured directly
from the processor under test. Externally measuring this infor-
mation is challenging, especially when the processor is under
load as it requires the processor to be operated without the
traditional front-mounted cooling systems (i.e. heat-sink). To
address this issue, we have built an advanced infrared (IR)
thermography setup shown in Fig. 3. This setup is based on
the thermal imaging setup proposed in [27]. The setup features
a thermo-electric device mounted on the PCB directly beneath
the processor allowing it to be cooled from underneath; leaving
the front side fully exposed to the IR camera without any
interference layer in-between. Unlike the traditional oil-based
front-cooling methods, no de-embedding [18] is required in
our setup. Instead, a programmable power supply is used to
control the heat-flow through the thermo-electric device so
that the operating conditions can be matched to the baseline
cooling unit using a heat-sink [27].
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Fig. 3. Our IR thermography setup

Detailed description of the IR thermography setup is as
follows. The thermal camera used in this setup is a FLIR
A325sc (16-bit 320x240px, 60Hz). The camera is rated for
the temperature range of 0°C' to 328°C), and spectral range
of 7.5um to 13um. In order to enhance the spatial resolution
of the camera, a microscope lens is used providing a spatial
resolution of 50um/px. The IR camera has an internal wave-
form generator that outputs a square waveform in synchronous
with the capture frequency of the camera. An I/O device is then
employed to interface the waveform generator to the processor
under test, so that the performance metrics (recorded on the
processor) can be synchronized with the thermal data recorded
by the IR camera. The processor under test is an Intel i5-
3337U, which has 2 cores with 2 threads per core. Mounted
on the PCB directly underneath the processor is the thermo-
electric-based cooling system which includes a Peltier device
powered by a programmable power source. A liquid cooling
loop is used to cool the hot-side of the Peltier device and
ensure proper operation.

III. DATA PREPARATION

As previously mentioned, the two critical pieces of data that
we use in this work are the heatmaps and performance metrics

recorded in synchronous with each other. The end goal is to
train a machine learning model, which uses the performance
metrics as inputs to estimate the heatmaps in real-time. As
with any machine learning approach, proper preparation and
normalization of the training datasets is of utmost importance.
The compression and normalization of the datasets prior to
training the LSTM network will be discussed in this section.

A. Performance Metrics

Since an Intel processor is used in this study, the per-
formance metrics data is collected using Intel’s Performance
Counting Monitor (PCM) [28], which is a tool that provides
high-level runtime performance metrics for Intel processors.
Table I shows the complete list of 80 performance metrics
that we collect from the Intel i5-3337U. As we will discuss in
detail in Section IV, our RNN architecture uses the hyperbolic
tangent (T'anh) activation function in the LSTM layers, and
the linear activation in the final dense layer. In order to take
full advantage of the effective range of the T'anh activation
function, all 80 input PCM metrics will be normalized to
the range of [—1, 1] using the min-max normalization scheme
given in Eq.(1).

PCM; —min(PCM)

PCM'; = x2)—1 1
! (max(PC’M) — min(PCM) ) M
TABLE I
PERFORMANCE METRICS (INTEL PCM)
Pkg. Pkg. Corel.I [ Corel.2 | Core2.1 [ Core2.2
exec inst nom exec exec exec exec
IPC inst nom% IPC IPC 1PC PC
freq C2res% freq freq freq freq
afreq C3res% afreq afreq afreq afreq
L3 miss Cores% L3 miss | L3 miss | L3 miss | L3 miss
L2 miss CTres% L2 miss | L2 miss | L2 miss | L2 miss
L3 hit energy (J) L3 hit L3 hit L3 hit L3 hit
L2 hit temp L2 hit L2 hit L2 hit L2 hit
L3 MPI L3 MPI | L3 MPI | L3 MPI | L3 MPI
L2 MPI L2 MPI | L2 MPI | L2 MPI | L2 MPI
read rate COres% | COres% | COres% | COres%
write rate Clres% | Clres% | Clres% | Clres%
inst count C3res% C3res%
ACYC Céres% Cores%
physIPC CTres% CTres%
physIPC% temp temp

B. Heatmap Compression

Heatmaps of the Intel i5-3337U captured using our IR
thermography setup have a image resolution of 177x166
pixels. This constitutes to a total pixel count of 29382. It is not
practical for a machine learning model to directly estimate the
entire heatmap as this would require the output dimensionality
of 29382 in order to achieve a pixel-wise estimation. As a
result, we need to compress the heatmaps such that they can
be expressed using just their dominant features instead.

To this end, we use 2D Discrete Cosine Transformation
(DCT) to convert the heatmaps, T'(x, y), into spatial frequency
domain [29]. This allows us to extract the dominant low-
frequency components of the heatmaps and train our machine
learning model to estimate only these dominant frequencies.
Inverse DCT can be performed at the model’s output to recover
the estimated heatmaps.

2D DCT is a popular choice for signal and image processing
with its “strong energy compaction property” [29] as in most
applications, the bulk of the information can be represented
by a few low-frequency components of the DCT. A 2D DCT
consists of two separate 1D DCT operations, which can be
denoted as
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where vector {a;} is the original (1 x N) data, and {f}} is the
result of 1D DCT. A 2D DCT is completed by applying 1-D
DCT on each column and then on each row of the matrix.

In order to determine the minimum number of DCT co-
efficients that we can use without introducing a significant
amount of error, we compress 140,000 heatmaps of our pro-
cessor with varying number of DCT coefficients. Root-mean-
square (RMS) error is then computed between the compressed
heatmaps and their uncompressed counterparts. Fig. 4 shows
the RMS error in °C as the number of DCT coefficients used
in the compression is increased. Based on Fig. 4, we can see
that it is sufficient to use only the first 6 x 6 DCT coefficients
as increasing the number of features further produces marginal
benefits. With this compression, the output of the model only
needs the dimensionality of 36, instead of 29382.
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Fig. 4. RMS error between actual heatmaps and compressed heatmaps using
varying number of DCT coefficients

Similar to the performance metrics, the DCT coefficients
from the heatmaps are also normalized to the range of [—1, 1]
prior to training. Once the model has been trained, the output
of the model will be denormalized before the inverse DCT
operation (iDCT) is performed to construct the estimated
heatmap. Similar to its forward counterpart, the 2D iDCT
consists of two separate 1D iDCT steps (3) on the rows and
columns respectively.

a; = fo kacosMO§i<N. 3)

N 2N

IV. LSTM-BASED ESTIMATION MODEL

From the machine learning perspective, our task in this
work is a time-series prediction problem. Hence, a variant of
recurrent-neural-networks (RNN) known as long-short-term-
memory-network (LSTM) can be used, as this is a common
choice for such applications [30]. The key structure of the
LSTM network that we used is diagrammed in Fig. 5. The
network mainly consists of five LSTM recurrent layers, with
160, 130, 100, 70, and 48 nodes per layer respectively, and
one linear layer, with 36 nodes, used as the output layer. All
LSTM layers use the T'anh activation function where as the
dense layer uses a linear activation function. Dropout layers
are added between adjacent LSTM layers with a 20% dropout
rate. This prevents over-fitting during the training phase and

hence increases the model’s accuracy. The network has an
input dimensionality of 80 for the 80 performance metrics,
and an output dimensionality of 36 as the network will be
trained to estimate the first 36 (6 x 6) DCT coefficients.

linear

tanh tanh

Output

2
(G
S
5]

=
—

Dropout 20%

Fig. 5. LSTM network architecture: 5 LSTM Layers (160, 130, 100, 70, and
48 nodes respectively), and 1 Dense Layer (36 nodes)

V. EXPERIMENTAL RESULTS

In our experimental setting, approximately 1 hour of runtime
data were collected at the capture frequency of 60Hz. The
total data that this method requires will depend on the type
of processor and the number, and variety of workloads that is
required to thoroughly task all the subsystems of the processor.
As a rule of thumb, more data will generally lead to a better
performing and more reliable model.

As previously mentioned, each time-step of data consists
of 80 PCM metrics and one heatmap of the processor, both
captured concurrently using the synchronization method dis-
cussed in Section II. During data collection, the processor
was subjected to a variety of workloads from the Phoronix
benchmark suite [31]. These workloads are generally split
into three categories: processor, memory, and system. The pro-
cessor benchmarks are generally compute intensive, whereas
the memory benchmarks are generally memory intensive. The
system benchmarks are designed to task all subsystems of the
chip. Several benchmarks from each category were selected to
ensure the chip was subjected to a wide variety of workloads
with varying execution patterns. The specific benchmarks used
in this study are listed in Table II. Note, the workloads
that we have selected are only meant to demonstrate the
proposed approach and show the performance of the model.
The model itself is independent of the workloads as it is based
on the processor’s utilization rate characterized by high-level
performance metrics.

TABLE II
BENCHMARKS
Processor Memory System
7zip Cyclictest | RAMspeed
AObench Gimp Stream
FLAC Git Ttest
OpenCV | PHPbench

After the data has been acquired, the method discussed in
Section III was used to compress and normalize the data in
preparation for training. This process results in 80 normalized
PCM metrics, and the first 36 most dominant heatmap DCT
frequencies for each time-step. The data used for training and
testing are split as follows. For each 1000 timesteps of data,



640 timesteps were used for training, 160 timesteps were used
for validation, and 200 timesteps were put aside for testing.
Hence, in total, 64% of the entire dataset was used for training,
16% was used for validation, and 20% was used for testing.
The training and testing datasets were kept completely isolated
from each other to ensure that none of the testing data was
used in the training process, and vice-versa. After several
rounds of experimentation and tuning, the network shown in
Fig. 5 was selected. The model was implemented in Python
using Keras [32], with T'ensor flow [33] as its back-end. The
network was then trained using a Nvidia Tesla K40c GPU for
a total of 100 epochs with 60 time steps per epoch in the
LSTM layers.

Once trained, this method results in what effectively is a
“black-box” model which can be executed on the chip or
integrated into the operating system. In real-time, the model
will use the 80 normalized performance metrics as inputs to
estimate the first 36 most dominant DCT frequencies. Inverse
DCT operation, shown in Eq.( 3), can then be used to convert
the estimated DCT frequencies into the estimated heatmap for
each time-step.

The testing results showed that the model performs ex-
ceptionally well. The estimated 36 (6 x 6) DCT coefficients
follow the trends of the measured data with marginal error.
The estimated 6 x 6 DCT coefficients are shown in Fig. 6
plotted along with their measured counterparts from the testing
dataset. Fig. 7 shows the measured heatmap alongside the
estimated heatmap from a random time-step during the exe-
cution of the 7zip benchmark. The error map (actual heatmap
- estimated heatmap) is also shown, where the peak error at
this time instance is 0.53°C.

To formally compute the overall accuracy of the model, we
use the root-mean-square (RMS) equation given in Eq.( 4).

tmazx n m
—— \/ S Y Y (T, t) = T/, ,))?
n X m X tmax

“)
Where T and T" are the measured and estimated heatmaps
respectively, t is testing timestep, tmax is the final testing
timestep, x and y are spatial coordinates on the heatmap,
n = 166, and m = 177 are vertical and horizontal pixel
counts respectively. Using Eq.( 4) the RMS error calculated for
the entire testing dataset is 1.4°C, which is very reasonable
for most applications that need real-time information of the
temperatures across the entire chip. RMS error computed
separately for each benchmark is shown in Table III. As the
results show, RMS error for most benchmarks is less than 2°C
and a few of them are less than 1°C with an overall RMS error
of 1.4°C. In terms of performance overhead, the execution
time for the model is approximately 19ms per inference. This
makes the proposed full-chip heatmap estimation technique
not only practical, but also highly desirable for applications
such as online thermal management and task scheduling for

commercial multi-core processors.

TABLE IIT
RMS FOR EACH BENCHMARK
Benchmark RMS Benchmark RMS
7zip 1.19°C | Cyclictest 1.27°C
AObench 0.89°C Gimp 1.78°C
FLAC 1.59°C Git 1.12°C
OpenCV 1.11°C | PHPbench | 1.23°C
RAMspeed | 0.87°C Stream 0.55°C
Ttest 2.67°C

VI. CONCLUSION

In this article, we have proposed a machine learning based
approach to real-time estimation of full-chip heatmaps for
commercial microprocessors. In this new approach, we obtain
accurate spatial and temporal heatmaps using an advanced
infrared thermal imaging system. To build the thermal model,
we applied Long-Short-Term-Memory (LSTM) networks with
system-level variables such as chip frequency, voltage, and
instruction count as inputs. Instead of a pixel-wise heatmap
estimation, we use 2D spatial discrete cosine transformation
(DCT) on the heatmaps so that they can be expressed with
just their dominant DCT frequencies. Our study showed that
only 6 x 6 DCT coefficients are required to maintain sufficient
accuracy across a variety of workloads. Experimental results
show that the proposed approach can estimate the transient
heatmaps with less than 1.4°C RMS error and take only
~19ms for each inference.
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