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ABSTRACT

Click data collected by modern recommendation systems are an
important source of observational data that can be utilized to train
learning-to-rank (LTR) systems. However, these data suffer from
a number of biases that can result in poor performance for LTR
systems. Recent methods for bias correction in such systems mostly
focus on position bias, the fact that higher ranked results (e.g., top
search engine results) are more likely to be clicked even if they are
not the most relevant results given a user’s query. Less attention
has been paid to correcting for selection bias, which occurs because
clicked documents are reflective of what documents have been
shown to the user in the first place. Here, we propose new coun-
terfactual approaches which adapt Heckman'’s two-stage method
and accounts for selection and position bias in LTR systems. Our
empirical evaluation shows that our proposed methods are much
more robust to noise and have better accuracy compared to existing
unbiased LTR algorithms, especially when there is moderate to no
position bias.
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1 INTRODUCTION

The abundance of data found online has inspired new lines of
inquiry about human behavior and the development of machine-
learning algorithms that learn individual preferences from such
data. Patterns in such data are often driven by the underlying algo-
rithms supporting online platforms, rather than naturally-occurring
user behavior. For example, interaction data from social media news
feeds, such as user clicks and comments on posts, reflect not only
latent user interests but also news feed personalization and what
the underlying algorithms chose to show to users in the first place.
Such data in turn are used to train new news feed algorithms, prop-
agating the bias further [9]. This can lead to phenomena such as
filter bubbles and echo chambers and can challenge the validity of
social science research that relies on found data [26, 30].

One of the places where these biases surface is in personalized
recommender systems whose goal is to learn user preferences from
available interaction data. These systems typically rely on learning
procedures to estimate the parameters of new ranking algorithms
that are capable of ranking items based on inferred user preferences,
in a process known as learning-to-rank (LTR) [32]. Much of the work
on unbiasing the parameter estimation for learning-to-rank systems
has focused on position bias [29], the bias caused by the position
where a result was displayed to a user. Position bias makes higher
ranked results (e.g., top search engine results) more likely to be
clicked even if they are not the most relevant.

Algorithms that correct for position bias typically assume that
all relevant results have non-zero probability of being observed
(and thus clicked) by the user and focus on boosting the relevance
of lower ranked relevant results [29]. However, users rarely have
the chance to observe all relevant results, either because the system
chose to show a truncated list of top k recommended results or
because users do not spend the time to peruse through tens to
hundreds of ranked results. In this case, lower ranked, relevant
results have zero probability of being observed (and clicked) and
never get the chance to be boosted in LTR systems. This leads to
selection bias in clicked results which is the focus of our work.

Here, we frame the problem of learning to rank as a counterfac-
tual problem of predicting whether a document would have been
clicked had it been observed. In order to recover from selection
bias for clicked documents, we focus on identifying the relevant
documents that were never shown to users. Our formulation is dif-
ferent from previous counterfactual formulations which correct for
position bias and study the likelihood of a document being clicked
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had it been placed in a higher position given that it was placed in a
lower position [29].

Here, we propose a general framework for recovering from se-
lection bias that stems from both limited choices given to users and
position bias. First, we propose Heckman""¥ | an algorithm for
addressing selection bias in the context of learning-to-rank systems.
By adapting Heckman’s two-stage method, an econometric tool for
addressing selection bias, we account for the limited choice given
to users and the fact that some items are more likely to be shown to
a user than others. Because this correction method is very general,
it is applicable to any type of selection bias in which the system’s
decision to show documents can be learned from features. Because
Heckman"@"¥ treats selection as a binary variable, we propose two
bias-correcting ensembles that account for the nuanced probability
of being selected due to position bias and combine Heckman”?"k
with existing position-bias correction methods.

Qur experimental evaluations demonstrate the utility of our
proposed method when compared to state-of-the-art algorithms
for unbiased learning-to-rank. Our ensemble methods have better
accuracy compared to existing unbiased LTR algorithms under
realistic selection bias assumptions, especially when the position

rank js more robust to noise

bias is not severe. Moreover, Heckman'
than both ensemble methods and position-bias correcting methods
across difference position bias assumptions. The experiments also
show that selection bias affects the performance of LTR systems

rank

even in the absence of position bias, and Heckman is able to

correct for it.

2 RELATED WORK

Here, we provide the context for our work and present the three ar-
eas that best encompass our problem: bias in recommender systems,
selection bias correction, and unbiased learning-to-rank.

Bias in recommender system. Many technological platforms,
such as recommendation systems, tailor items to users by filtering
and ranking information according to user history. This process
influences the way users interact with the system and how the
data collected from users is fed back to the system and can lead to
several types of biases. Chaney et al. [9] explore a closely related
problem called algorithmic confounding bias, where live systems
are retrained to incorporate data that was influenced by the rec-
ommendation algorithm itself. Their study highlights the fact that
training recommendation platforms with naive data that are not
debiased can cause a severe decrease in the utility of such systems.
For example, “echo chambers” are consequence of this problem
[17, 20], where users are limited to an increasingly narrower choice
set over time which can lead to a phenomenon called polarization
[18]. Popularity bias, is another bias affecting recommender system
that is studied by Celma and Cano [8]. Popularity bias refers to
the idea that a recommender system will display the most popular
items to a user, even if they are not the most relevant to a user’s
query. Recommender systems can also affect users decision making
process, known as decision bias, and Chen et al. [13] show how
understanding this bias can improve recommender systems. Posi-
tion bias is yet another type of bias that is studied in the context
of learning-to-rank systems and refers to documents that higher
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ranked will be more likely to be selected regardless of the docu-
ment’s relevancy. Joachims et al. [29] focus on this bias and we
compare our results to theirs throughout.

Selection bias correction. Selection bias occurs when a data
sample is not representative of the underlying data distribution.
Selection bias can have various underlying causes, such as partici-
pants self-selecting into a study based on certain criteria, or subjects
choosing over a choice set that is restricted in a non-random way.
Selection bias could also encompass the biases listed above. Various
studies attempt to correct for selection bias in different contexts.

Heckman correction, and more generally, bivariate selection
models, control for the probability of being selected into the sam-
ple when predicting outcomes [21]. Smith and Elkan [40] study
Heckman correction for different types of selection bias through
Bayesian networks, but not in the context in learning-to-rank sys-
tems. Zadrozny [45] study selection bias in the context of well-
known classifiers, where the outcome is binary rather than con-
tinuous as with ranking algorithms. Selection bias has also been
studied in the context of causal graphs [4-6, 14, 15]. For example,
if an underlying data generation model is assumed, Bareinboim
and Pearl [3] show that selection bias can be removed even in the
presence of confounding bias, i.e., when a variable can affect both
treatment and control. We leverage this work in our discussion of
identifiability under selection bias.

The most related work to our context are studies by Hernandez-
Lobato et al. [22], Schnabel et al. [37], Wang et al. [43]. Both Schn-
abel et al. [37] and Hernandez-Lobato et al. [22] use a matrix factor-
ization model to represent data (ratings by users) that are missing
not-at-random, where Schnabel et al. [37] outperform Hernandez-
Lobato et al. [22]. More recently, Joachims et al. [29] propose a
position debiasing approach in the context of learning-to-rank sys-
tems as a more general approach compared to Schnabel et al. [37].
Throughout, we compare our results to Joachims et al. [29], al-
though, it should be noted that the latter deals with a more specific
bias - position bias - than what we address here. Finally, Wang et al.
[43] address selection bias due to confounding, whereas we address
selection bias that is treatment-dependent only.

Unbiased learning-to-rank. The problem we study here in-
vestigates debiasing data in learning-to-rank systems. There are
two approaches to LTR systems, offline and online, and the work
we propose here falls in the category of offline LTR systems.

Offline LTR systems learn a ranking model from historical click
data and interpret clicks as absolute relevance indicators [2, 7, 12,
16, 24, 27-29, 36, 41, 42]. Offline approaches must contend with the
many biases that found data are subject to, including position and
selection bias, among others. For example, Wang et al. [41] use a
propensity weighting approach to overcome position bias. Simi-
larly, Joachims et al. [29] propose a method to correct for position
bias, by augmenting SVM" %™ learning with an Inverse Propensity
Score defined for clicks rather than queries. They demonstrate that
Propensity-Weighted SVM"%"™ outperforms a standard Ranking
SVM" %" by accounting for position bias. More recently Agarwal
et al. [1] proposed nDCG SVM" 4"k that outperforms Propensity-
Weighted SVM"9"K [29], but only when position bias is severe. We
show that our proposed algorithm outperforms [29] when position
bias is not severe. Thus, we do not compare our resulis to [1].
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Other studies aim to improve on Joachims et al. [29], such as Wang
et al. [42] and Ai et al. [2], but only in the ease of their method-
ology. Wang et al. [42] propose a regression-based Expectation
Maximization method for estimating the click position bias, and its
main advantage over Joachims et al. [29] is that it does not require
randomized tests to estimate the propensity model. Similarly, the
Dual Learning Algorithm (DLA) proposed by Ai et al. [2] jointly
learns the propensity model and ranking model without randomiza-
tion tests. Hu et al. [24] introduce a method that jointly estimates
position bias and trains a ranker using a pairwise loss function. The
focus of these latter studies is position bias and not selection bias,
namely the fact that some relevant documents may not be exposed
to users at all, which is what we study here.

In contrast to offline LTR systems, online LTR algorithms inter-
vene during click collection by interactively updating a ranking
model after each user interaction [11, 23, 25, 33, 35, 38, 39, 44]. This
can be costly, as it requires intervening with users’ experience of the
system. The main study in this context is Jagerman et al. [25] who
compare the online learning approach by Oosterhuis and de Rijke
[33] with the offline LTR approach proposed by Joachims et al. [29]
under selection bias. The study shows that the method by Qoster-
huis and de Rijke [33] outperforms [29] when selection bias and
moderate position bias exist, and when no selection bias and severe
position bias exist. One advantage of our offline algorithms over
online LTR ones is that they do not have a negative impact on user
experience while learning.

3 PROBLEM DESCRIPTION

In this section, we review the definition of learning-to-rank systems,
position and selection bias in recommender systems, as well as our
framing of bias-corrected ranking with counterfactuals.

3.1 Learning-to-Rank Systems

We first describe learning-to-rank systems assuming knowledge of
true relevances (full information setting) following [29]. Given a
sample X of i.i.d. queries (x; ~ P(x)) and relevancy score rel(x, y) for
all documents y, we denote A (y|X;) to be the loss of any ranking
y for query X;. The risk of ranking system S that returns ranking
5(x) for queries X is given by:

R(S) = IA (SO) d P(x). o)

Since the distribution of queries is not known in practice, R(S)
cannot be computed directly, it is often estimated empirically as
follows:

R(S) = lxil I a6 @

The goal of learning-to-rank systems is to find a ranking function
S c & that minimizes the risk }i(S) Learning-to-rank systems are a
special case of a recommender system where, appropriate ranking
is learned.

The relevancy score rel(X;, y) denotes the true relevancy of doc-
ument y for a specific query x;. It is typically obtained via human
annotation, and is necessary for the full information setting. Despite
being reliable, true relevance assignments are frequently impossible
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or expensive to obtain because they require a manual evaluation of
every possible document given a query.

Due to the cost of annotation, recommender system training
often relies on implicit feedback from users in what is known as
partial information setting. Click logs collected from users are easily
observable in any recommender system, and can serve as a proxy
to the relevancy of a document. For this reason clicks are frequently
used to train new recommendation algorithms. Unfortunately, there
is a cost for using click log data because of noise (e.g., people can
click on items that are not relevant) and various biases that the data
are subject to, including position bias and selection bias which we
discuss next.

3.2 Position bias

Implicit feedback (clicks) in LTR systems is inherently biased. Posi-
tion bias refers to the notion that higher ranked results are more
likely to be clicked by a user even if they are not the most relevant
results given a user’s query.

Previous work [29, 41] has focused on tempering the effects
of position bias via inverse propensity weighting (IPW). IPW re-
weights the relevance of documents using a factor inversely related
to the documents’ position on a page. For a given query instance
X;, the relevance of document y to query Xx; is ri(y) € {0,1}, and
0; € {0, 1} is a set of vectors indicating whether a document y is
observed. Suppose the performance metric of interest is the sum of
the rank of relevant documents:

A(ylxi,ri) = > rank(yly) ri(y). 3)
yey

Due to position bias, given a presented ranking ¥;, clicks are more
likely to occur for top-ranked documents. Therefore, the goal is to
obtain an unbiased estimate of A (y|x;, r;) for a new ranking y.

There are existing approaches that address position bias in LTR
systems. For example, Propensity SVM" %"k proposed by Joachims
et al. [29], is one such algorithm. It uses inverse propensity weights
(IPW) to counteract the effects of position bias:

rank
D (yly)

_— 4
y:0;=1Ar;=1 Q{Ol = llxl! ?i,ri) ( )

Arpw (VIXi.¥i,08) =

where the propensity weight Q(o; = 1|Xi,¥i,ri) denotes the mar-
ginal probability of observing the relevance r;(y) of result y for
query X;, when the user is presented with ranking ¥;j. Joachims
et al. [29] estimated the IPW to be:

1 n
Q{Oiz ]|X:‘,)_rf’ri): (m] (5)

where 7 is severity of position bias. The IPW has two main proper-
ties. First, it is computed only for documents that are observed and
clicked. Therefore, documents that are never clicked do not con-
tribute to the IPW calculation. Second, as shown by Joachims et al.
[29], a ranking model trained with clicks and the IPW method will
converge to a model trained with true relevance labels, rendering a
LTR framework robust to position bias.
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3.3 Selection bias

LTR systems rely on implicit feedback (clicks) to improve their
performance. However, a sample of relevant documents from click
data does not reflect the true distribution of all possible relevant
documents because a user observes a limited choice of documents.
This can occur because i) a recommender system ranks relevant
documents too low for a user to feasibly see, or ii) because a user
can examine only a truncated list of top k recommended items.
As a result, clicked documents are not randomly selected for LTR
systems to be trained on, and therefore cannot reveal the relevancy
of documents that were excluded from the ranking ¥. This leads to
selection bias.

Selection bias and position bias are closely related. Besides selec-
tion bias due to unobserved relevant documents, selection bias can
also arise due to position bias: lower ranked results are less likely to
be observed, and thus selected more frequently than higher-ranked
ones. Previous work on LTR algorithms that corrects for position
bias assigns a non-zero observation probability to all documents,
and proofs of debiasing are based on this assumption [29]. However,
in practice it is rarely realistic to assume that all documents can be
observed by a user. When there is a large list of potentially relevant
documents, the system may choose to show only the top k results
and a user can only act on these results. Therefore, lower-ranked
results are never observed, which leads to selection bias. Here, we
consider the selection bias that arises when some documents have
a zero probability of being observed if they are ranked below a
certain cutoff k. The objective of this paper is to propose a rank-
ing algorithm that corrects for both selection and position bias,
and therefore is a better tool for training future LTR systems (see
Section 4.1).

3.4 Ranking with counterfactuals

We define the problem of ranking documents as a counterfactual
problem [34]. Let O(x,y) € {0, 1} denote a treatment variable in-
dicating whether a user observed document y given query x. Let
Co=1(x,y) € {0,1} represent the click counterfactual indicating
whether a document y would have been clicked had y been ob-
served under query X. The goal of ranking with counterfactuals is
to reliably estimate the probability of click counterfactuals for all
documents:

P(Co-1 =1X=xY =y) (6)

and then rank the documents according to this probability. Solving
the ranking with counterfactuals problem would allow us to find
a ranking system S that returns ranking S(x) for query X that is
robust to selection bias.

Current techniques that correct for position bias aim to provide
reliable estimates of this probability by taking into consideration
the rank-dependent probability of being observed. However, this
approach is only effective for documents that have a non-zero

probability of being observed:
P(Co-1 =10 =1,rank =i, X =x,Y = y). (7)

The challenge with selection bias is to estimate this probability for
documents that have neither been observed nor clicked in the first
place:

Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva

P(Coe; =1]0=0,C=0,X=xX,Y = y) (8)
= P(Co-1 =1]0=0,X =X,Y = y). (9)

To address this challenge, in the following Section 4 we turn to
econometric methods, which have a long history of addressing
selection bias.

Note that in order to recover from selection bias we must address
the concept of identifiability and whether causal estimates can even
be obtained in the context of our setup. A bias is identified to
be recoverable if the treatment is known [6]. In our context the
treatment is whether a document enters into the data training pool
(clicked). While it is difficult to guarantee that a user observed a
document that was shown to them (i.e. we cannot know whether
an absence of a click is due non-observance or to non-relevance), it
is easier to guarantee that a document was not observed by a user if
it was not shown to them in the first place (e.g., it is below a cutoff
for top k results or the user never scrolled down to that document
in a ranked list). Our proposed solution, therefore, identifies the
treatment first as a binary variable (whether the document is shown
versus not shown) and then as a continuous variable that takes
position bias into account.

4 BIAS-CORRECTED RANKING WITH
COUNTERFACTUALS

In this section we adapt a well-known sample selection correction
method, known as Heckman’s two-stage correction, to the con-
text of LTR systems. Integrating the latter framework requires a
detailed understanding of how LTR systems generally process and
cut interaction data to train new recommendation algorithms, and
at what stages in that process selection biases are introduced. Thus,
while the methodology we introduce is a well established tool in the
causal inference literature, integrating it within the multiple stages
of training a machine learning algorithm is a complex translational
problem. We then introduce two aggregation methods to combine
our proposed Heckman"®"¥ | correcting for selection bias, with ex-
isting methods for position bias to further improve the accuracy in
ranking prediction.

4.1 Selection bias correction with Heckman"®"*

Econometrics, or the application of a statistical methods to eco-
nomic problems, has long been concerned with confounded or
held-out data in the context of consumer choices. Economists are
interested in estimating models of consumer choice to both learn
consumers’ preferences and to predict their outcomes. Frequently,
the data used to estimate these models are observational, not exper-
imental. As such, the outcomes observed in the data are based on a
limited and self-selected sample. A quintessential example of this
problem is estimating the impact of education on worker’s wages
based on only those workers who are employed [21]. However,
those who are employed are a self-selected sample, and estimates
of education’s effect on wages will be biased.

A broad class of models in econometrics that deal with such
selection biases are known as bivariate sample selection models.
A well-known method for correcting these biases in economics
is known as Heckman correction or two-step Heckman. In the
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first stage the probability of self selection is estimated, and in the
second stage the latter probability is accounted for. As Heckman
[21] pointed out self selection bias can occur for two reasons. “First,
there may be self selection by the individuals or data units being
investigated (as in the labor example). Second, sample selection
decisions by analysts or data processors operate in much the same
fashion as self selection (by individuals).”

Adapting a sample selection model, such as Heckman’s, to LTR
systems requires an understanding of when and how data are pro-
gressively truncated when training a recommender algorithm. We
introduce notation and a framework to outline this problem here.

Let cy,y denote whether a document y is selected (e.g., clicked)
under query x for each < query, document > pair; Fy, y represents
the features of the < query,document >, and ex_y is a normally
distributed error term. The same query can produce multiple <
query, document > pairs, where the documents are then ordered
by a LTR algorithm. However, it is important to note that a LTR
algorithm will not rank every single document in the data given a
query. Unranked documents are typically discarded when training
future algorithms. Herein lies the selection bias. Documents that
are not shown to the user can then never be predicted as a potential
choice. Moreover, documents far down in the rankings may still
be kept in future training data, but will appear infrequently. Both
these points will contribute to generating increasingly restrictive
data that new algorithms are trained on.

If we fail to account for the repercussions of these selection
biases, then modeling whether a document is selected will be based
only upon the features of documents that were ranked and shown
to the user, which can be written as:

Cx,y = abiasedpx,y + €x,y- (].0)

In this setup we only consider a simple linear model; however,
future research will incorporate nonlinear models. In estimating
(10), we refer to the feature weights estimator, a?95¢4 a5 being
biased, because the feature design matrix will only reflect docu-
ments that were shown to the user. But documents that were not
shown to the user could also have been selected. Thus, (10) reflects
the limitation outlined in (7). When we discard unseen documents
then we can only predict clicks for documents that were shown,
while our objective is to predict the unconditional probability that
a document is clicked regardless of whether it was shown.

To address this point, we will first explicitly model an algorithm’s
document selection process. Let oy, y denote a binary variable that
indicates whether a document y is shown and observed (ox,y = 1)
or not shown and not observed (ox,; = 0). For now, we assume
that if a document is shown to the user that user also sees the
document. We relax this assumption in Section 4.2. Zy y is a set
of explanatory variables that determine whether a document is
shown, which includes the features in F. X,y but can also include
external features, including characteristics of the algorithm that
first generated the data:

0x,y = 1(0Zx,y + €, > 0). (11)

In the first stage of Heckman” 9"k we estimate the probability
of a document being observed using a Probit model:

Plox,y = 1|Zx,y) = P(OZx,y + €x,y > 0|Zy,y) = ®(OZy,y) (12)
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where @() denotes the standard normal CDF. Note that a crucial
assumption here is that we will use both seen and unseen documents
for a given query in estimating (12). Therefore, the dimensions
of our data will be far larger than if we had discarded unseen
documents, as most LTR systems typically do. After estimating (12)
we can compute what is known as an Inverse Mills ratio for every
< query, document > pair:

_ $(0Zx,y)
Y 9(0Zy,y)

where ¢() is the standard normal distribution. Ay, , reflects the
severity of selection bias and corresponds to our desire to condition
on O = 0 versus O = 1, as described in Equations 7 and 9, but using
a continuous variable reflecting the probability of selection.

In the second stage of Heckman” 2"k we estimate the probability
of whether a user will click on a document. Heckman'’s seminal
work showed that if we condition our estimates on the Ax y our es-
timated feature weights will be statistically unbiased in expectation.
This can improve our predictions if we believe that including Ax_
is relevant in predicting clicks. We assume joint normality of the
errors, and our setup naturally implies that the error terms ey, ; and

(1)

€x,y are correlated, namely that clicking on a document depends
upon whether a document is observed by users and, therefore, has
the potential for being selected.

The conditional expectation of clicking on a document condi-
tional on the document being shown is given by:

(13)

]E[(:,,f,g,.|J':',o,,f,!‘|I =1]= a'Fx,y +]E(f,,f,!‘l.|J':',cr,,f,!‘|I =1)= a'Fx,y + O')I,x,y
(14)

We can see that if the error terms in (10) and (11) are correlated
then E(ex, y|F, 0x,y = 1) > 0), and estimating (14) without account-
ing for this correlation will lead to biased estimates of a. Thus, in
the second stage, we correct for selection bias to obtain an unbiased
estimate of & by controlling for ):x,y:

Cry = @“MPIOEAE L 0A s (075 y) + Exy (15)

Estimation of (15) allows us to predict click probabilities, ¢, where
& = gunbiasedp, 4 5], (0Zy,y). This click probability refers
to our ability to estimate (9), the unconditional click probability,
using Heckman@"* . We then compute document rankings for a
given query by sorting documents according to their predicted
click probabilities. Note that our main equation (15) has a bivariate
outcome. Thus, in this selection correction setup we are following
a Heckprobit model, as opposed to the initial model that Heckman
proposed in Heckman [21] where the main outcome is a continuous
variable.

QOur setup helps account for the inherent selection bias that can
occur in any LTR system, as all LTR systems must make a choice in
what documents they show to a user. What is unique to our formu-
lation of the problem is our use of a two stage estimation process
to account for the two stage document selection process: namely,
whether the document is shown, and whether the document is then
selected. Accounting for the truncation of the data is critical for
training a LTR system, and previously has not been considered. In
order to improve a system'’s ranking accuracy it must be able to
predict document selection for both unseen as well as seen docu-
ments. If not, the choice set of documents that are available to a
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user can only become progressively smaller. Our correction is a
simple method to counteract such a trend in found data.

4.2 Bias-correcting ensembles

Biased data limits the ability to accurately train an LTR algorithm
on click logs. In this section, we present methods for addressing two
types of selection bias, one stemming from truncated recommenda-
tions and the other one from position bias. One of the deficiencies
of using Heckman” @K to deal with biased data is that it assumes
that all documents that are shown to a user are also observed by
the user. However, due to position bias that is not necessarily the
case, and lower-ranked shown documents have lower probability
of being observed. Therefore, it is natural to consider combining

Heckman"ank

, which focuses on recovering from selection bias due
to unobserved documents, with a ranking algorithm that accounts
for the nuanced observation probability of shown documents due
to position bias.

Algorithms that rely on IPW [1, 29, 41] consider the propensity
of observation for any document given a ranking for a certain query
and it is exponentially dependent on the rank of the document in
the given ranking. This is clearly different from our approach for
recovering from selection bias where we model the observation
probability to be either 0 or 1 depending on its position relative in
the ranking.

Ensemble ranking objective. In order to harness the power of
correcting for these biases in a collective manner, we propose to use
ensembles that can combine the results produced by Heckman” 9™
and any position bias correcting method. We refer to the algorithm
correcting for selection bias as A and for position bias as A, while
¥s and yp are the rankings generated for a certain query x by the
algorithms respectively. Our goal is to produce an ensemble ranking
Ve based on ys and y, for all queries that is more accurate than
either ranking alone.

There is a wide scope for designing an appropriate ensemble
method to serve our objective. We propose two simple but pow-
erful approaches, as our experimental evaluation shows. The two
approaches differ in their fundamental intuition. The intuition be-
hind the first approach is to model the value of individual ranking
algorithms through a linear combination of the rankings they pro-
duce. We can learn the coefficients of that linear combination using
linear models on the training data. We call this method Linear
Combination. The second approach is a standard approach for com-
bining ranking algorithms using Borda counts [19]. It works as
a post processing step after the candidate algorithms As and Ap
produce their respective rankings ys and y,. We apply a certain
Rank Aggregation algorithm over ys and y, to produce y, for a
given query for evaluation. Next, we discuss each of the approaches
in the context of our problem.

4.2.1 Linear Combination. A simple aggregation method for
combining As and Ap is to estimate the value of each algorithm
in predicting a click. After training the algorithms A5 and Ap, we
use the same training data to learn the weights of a linear model
that considers the rank of each document produced by As and Ap.
For any given query X the ranking of document y produced by
Aj is given by rank(y|y s, x). Similarly, rank(ylyp, X) represents the
ranking given by Ap. We also consider the relevance of document y,
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rel(x, y) which is either 0 for not relevant or 1 for relevant, modeled
through clicks.

We train a binary classifier to predict relevance (click) of docu-
ments which incorporates the estimated value of individual algo-
rithms. We select logistic regression to be the binary classifier in
our implementation, but any other standard classification method
should work as well. We model the relevance of a document y, given

two rankings ys and y, as the following logistic function:

1
|+ e-(worwisrank(ylysxyrworrank(ylys. )

rel(x,y) =

Upon training the logistic regression model we learn the param-
eters wo, w1, wz where w1 and wz represent the estimated impact
of Ag and Ap respectively. During evaluation we predict the click
counterfactual probability for each < query, document > pair us-
ing the trained classifier. Then we can sort the documents for each
query according to these probability values to generate the final
ensemble ranking ye.

4.2.2 Rank Aggregation. Rank aggregation aims to combine
rankings generated by multiple ranking algorithms. In a typical rank
aggregation problem, we are given a set of rankings y1,¥2,....Ym
of a set of objects y1,y2, ..., yn given a query X. The objective is to
find a single ranking y that corroborates with all other existing
rankings. Many aggregation methods have been proposed [31]. A
commonly used approach is the Borda count, which scores docu-
ments based on their relative position in a ranking, and then totals
all scores across all rankings for a given query [19].

In our scenario, we have two rankings ys and y,. For a given
query, there are n documents to rank. Consider B(ys, ;) as the score
for document y; (i € {1,2,...,n}) given by y;. Similarly, B(yp, y;)
refers to the score for document y; given by y,. The total score
for document y; would be B(ys,yi) + B(yp,yi). Based on these
total scores we sort the documents in non-ascending order of their
scores to produce the ensemble ranking y.. The score given to a
document y; in a specific ranking ys (or yp) is simply the number
of documents it beats in the respective ranking. For example, given
a certain query, if a document is ranked 1°¢ in y; and 3’% in ¥p
then the total score for this document would be (n— 1)+ (n —3). This
very simple scheme reflects the power of the combined method to
recover from different biases in LTR systems.

5 EXPERIMENTS

In this section, we evaluate our proposed approach for addressing
selection bias under several conditions:
e Varying the number of observed documents given a fixed
position bias (Section 5.2)
e Varying position bias with no noise (Section 5.2.1)
e Varying position bias with noisy clicks (Section 5.2.2)
e Varying noise level in click sampling (Section 5.2.3)

The parameter values are summarized in Table 1.

5.1 Experimental setup

Next, we describe the dataset we use, the process for click data
generation, and the evaluation framework.
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5.1.1 Base dataset. In order to explore selection bias in LTR sys-
tems, we conduct several experiments using semi-synthetic datasets
based on set 1 and set 2 from the Yahoo! Learning to Rank Challenge
(C14B) !, denoted as Dy Tg. Set 1 contains 19, 944 train and 6, 983
test queries including 473, 134 train and 165, 660 test documents.
Set 2 contains 1,266 train queries and 34, 815 train documents,
with 20 documents per query on average [10]. Each query is repre-
sented by an id and each <query, document> pair is represented
by a 700-dimensional feature vector with normalized feature val-
ues € [0, 1]. The dataset contains true relevance of rankings based
on expert annotated relevance score € [0, 4] associated with each
< query,document > pair, with 0 meaning least relevant and 4
most relevant. We binarized the relevance score following Joachims
et al. [29], such that 0 denotes irrelevant (a relevance score of 0, 1
or 2), and 1 relevant (a score of 3 and 4).

We first conduct extensive experiments on the train portion of
the smaller set 2, where we randomly sample 70% of the queries as
training data and 30% as test data, with which LTR algorithms can
be trained and evaluated respectively (Section 5.2). To confirm the
performance of our proposed method with out-of-sample test data,
we conduct experiments on the larger set 1, where we train LTR
algorithms on set 1 train data and evaluate them on set 1 test data
(Section 5.3).

5.1.2 Semi-synthetic data generation. We use the real-world
base dataset, Dy TR, to generate semi-synthetic datasets that con-
tain document clicks for < query, document > rankings. The main
motivation behind using the Yahoo! Learning To Rank dataset is
that it provides unbiased ground truth for relevant results, thus
enabling unbiased evaluation of ranking algorithms. In real-world
scenarios, unbiased ground truth is hard to come by and LTR algo-
rithms are typically trained on biased, click data which does not
allow for unbiased evaluation. To mimic real-world scenarios for
LTR, the synthetic data generation creates such biased click data.
We follow the data-generation process of Joachims et al. [29]. We
train a base ranker, in our case SVM797K with 1% of the training
dataset that contains true relevances, and then use the trained
model to generate rankings for the remaining 99% of the queries in
the training dataset. The second step of the data-generation process
generates clicks on the ranked documents in the training dataset.
The click probability of document y for a given query X is calculated

as P(cx,y = 1) = % where cx,y(y) and ri(y) represent if a
document y is clicked and relevant respectively, rank(y|y) denotes
the ranking of document y for query x if the user was presented the
ranking ¥, and # indicates the severity of position bias. Note that
clicks are not generated for documents that are bellow a certain
rank cutoff k to incorporate the selection bias.

In a single pass over the entire training data we generate clicks
following the above click probability. We refer to this as one sam-
pling pass. For the smaller set 2, we generate clicks over 15 sampling
passes, while for the larger set 1, we generate clicks over 5 sam-
pling passes. This click-generation process reflects a common user
behavior where some relevant documents do not receive any clicks,
and other relevant documents receive multiple clicks. This process
captures the generation of noiseless clicks, where users only click

!https://webscope.sandbox.yahoo.com/catalog. php?datatype=c
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parameter value/category description section
k 1-30 number of observed docs (selection bias) 5.2
n 0,05,1,15,2 position bias severity 5.2.1
noise 0%, 10%, 20%, 30% clicks on irrelevant docs 522,523

Table 1: Experimental Parameters
on relevant documents. We also consider a click generation process
with noisy clicks in which a small percentage of clicks (10 — 30%)
occur on irrelevant documents.

5.1.3 Evaluation. We explore the performance of LTR algorithms
Naive SVM™ _ Propensity SVM™@"™  Heckman™ @ along with
the two ensemble methods Linear Combination (CombinedW) and
Rank Aggregation (RankAgg) with two different metrics: Aver-

woj=1Ar;= k(yly
age Rank of Relevant Results ARRR = Zyoi=in ‘Xl rank(yly) and

Normalized Discounted Cumulative Gain nDCG@p = nDCGp) =

% where p is the rank position up to which we are in-

terested to evaluate, DCG@p represents the discounted cumula-
tive gain of the given ranking whereas IDCG@p refers to the

ideal discounted cumulative gain. We can compute DCG@p us-

ing the following formula DCG@p = Zle % Similarly,

IDCG@p = Z!ff Larl % where REL(@p represents the list

of relevant documents (ordered by their relevance) in the ranking
up to position p for a given query. In our evaluation we chose p = 10
for nDCG metric and we refer to it by nDCG@10.

Each figure in the experiments depicts how the ARRR or nDCG@10
(y axis) changes when the user only observes the first k € [1,30]
documents (x axis). Note that k reflects the severity of selection
bias as we model selection bias by assigning a zero observation
probability to documents below cutoff k. In contrast, position bias
is modeled by assigning a non-zero probability to every single doc-
ument where 1 represents the severity of the position bias. We vary
severity of both selection bias and position bias with or without
the existence of noise in click generation.

When training Propensity SVM" %™K we apply an Inverse Propen-
sity Score for clicked documents Q(o(y) = 1|x,¥,r) = (m}n

where o and r represent whether a document is observed and rele-
vant respectively, following Joachims et al. [29]. Q(o(y) = 1|x. ¥,7)
is the propensity score denoting the marginal probability of observ-
ing the relevance of result y for query x if the user was presented
the ranking ¥, and 5 indicates the severity of position bias.

Heckman"ank

is implemented following the steps described in
section 4. In step 1, the documents that appear among the n shown
results for each query are considered observed (ox,y = 1), and the
remainder as not-observed (ox,y = 0). It is important to note that
other LTR algorithms throw away the documents with ox_y = 0 in
training, while we do not. In our implementation Z only includes the

feature set common to Fy, y- For the ensemble methods, the selection
bias recovery algorithm A; is Heckman”"¥ and the position bias
recovery algorithm A, is Propensity SVM rank

Given the model learned during training, each algorithm ranks
the documents in the test set. In the following subsections, we
evaluate each algorithm performance under different scenarios.
For evaluation, the (noiseless) clicked documents in the test set
are considered to be relevant documents, and the average rank of
relevant results (ARRR) across queries along with nDCG@10 is our
metric to evaluate each algorithm’s performance.
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Figure 1: The performance of LTR algorithms on set 2. Lower is better for ARRR, higher is better for nDCG@10.

5.2 Experimental results on set 2 1d show that for 5 = 1 and 5 = 1.5 RankAgg outperforms its com-
Here, we evaluate the performance of each algorithm under differ- ponent algorithms for almost all values of k.
ent levels of position bias (7 = 0,0.5, 1, 1.5, 2) and when clicks are When ARRR is the metric of interest, Figure 1a, 1b, 1c and 1d
noisy or noiseless (0%, 10%, 20% and 30% noise). In each case, we use illustrate that Heckman™ "k outperforms Propensity SVM rank in
ARRR and nDCG@10. the absence of position bias ( = 0) and when position bias is low to
moderate (5 = {0.5, 1}), while it falls behind Propensity SV M"ank
5.2.1 Effect of position bias. Figure 1 illustrates the performance when position bias increases (1 = 1.5). To compare it to the results
of all LTR algorithms and ensembles for varying degrees of posi- for nDCG@10 illustrated in Figures le, 1f, 1g and 1h, Heckman” "%
tion bias (n € {0,0.5,1,1.5}). Figures 1a, 1b, 1c and 1d show the appears to start lagging behind in performance at = 1.5.For the
performance as ARRR. Figures le, 1f, 1g and 1h show nDCG@10. ensemble methods, Figures le, 1f illustrate that when n = {0,0.5}
Due to space, we omit the figures for n = 2 since 7 = 1.5 captures combinedW and RankAgg outperform their component algorithms
the trend of propensitySV M starting to work better than the other for k £ 10. 1g demonstrates the better performance of RankAgg to
methods. Heckman™@"% guffers when there is severe position bias. its component algorithms for all values of k when = 1. However,
Figures 1a-1d illustrate that Heckman” 4"k outperforms Propen- for a severe position bias 5y = 1.5, combinedW and RankAgg do not
sity SVMTank in the absence of position bias (7 = 0), or when outperform their component algorithms for any value of k, but
position bias is low (7 = 0.5) and moderate (§ = 1). The better Rank Agg becomes the second best algorithm. Among the ensemble
performance of Heckman™@™ over Propensity SV. MTank oniches methods, Rank Agg is more robust to position bias than combinedW.
with increased position bias, such that at a high position bias level Our main takeaways from this experiment are:
(n = 1.5), Heckman" @™ falls behind Propensity SVM" "k but still e Under small to no position bias (y = 0,0.5) Heckman” %™
outperforms Naive SVM" %" _The reason for this is that a high posi- outperforms Propensity SVM" 3"k for both metrics.
tion bias results in a high click frequency for top-ranked documents, e Under moderate position bias (5 = 1), while H. eckman” "k
leaving low-ranked documents with a very small chance of being outperforms Propensity sy mMTank o ARRR, it lags behind
clicked. Heckman” "k is designed to control for the probability of Propensity SVMTank £or n\DCG@10.

a document being observed. If top-ranked documents have a dis- e Under severe position bias (7 = 1.5), Heckm an™ %k falls

proportionately higher density in click data relative to low-ranked behind Propensity SVM™4"k for both ARRR and nDCG@10.
documents, then the predicted probabilities in Heckman”"¥ will RankAgg performs better than Heckman” 97 for all selec-
also reflect this imbalance. In terms of algorithms that address tion bias levels and it is more robust to position bias than
both position bias and selection bias, Figures 1a, 1b show that for rank

combinedW . combinedW surpasses Heckman under se-

n = 0,0.5, combinedW and RankAgg outperform both Propensity vere selection bias (k § 10).
SVMTek and Heckman™ @k for k < 7. Moreover, Figures 1c and
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Figure 2: The performance of LTR algorithms on set 2 under 10% noisy clicks.

5.2.2 Effect of click noise. Thus far, we have considered noiseless
clicks that are generated only over relevant documents. However,
this is not a realistic assumption as users may also click on irrelevant
documents. We now relax this assumption and allow for 10% of the
clicked documents to be irrelevant.

When ARRR is the preferred metric, Figures 2a, 2b, 2c and 2d
illustrate that Heckman"®" outperforms Propensity SVM" 9" for
n = {0,0.5,1}, while under higher position bias level (5 = 1.5),
Heckman"@"k falls behind Propensity SVM"%™ Comparing the
noisy click performance to the noiseless one (Figures 1a, 1b, 1c),
one can conclude that for 5 = {0,0.5,1}, Propensity SVM" 4" js
highly affected by noise, while Heckman”2"¥ is much less affected.
For example, Figure 2c illustrates that for = 1, the better perfor-
mance of Heckman”@" over Propensity SVMT1k js much more
noticeable compared to 1c where clicks were noiseless. Interest-
ingly, the ensembles combinedW nor RankAgg, do not outperform
the most successful algorithm in the presence of noisy clicks.

When nDCG@10 is the preferred metric, one can draw the same
conclusions: while Heckman”@"¥ is more robust to noise and out-
performs Propensity SVM™ " for n = {0,0.5,1}, it fails to beat
Propensity SVM"k for n = 1.5. Another interesting point is that
Propensity SVM" " is severely affected by noise when selection
bias is high (low values of k), such that it even falls behind Naive
SVMrank This exemplifies how much selection bias can degrade
the performance of LTR systems if they do not correct for it.

In the presence of 10% noisy clicks, the main takeaways are:

o Under severe to moderate selection bias (k £ 15), Propensity
SVM™"K suffers a lot from the noise and it even falls behind
Naive SVM™ " for both ARRR and nDCG@10.
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(a) Evaluation on ARRR. (b) Evaluation on nDCG@ 10.
Figure 3: Effect of noisy clicks for high selection bias (k = 10)
and moderate position bias (n = 1).
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Figure 4: Effect of noisy clicks for high selection bias (k = 10)
and high position bias (5 = 2).

e Heckman@"k outperforms Propensity SVM" %"k when posi-
tion bias is not severe (g = {0, 0.5, 1}) for both metrics.
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Figure 5: The performance (ARRR) of LTR algorithms on set 1.

o Just like in the noiseless case, Heckman” 4"k

Propensity SVM" %"k under severe position bias ( = 1.5).

o combinedW and RankAgg surpass Heckman” " for a severe
selection bias (k £ 5) when n = {0,0.5} for both ARRR and
nDCG@10. However, Rank Agg and combinedW cannot beat
Propensity SVM” %"k under high position bias.

cannot surpass

5.2.3 Effectof varying noiseforn = 1andn = 2. In this section,
we investigate whether our proposed models are robust to noise.
Toward this goal, we varied the noise level from 0% to 30%. Figures
3a and 3b show the performance of the LTR algorithms for different
levels of noise, where k = 10 and 5 = 1. Under increasing noise,
the performance of Heckman” 3"k is relatively stable and even im-
proves, while the performance of all other LTR algorithms degrades.
Even Naive SVM" 9" is more robust to noise compared to Propen-
sity SVM™ 9"k which is different from the results by Joachims et al.
[29] where no selection bias was considered. The reason could be
that their evaluation is based on the assumption that all documents
have a non-zero probability of being observed, while Figure 3a and
3b are under the condition that documents ranked bellow a certain
cut-off (k = 10) have a zero probability of being observed.

We also investigate the performance of LTR algorithms with
respect to noise, when position bias is severe (i = 2). As shown in

rank is

Figure 4, irrespective of metric of interest, Heckman' robust
to varying noise, while the performance of all other algorithms
degrades when the noise level increases. Propensity SVM" 3K falls
behind all other algorithms in high level of noise. This implies that
even though Heckman™@ cannot surpass Propensity SV MTank
when position bias is severe ( = 1.5, 2) in noiseless environments,
it clearly outperforms Propensity SVM” @™ in the presence of selec-
tion bias with noise. This is an extremely useful property since in

real world applications we cannot assume a noiseless environment.

5.3 Experimental results on set 1

To confirm the performance of our proposed methods on the larger
set 1 with out-of-sample test data, we ran experiments varying po-
sition bias (y = {0.5, 1, 1.5, 2}) under noiseless clicks. The results on
this dataset were even more promising, especially for high position
bias. Figure 5 illustrates the ARRR performance of all algorithms.
Heckman™@"k outperforms PropensitySVM" %™ for all position

bias levels, though its strong performance decreases with increas-
ing 7. This is unlike set 2 where Heckman"®™* did not outper-
form PropensitySVM" " under high position bias. The ensemble
Rank Agg outperforms both Heckman”@"¥ and PropensitySV M" 4™k
for all position and selection bias levels, while combinedW out-
performs PropensitySVM” ™ but does not surpass Heckman” 3"k,
Moreover, the stronger performance of Heckman” 2" and RankAgg
over PropensitySVM" %" is much more pronounced compared to
set 2.

6 CONCLUSION
In this work, we formalized the problem of selection bias in learning-

to-rank systems and proposed Heckman” "k as an approach for
correcting for selection bias. We also presented two ensemble meth-
ods that correct for both selection and position bias by combining
the rankings of Heckman™@"¥ and Propensity SVM"™%"F _ Our ex-
tensive experiments on semi-synthetic datasets show that selection
bias affects the performance of LTR systems and that Heckman” %™
performs better than existing approaches that correct for position
bias but that do not address selection bias. Nonetheless, this perfor-
mance decreases as the position bias increases. At the same time,
Heckman"®" is more robust to noisy clicks even with severe posi-
tion bias, while Propensity SVM" 97K is adversely affected by noisy
clicks in the presence of selection bias and even falls behind Naive
SVM" %" The ensemble methods, combinedW and RankAgg, out-
perform Heckman"®"k for severe selection bias and zero to small
position bias.

Qur initial study of selection bias suggests a number of promising
future avenues for research. For example, our initial work considers
only linear models but a Heckman-based solution to selection bias
can be adapted to non-linear algorithms as well, including exten-
sions that consider bias correction mechanisms specific to each
learning-to-rank algorithm. Our experiments suggest that studying
correction methods that jointly account for position bias and se-
lection bias can potentially address the limitations of methods that
only account for one. Finally, even though we specifically studied
selection bias in the context of learning-to-rank systems, we expect
that our methodology will have broader applications beyond LTR
systems.
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