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Abstract—We propose a framework of Siamese community-
preserving graph convolutional network (SCP-GCN) to learn the
structural and functional joint embedding of brain networks.
Specifically, we use graph convolutions to learn the structural
and functional joint embedding, where the graph structure is
defined with structural connectivity and node features are from
the functional connectivity. Moreover, we propose to preserve
the community structure of brain networks in the graph convo-
lutions by considering the intra-community and inter-community
properties in the learning process. Furthermore, we use Siamese
architecture which models the pair-wise similarity learning to
guide the learning process. To evaluate the proposed approach,
we conduct extensive experiments on two real brain network
datasets. The experimental results demonstrate the superior per-
formance of the proposed approach in structural and functional
joint embedding for neurological disorder analysis, indicating its
promising value for clinical applications.

Index Terms—Graph Neural Networks, Community-
preserving Graph Convolutions, Siamese Network, Brain
Network Analysis

I. INTRODUCTION

In recent years, advances in neuroimaging technology have
given rise to various modalities of brain imaging data, which
provide us with multiple perspectives for investigating the
inner organization and activity of human brains. For example,
functional magnetic resonance imaging (fMRI) can be used to
study the functional activation patterns of human brain based
on the cerebral blood flow and the BOLD response [1], [2],
while techniques like diffusion tensor imaging (DTI) can be
used for examining the tractography of the white matter fiber
pathways and thus for exploring the structural connectivity
in the brain. Meanwhile, brain networks derived from these
brain imaging data have been widely studied for neurological
disorder analysis[3], [4]. Structural brain networks derived
from DTI brain data and functional brain networks derived
from fMRI brain data are the primary networks of interest.

∗Authors have equal contributions.†This work was done when the author
was at the University of Illinois at Chicago.

Most existing works in brain network analysis focus on
either the analysis of structural connectivity or on functional
connectivity [5], [6], [7]. However, both the anatomical charac-
teristics captured by structural connectivity and the physiolog-
ical properties that form the basis of functional connectivity
are important to understand the integrated organization and
brain activity, and thus it would be of considerable benefit if
both structural and functional networks could be considered
jointly [8]. Although some recent works have used multi-
view embedding methods to learn representations from both
structural and functional networks for neurological disorder
analysis [9], [10], [11], the representations derived from each
view in these methods are enforced to reach consensus,
making distinct intrinsic properties of individual network being
ignored. Therefore, it is desirable to find a way to jointly
learn from structural and functional brain networks while
considering their intrinsic properties.

In this paper, we propose to use graph convolutional net-
work (GCN) for learning the embedding of brain network
by jointly using the structural brain network and the func-
tional brain network. Generally, GCN takes two inputs: a
representative description of the graph structure in matrix
form (e.g. adjacency matrix) and a feature vector for every
node in the graph. The convolutions are then performed based
on the neighborhood structure indicated by the given graph
structure [12], [13]. Although GCN has been shown to be
effective for network representation learning [14], there are
some challenges that we need to address when using it to learn
the structural and functional joint embedding of brain network
embedding for neurological disorder analysis, as listed below:

• Joint embedding of DTI and fMRI: The structural con-
nectivity in DTI reflects the anatomical pathways of white
matter tracts connecting different regions, whereas the
functional connectivity in fMRI encodes the correlation
between the activity of brain regions. How to apply GCN
on the DTI brain network and the fMRI network jointly,
so that the resulted embedding could encode the inherent978-1-7281-0858-2/19/$31.00 c©2019 IEEE
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properties of both structural connectivity and functional
connectivity, is a key problem.

• Community-structure preserving: Modular/community
structure, as one of the key properties of brain networks,
has been shown as an important factor in neurological
disorder analysis [8], [15]. It is crucial to preserve the
community structure while learning the embedding of
brain network. However, existing GCN methods do not
consider the community structure. How to make the graph
convolutions be able to preserve the community structure
for brain network analysis is a challenging problem.

• Limited sample quantity: Training a deep learning
model requires a large amount of training data, but
neurological disorder analysis often suffers from data
scarcity problem. How to address this problem is another
key issue when using GCN for embedding learning.

• Neurological Disorder Analysis: How to leverage
the brain network joint embedding learned by the
community-preserving graph convolutions to facilitate
neurological disorder analysis is also a critical problem.

To address these challenges, we propose a framework of
Siamese community-preserving GCNs for learning the struc-
tural and functional joint embedding of brain networks. Our
contributions can be summarized as follows:

• We propose to use graph convolutions for learning the
joint embedding of fMRI functional brain network and
DTI structural brain network, where DTI network defines
the graph structure and fMRI network is used as node
features in the convolutions. By considering the structural
and functional networks jointly in this way, both the
inherent structural information and the functional patterns
can be captured and leveraged in the learning process.

• We propose to incorporate the community-preserving
property into GCNs to preserve the intrinsic modu-
lar/community structure of human brain networks while
learning their structural and functional joint embed-
ding. Specifically, we propose a community-preserving
loss to facilitate the community-preserving graph con-
volutions. Both the intra-community property and inter-
community property are considered when formulating the
community-preserving loss.

• We use the Siamese architecture [16] and exploit pair-
wise similarity learning of brain networks to guide the
learning process, which could help alleviate the data
scarcity problem.

• We apply the proposed framework on two real brain
network datasets (i.e., Bipolar and HIV [10]) to learn
the structural and functional joint embedding for the
detection of these two disorders. The experimental results
demonstrate the superior performance of the proposed
approach in structural and functional joint analysis for
clinical investigation and application.

II. PRELIMINARIES

Notations. Vectors are denoted by boldface lowercase let-
ters, and matrices are denoted by boldface capital letters. An

element of a vector x is denoted by xi, and an element of
a matrix X is denoted by Xij . For any vector x ∈ R

n,
Diag(x) ∈ R

n×n is the diagonal matrix whose diagonal
elements are xi. In denotes an identity matrix with size n.
We denote an undirected graph as G = (V,E,A), where V
is the set of nodes, E ⊂ V × V is the set of edges, and
A ∈ R

n×n is the weighted adjacency matrix, where the entry
Aij denotes the pairwise affinity between node i and node j
of graph G.

Before formally defining our problem, we first introduce the
concept of “brain network” and “module” in brain networks. A
brain network is a weighted undirected graph G = (V,E,A),
where each node vi in V denotes a specific brain region of
interest (ROI) and the edge connecting vi and vj represents
the connection between region vi and region vj , whereas the
element Aij in A denotes the weight of their connection.
In functional brain network derived from fMRI, the edges
indicate the functional correlations between two brain regions,
while in structural brain network derived from DTI, the edges
indicate the neural fiber connections between different regions.
A module (or community) in brain networks is a subset of
nodes that are densely connected to each other while having
sparse connections to the nodes in other modules [8].

Problem Definition. Assume we are given a set of brain
network instances D = {G1, G2, · · · , GN}, and each in-
stance Gi incorporates a structural brain network G

(s)
i =

(V (s), E(s),A(s)), and a functional brain network G
(f)
i =

(V (f), E(f),A(f)), where V (s) and V (f) contain the same
number of nodes representing the same set of brain regions,
|V (s)| = |V (f)| = n, E(s) is the set of edges in G

(s)
i

and E(f) is the set of edges in G
(f)
i , A(s) ∈ R

n×n is the
adjacency matrix of G

(s)
i , and A(f) ∈ R

n×n is the weighted
adjacency matrix of G

(f)
i , where each element represents the

functional correlation between two brain regions. We aim to
obtain a network embedding Z ∈ R

n×d for each Gi by jointly
learning from G

(s)
i and G

(f)
i , where d represents the dimension

of each node embedding. The joint embedding should not
only capture both the inherent structural information and
functional characteristics of the brain network, but should also
preserve the underlying community/modular structure of the
brain network.

III. FRAMEWORK

In this paper, we propose a Siamese community-preserving
graph convolutional network (SCP-GCN) framework for struc-
tural and functional joint embedding of brain networks. An
overview of the framework is shown in Fig. 1.

A. Graph Convolutions for Structural and Functional Joint
Embedding

We propose to use graph convolutions to learn the structural
and functional joint embedding of brain networks. In the graph
convolutions, the graph structure is defined by the structural
connectivity and the node features come from functional
connectivity. By considering the structural and functional
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Fig. 1. An overview of the proposed SCP-GCN framework. Each of the two input samples is a graph whose nodes represent brain regions and the connections
(i.e., edges) between these brain regions are defined by the DTI brain network. An n-dimensional feature vector xi

w is assigned on each node w of sample
Gi, which is the adjacent vector of the corresponding node in the fMRI functional network. The Siamese GCN takes a pair of samples < Gi, Gj > as input,
and learns a d-dimensional node embedding ziw for each node of Gi and zjw for each node of Gj , which are then concatenated into a graph embedding
gi and gj , respectively. Spectral clustering is employed on the DTI brain network to get the communities of nodes (shown by different node colors in the
figure). The graph embeddings, node embeddings, and community information are used to compute the loss function elaborated in section III.

networks jointly in this way, both the inherent structural
information and the functional patterns can be captured during
the learning process.

Given a brain network instance G from D, with structural
brain network G(s) = (V (s), E(s),A(s)) and a functional brain
network G(f) = (V (f), E(f),A(f)), we set A = A(s) as the
adjacency matrix for the graph. Then the normalized graph
Laplacian can be defined as L = In−D− 1

2AD− 1
2 , where In

is an identity matrix and D ∈ R
n×n is the diagonal degree

matrix of the graph with leading entries Dii =
∑

j Aij .
Consider a n-dimensional signal x : V → R

n defined on
graph G, which can be regarded as an one-dimensional feature
vector, with xi ∈ R assigned to the ith node. According to
[17], the convolution operation in the Fourier domain can be
defined as the multiplication of the signal x with a filter gθ
parameterized by θ ∈ R

n:

gθ ∗ x = Ugθ(Λ)UTx (1)

where U = [u0, . . . , un−1] ∈ R
n×n is the eigenvector matrix

of the normalized graph Laplacian L, i.e., L = UΛUT , where
Λ = Diag([λ0, . . . , λn−1]) ∈ R

n×n is the diagonal matrix of
its eigenvalues, and gθ(Λ) = Diag([gθ(λ0), . . . , gθ(λn−1)]).

Based on [18] and [19], we can derive it into the following
equation [20]:

gθ ∗ x ≈ (In +D− 1
2AD− 1

2 )x (2)

Then we apply the renormalization trick introduced in [19]:
In + D− 1

2AD− 1
2 → D̂− 1

2 ÂD̂− 1
2 , with Â = A + In and

D̂ii =
∑

j Âij , and we generalize the definition to a signal
X ∈ R

n×p with p input channels [19]. Specifically, in our
structural and functional joint embedding scenario, since the
functional brain network is derived from the fMRI signals,
which capture the brain activity features of each brain region,
we propose to use the functional correlation matrix A(f) as
the input signal matrix, i.e., X = A(f) with the number of
input channels p = n.

In this paper, we consider a multi-layer graph convolutional
network with the convolutions defined above and the layer-
wise propagation rule proposed in [19]. Assume the activation
of the l-th layer is represented as H(l) ∈ R

n×d and the layer-
specific trainable weight matrix for the l-th layer is denoted
by Θ(l), according to the propagation rule, we have:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)Θ(l)) (3)

where Ã = A+In is the weight matrix of the undirected graph
with added self-connections, and σ(·) denotes the activation
function. H(0) = A(f) = X is the input feature matrix.

In the problem setting, we take the node features in func-
tional brain network as the input features of the graph, and
set H(0) = A(f) ∈ R

n×n, which is the weighted adjacent
matrix of functional brain network. That is to say, for the ith

node V
(s)
i ∈ V (s), we assign a

(f)
i ∈ R

n, the ith row of A(f),
as the feature vector of that node. The output Z = H(l) of
the last layer will be the final node embedding of the brain
network, where the ith row of Z represent the embedding
vector for the ith node. For the further calculation of the
distance between graphs for similarity learning in Siamese
network, we concatenate all the rows of Z into a vector g
as the graph embedding for G.

B. Siamese Graph Convolutional Network

Siamese network is first proposed in [21] to solve signature
verification as an image matching problem. The Siamese
network takes a pair of inputs, and output the similarity
between the inputs. [16] introduces this architecture into one-
shot learning problem setting in which correct predictions must
be given only based on a single training sample of each new
class, demonstrating the superior learning ability enabled by
Siamese network, even with a small sample size.

In this paper, we use the Siamese architecture and exploit
the pair-wise similarity learning of brain networks to guide
the learning process, and also to help address the data scarcity
problem caused by the limited sample size.
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Contrastive loss function [16] is used to train Siamese
network:

LS =
y

2
‖gi−gj‖22+(1−y)

1

2
{max(0,m−‖gi−gj‖2)}2 (4)

where gi and gj are the graph embeddings of instance i and j
computed from the GCN, m is a margin value which is greater
than 0. y = 1 if two input sample are from the same class and
y = 0 if they are from the different classes. The loss function
minimizes the Euclidean distance between two input vectors
when two samples are from the same class, and maximizes it
when they belong to different classes.

C. Siamese Community-preserving GCN Framework

In order to preserve the community structure in brain net-
works, we propose to incorporate the community-preserving
property into the Siamese GCN model. We integrate the
community-preserving property and the pair-wise similarity
learning strategy into a unified framework and call it Siamese
Community-Preserving GCN (SCP-GCN).

The goal of community preserving is that if two nodes are
from the same community in the original graph, the Euclidean
distance between the learned node embeddings should be
small, otherwise they should have a large distance in their
node embedding space. As shown in Fig. 1, we employ
spectral clustering [22] to detect the communities from the
original structural network. Spectral clustering, which detect
communities of nodes in a graph based on the eigenvalues
(spectrum) of Laplacian matrix built from the graph, has been
shown to be an effective way to obtain the community/modular
structure in brain networks [23], [24]. Therefore, we employ
the spectral clustering algorithm [25] on G(s) to capture
the community structure of the structural brain network in
the original space, and we aim to preserve this community
structure in the learning process of Siamese GCN.

Each community c detected in the network G(s) is rep-
resented as a set Sc, which contains the indexes of nodes
belonging to community c. We compute a community center
embedding ẑc = 1

|Sc|
∑

i∈Sc
zi for each community c, where

zi is the embedding of the ith node, i.e., the ith row in the
graph embedding Z.

The community-preserving objective consists of two com-
ponents: 1) minimizing the intra-community loss, i.e. the
distance between community center ẑc and node embed-
dings belonging to community, and 2) maximizing the inter-
community loss, i.e., the distance between the centers of
different communities. By combining these two parts, we have
the following function as community-preserving loss:

LCP = α(
∑

c

1

|Sc|
∑

i∈Sc

‖zi − ẑc‖22)− β
∑

c,c′
‖ẑc − ẑc′‖22 (5)

where the first part computes the Euclidean distance between
node embedding zi and its community center ẑc. The second
part computes the distance between community center ẑc and
ẑc′ . α and β are weights of intra/inter-community loss.

Now we have the overall loss function for our SCP-GCN
framework, which can be written as

L =
∑

i,j

LS +
N∑

i

LCP (6)

By combining the contrastive loss with community-preserving
loss in this way, we can leverage the community structure
in the learning process of GCN in Siamese network. The
community structure in the original brain network could be
preserved in the embedding space when we minimize the loss
in Equation (6). After the training process, we can use either
branch of the twin GCN networks in SCP-GCN for computing
a structural and functional joint graph embedding for a given
brain network, and the output graph embedding will not
only contain group-contrasting features but also preserve the
community structure of the structural brain network, both of
which are important for further neurological disorder analysis.

IV. EXPERIMENTS

In order to evaluate the proposed framework for structural
and functional joint embedding of brain networks, we compare
our approach with the state-of-the-art methods in this field on
two real-world brain datasets for neurological analysis.

A. Datasets and Preprocessing

• Human Immunodeficiency Virus Infection (HIV): This
dataset is collected from the Chicago Early HIV Infection
Study at Northwestern University[26]. This clinical study
involves 77 subjects (56 early HIV patients and 21
seronegative controls). This dataset contains both the
fMRI and DTI images for each subject, from which we
can construct the fMRI and DTI brain networks.

• Bipolar: This dataset consists of the fMRI and DTI image
data of 52 bipolar I subjects who are in euthymia and 45
healthy controls with matched age and gender [27].

The detailed description of the datasets and preprocessing can
be found in [20].

B. Baselines and Metrics

• DeepWalk[28] is a method for learning node embedding
in graphs. It uses local information obtained from random
walks on graphs to learn latent node representations. In
our experiments, we run DeepWalk on DTI and fMRI
networks separately to get the node embedding of each
network. Graph embedding is obtained by concatenating
the node embeddings of the two networks.

• node2vec [29] learns node embedding by extending
DeepWalk with more complicated random walk or search
method. In our experiment, we follow the same experi-
ment setup as DeepWalk.

• SDBN [7] is a CNN based deep learning method. Since
this method can only deal with single-view brain network,
we apply it on fMRI brain network and DTI brain
network respectively and report the best performance
from the two cases.

• MVGE-HD [9] is a multi-view graph embedding method
for jointly learning multi-view embedding and hubs from
brain networks. In the evaluation, we treat fMRI brain
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TABLE I
CLASSIFICATION ACCURACY (MEAN ± STD).

Methods Bipolar HIV

DeepWalk 0.520 ± 0.034 0.575 ± 0.041
node2vec 0.555 ± 0.031 0.625 ± 0.029
SDBN 0.648 ± 0.010 0.665 ± 0.010
MVGE-HD 0.656 ± 0.012 0.681 ± 0.015
GCN 0.547 ± 0.038 0.618 ± 0.049
CP-GCN 0.562 ± 0.039 0.648 ± 0.061
S-GCN 0.649 ± 0.033 0.701 ± 0.090
SCP-GCN 0.677 ± 0.033 0.768 ± 0.110

TABLE II
CLASSIFICATION F1 SCORE (MEAN ± STD).

Methods Bipolar HIV

DeepWalk 0.589 ± 0.024 0.634 ± 0.021
node2vec 0.614 ± 0.029 0.640 ± 0.015
SDBN 0.637 ± 0.010 0.667 ± 0.010
MVGE-HD 0.661 ± 0.010 0.705 ± 0.011
GCN 0.612 ± 0.029 0.713 ± 0.039
CP-GCN 0.617 ± 0.036 0.766 ± 0.055
S-GCN 0.744 ± 0.029 0.787 ± 0.010
SCP-GCN 0.750 ± 0.033 0.840 ± 0.010

network and DTI brain networks as two views and apply
the MVGE-HD to get the embedding of all the instances.

• GCN is the graph convolutional network approach pre-
sented in [19]. We apply it on the fMRI and DTI
brain networks by using DTI structural connectivity as
graph structure and using fMRI functional connectivity
as node features during the graph convolutions to learn
the structural and functional joint embedding.

• CP-GCN is the graph convolutional network approach
with the community-preserving property, i.e., the pro-
posed SCP-GCN without Siamese architecture.

• S-GCN is the Siamese graph convolutional network in-
troduced in III-B, i.e., the proposed SCP-GCN without
community-preserving property.

• SCP-GCN is the full framework proposed in this paper.
To evaluate the quality of the learned brain network embed-

ding for neurological disorder analysis, we feed the learned
brain network representation to a sigmoid classifier for neu-
rological disorder detection. We use accuracy and F1 score
as the evaluation metrics. For all the GCNs in the compared
methods, we use 2 convolutional layers followed with one
fully connected layer, with 256 features for the first convo-
lutional layer and 128 features for the second convolutional
layer. We use binary cross entropy loss [30] for the baseline
GCN method, and we use the ADAM optimizer [31] as the
optimization algorithm. We run each experiment for 100 times
and report the average performance in Table I and Table II.
More details about the experimental setup can be found in
[20].

C. Evaluation Results

As we can see from Table I and Table II, the embedding
obtained by the proposed SCP-GCN results in the best per-

formance on both datasets in terms of classification accuracy
and F1 score. Among the eight methods, we observe that
DeepWalk and node2vec achieve lower accuracy and F1 score
compared to the other six methods which are all deep learning
models. This indicates that the deep neural networks could bet-
ter capture the complicated graph features from brain networks
for the classification task compared to these two traditional
network embedding methods. In addition, SDBN, MVGE-HD,
CP-GCN and SCP-GCN are the ones that consider community
structure of brain networks during the representation learning.
By comparing CP-GCN with GCN and SCP-GCN with S-
GCN, we find that adding the community-preserving property
helps improve the learning performance of GCN and S-GCN,
indicating the importance of community structure in brain
network analysis. By comparing S-GCN with GCN and SCP-
GCN with CP-GCN, we can see that the pair-wise similarity
learning enabled by Siamese network leads to a better learning
performance, which shows the pair-wise similarity learning
component can guide the representation learning towards a
better network embedding for group-contrasting analysis. It
can also help reduce the possible over-fitting problem due
to the small sample size of brain network data. Based on
these observations, we find that the community structure
preserving, structural and functional information integration as
well as the Siamese similarity learning are three key factors
that facilitate the learning ability of the proposed SCP-GCN
approach, resulting in a superior performance of SCP-GCN in
neurological disorder detection. More evaluation details, case
studies and parameter analysis are provided in [20].

V. RELATED WORKS

Brain network analysis has been an emerging research area,
as it yields new insights concerning the understanding of
brain function and many neurological disorders [32]. Existing
works in brain networks mainly focus on discovering brain
network from spatio-temporal voxel-level data or mining from
brain networks for neurological analysis [33], [23], [34], [10],
[7], [35]. For example, in [34], an unsupervised matrix tri-
factorization method is developed to simultaneously discover
nodes and edges of the underlying brain networks in fMRI
data. In [10], the functional network and structural network of
each subject are stacked together into a tensor and a tensor
factorization based multi-view embedding method is applied
to learn a consensus embedding from the two networks for
clustering analysis. Recently, [36], [37] introduce GCN based
similarity learning for brain network analysis. However, they
focus on learning a similarity metric on fMRI brain networks,
whereas our goal is to jointly learn graph embedding from both
DTI and fMRI networks for neurological disorder detection.

In recent years, Graph convolutional network (GCN) has
been widely investigated to facilitate graph mining [13], [19],
[38], [39]. In the application of semi-supervised classification
for nodes, [19] presents a simple and effective way to learn
node embeddings through a re-normalization trick to simplify
and speed up computations of previous GCNs. LanczosNet
[38] leverages the Lanczos algorithm to construct a low
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rank approximation of the graph Laplacian, which provides
an efficient way to gather multi-scale information for graph
convolution. Our community-preserving GCN provides a new
perspective for many applications that involves community
structure in the learning on graphs.

VI. CONCLUSIONS

Heterogeneous sources of brain data provide a valuable
opportunity for a more comprehensive understanding of con-
nectivity and function of the human brain. In this paper,
we push forward the analysis of human brain by combining
structural connectivity network (e.g., DTI) and functional
signals (e.g., fMRI) in a uniform framework, in which the
task of accurately classifying brain disease is achieved by
incorporating the community-preserving property into graph
convolutional networks while learning their structural and
functional joint embedding. A pair-wise similarity learning
strategy is devised into this unified framework called Siamese
Community-Preserving GCN (SCP-GCN). The superiority of
our framework is demonstrated by empirical results on two real
brain network datasets (i.e., Bipolar and HIV) against state-
of-the-art approaches.
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