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ABSTRACT

In real-world question-answering (QA) systems, ill-formed ques-
tions, such as wrong words, ill word order and noisy expressions,
are common and may prevent the QA systems from understand-
ing and answering accurately. In order to eliminate the e�ect of
ill-formed questions, we approach the question re�nement task
and propose a uni�ed model, Qrefine, to re�ne the ill-formed
questions to well-formed questions. The basic idea is to learn a
Seq2Seq model to generate a new question from the original one.
To improve the quality and retrieval performance of the generated
questions, we make two major improvements: 1) To better encode
the semantics of ill-formed questions, we enrich the representation
of questions with character embedding and the contextual word
embedding such as BERT, besides the traditional context-free word
embeddings; 2) To make it capable to generate desired questions,
we train the model with deep reinforcement learning techniques
that consider an appropriate wording of the generation as an imme-
diate reward and the correlation between generated question and
answer as time-delayed long-term rewards. Experimental results on
real-world datasets show that the proposed Qrefine can generate
re�ned questions with high readability but fewer mistakes than
original questions provided by users. Moreover, the re�ned ques-
tions also signi�cantly improve the accuracy of answer retrieval.
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• Information systems Information retrieval query pro-
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1 INTRODUCTION

QA systems greatly facilitate the information access of users, which
are popularly used in both Web and mobile Internet. In these sys-
tems, users input a question either by text or voice and expect to get
the right answer quickly. However, due to factors such as thought-
less questions from users, misoperations of keyboard input and
ASR (automatic speech recognizer) error, the ill-formed questions
asked by users are usually expressed with vagueness, ambiguity,
noises and errors.

By manual analysis on the WikiAnswer dataset 1, we �nd that
about 68% questions are ill-formed. As shown in Table 1, there are
three typical ill-formed question types, speci�cally, wrong words,
ill words order and noisy background, and they include 79%, i.e.,
((21% + 23% + 12%)/68%) ill-formed questions. Generally, a question
is a short sentence with a few words in QA systems. Directly using
ill-formed questions to search for answers in a retrieval based QA
systems [9] will hurt the downstream steps, e.g., answer selection
[33] and hence compromise QA systems’ e�ectiveness.

Inspired by the task of query re�nement in web search [22], we
study the task of question re�nement in QA system, which aims to
improve the quality of users’ questions, in the meanwhile, boost the
accuracy of the downstream answer retrieval. We can see that the
task is complex since it contains the following subtasks: 1) word cor-
rection, e.g., correct “defenition” to “de�nition”; 2) word reorder, e.g.,
ill words order example in Table 1; 3) sentence simpli�cation, e.g.,
remove the redundant expression like “based on tiresias prediction”
in noisy background example in Table 1.

An intuitive way is to tackle these problems one by one alone.
For instance, Xie et.al [37] proposed a charater-level text correction

1http://knowitall.cs.washington.edu/oqa/data/WikiAnswers
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Type of Ill-formulation Ratio in Data Ill-formed Question Well-formed Questions

Wrong words 21% what is the defenition of the word
infer

what is the definition for
inference

Ill words order 23% limestone is what kind of rocke what is limestone rock
Noisy background 12% based on tiresias prediction which

heroic qualities will odysseus need to
rely upon as he continues his journey

what heroic qualities does
odysseus rely on

Table 1: Examples of the three common types of ill-formed and generated well-formed questions on WikiAnswers dataset.

The ratio in data is counted within 1000 random sampled triples. The other ill-formed questions belong to several other types

which have a minority percentage.

to deal with the orthographic errors and rare words. Yuan et.al
[38] focus on grammar error correction to correct the erroneous
word phrases. Besides, Zhang et.al. [39] utilized deep reinforcement
learning to simplify questions, like splitting complex questions and
substitutes di�cult words with common paraphrases. However, it’s
laboursome to combine these methods together in practice, which
might require no domain knowledge and a few human intervention.

Is it possible to tackle these problems with a uni�ed model?
Inspired by the successful usage of sequence-to-sequence (Seq2Seq)
model [31] on related tasks such as machine translation [5], text
summarization [21], and sentence simpli�cation [39], it is promising
to use it in the question re�nement task. Seq2Seq model is �exible
enough to encode patterns for sequence transformation such as
word correction, word recorder, and sentence simpli�cation, if there
are appropriate training datasets. Unfortunately, we �nd that the
vanilla Seq2Seq model does not perform well on this task. The
reasons may be twofold: 1) it fails to learn a good representation of
ill-formed questions, which might contain many wrong or noisy
words. 2) The maximize likelihood objective is not consistent with
our target, i.e., generated better quality questions and thus improve
the accuracy of answer retrieval.

To overcome these problems, we develop a Seq2Seq model for
question re�nement called QREFINE. For the question representa-
tion, since a well-formed question might sensitive to the word order,
we make use of the recent proposed contextual word embeddings
such as BERT [7] to capture the contextual word information. As
BERT is trained over a large scale unlabeled corpus, it also can alle-
viate the data sparsity problem where there is not enough training
data. Moreover, considering the ill-formed questions might contain
typos, we also incorporating the �ne-grained character embedding
[24] as a part of question representation. Our experimental results
show that the two types of representations substantially improve
the e�ectiveness of the Seq2Seq model.

To make the Seq2Seq model generate desired questions, we de-
velop a training algorithm based on reinforcement learning. we
assign not only word-level rewards to each word for its wording
from a pertained language model and Bert language model as imme-
diate rewards but also question-level rewards such as the correlation
of the re�ned question to its answer. In order to solve the low data
e�ciency and unrobust policy problems on the traditional policy
gradient method, we use advanced policy gradient method proximal
policy optimization (PPO) [34] for well-formed question generation
[29, 34]. We compared our model with the state-of-the-art base-
lines in two QA datasets. The result shows our model outperforms

baselines on question re�nement. Besides, the case studies show
the improved readability of the questions after re�nement using
Qrefine, and its e�ectiveness in improving the utility of an existing
QA system. Moreover, it’s worth to notice that our model is fully
data-driven and might not require domain knowledge and human
intervention.

2 PRELIMINARY

We formally de�ne the question re�nement task studied in this
paper. After that, we introduce some terminologies that we will use
throughout the paper.

2.1 Problem Description

Given an ill-formed question consists of x = [x1,x2, ...,xN ] of an
arbitrary-length N , the well-formed question y = [y1,y2, ...,yM ]
of a variable-lengthM . The aim of question re�nement is to re�ne
x to y which has better readability. It is expected that the generated
well-formed question y can be better able to retrieve the best answer
candidate ak = [a1,a2, ...,aL], where 1 ≤ k ≤ s from an answer
candidate pool {a1, a2, ..., , as }.

2.2 Seq2Seq Framework on Question

Re�nement

The Seq2Seq model adopts an encoder-decoder framework that
learns to encode an ill-formed question x into a �xed-length vector
representation and to decode the �xed-length vector back into a
variable-length well-formed question y. From a probabilistic per-
spective, Seq2Seq model is a general method that learns the con-
ditional distribution over a variable-length sequence conditioned on
another variable-length sequence, namely,plm (y1, ...,yM |x1, ...,xN ).

The encoder can be a convolution neural network or a recur-
rent neural network that summarizes the ill-formed question into
a vector representation. Since LSTM [13] is good at learning long-
term dependencies in the data [11], we adopt LSTM to sequen-
tially encode each word of ill-formed question x. As the LSTM
reads each word, the hidden state of the LSTM is updated hn =
LSTMencoder (hn−1,xn ). Therefore, the encoder transforms the ill-
formed question x into a sequence of hidden states (h1,h2, ...,hN ).

The decoder can be another LSTM which is trained to generate
the current hidden state km based on the current word ym and the
previous hidden state km−1:

km = LSTMdecoder (km−1,ym ). (1)
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Moreover, as introduced in [18], a context vector cm can be
obtained for each decoder stepm by being attentive to the encoding
of the source question dynamically:

cm =
N∑
n=1

αnmhn , (2)

where cm is a weighted sum of the hidden states of the ill-formed
question x: The attention score αnm between the n-th ill-formed
question hidden unit hn andm-th well-formed question hidden unit
km is calculated as follows:

αnm =
exp (hTn · km )∑N
l=1 exp (h

T
l · km )

. (3)

Formally, the Seq2Seq model is formed as below:

plm (ym |y1:m−1, x) = softmax(д(kTm , cm )), (4)

where д(·) is an activation function д(kTm , cm ) =Wo tanh(Uhk
T
m +

Whcm ), where Wo ∈ R
|V |×d ,Uh ∈ R

d×d and Wh ∈ R
d×d ; |V | is

the output vocabulary size and d is the hidden unit size.

3 REINFORCED GENERATIVE QUESTION

REFINEMENT

3.1 Model Description

Despite the successful application in numerous sequence transduc-
tion tasks [2], a vanilla Seq2Seq model is not ideal for question
re�nement since it only makes a few trivial changes of ill-formed
question [39]. To encourage a wider variety of rewrite operations
while keeping the re�ned question �uent and coherent to the an-
swer, we employ a reinforcement learning framework (see Figure
1).

The re�nement agent �rst reads the ill-formed question x from
the encoder; and then at each step of the decoder, it takes an ac-
tion ym ∈ V , where V is the output vocabulary, according to a
policy πθ (ym |y1:m−1, x). The agent continues to take actions until
it produces <EOS> (denoting end of sentence) token yielding the
generated well-formed question of our model y = [y1,y2, ...,yM ].
Two types of rewards, wording reward, and answer correlation
reward, are received and the advanced policy gradient method PPO
is used to update the agent. In the following, we introduce our ques-
tion representation and reward function. After that, we present
the details of the processes for generating accurate and consistent
questions by leveraging the REINFORCE and PPO method.

3.2 Question Representation

The ill-formed question has a wrong semantic order and contains
some unrelated background information. To solve the problem, the
model need to learn the institutional utterance of words, which
needs to consider the correlation between words and words. The
widely-used context-free models such as Skip-gram [19] or GloVe
[26] cannot consider the correlation between words. Because they
generate a single word embedding representation for each word
in the vocabulary, so “apple” would have the same representation
in “red apple” and “apple store”. However contextual models, like
BERT can generate a representation of each word based on the

other words in the sentence. Therefore, we concatenate the context-
free and contextual embedding together as the word embedding to
capture such coarse-grained correlation patterns of words.

Since the ill-formed question always contains the misspelled
words, which is usually set as <UNK>, which is hard to capture
the meaning of the original word. To capture the meaning of the
misspelled words, we extend the word expression by incorporat-
ing �ne-grained character expression. By using the character-level
embedding, we can get the high-dimensional vector representa-
tion. As character-level input, the original sentence is decomposed
into a sequence of characters, including special characters, such
as quotation mark. Characters are embedded into vectors, which
can be considered as 1D inputs to the Bidirectional Long Short-
term Memory Network (BI-LSTM) [13], and the hidden layer of the
last LSTM unit is the �xed-size vector of each word. Overall, we
combine the �ne-grained character-level embedding and coarse-
grained contextual and context-free word embedding to represent
the question.

3.3 Reward

The reward for system output y is the weighted sum of two types
of rewards aimed at achieving well-formed readable and answer
correlation question: wording rewards on the word-level from the
Reward RNN and BERT, which aims to measure how well each
generated word is in line with the language model (LM) rule, and
the question-level answer correlation reward that has the ability to
infer the correlation of the re�ned question to its answer, even if it
is not generating until the end of the well-formed question.

Wording Reward The wording reward rw aims to give an im-
mediate reward to each of words when it is being generated in
the well-formed question. BERT pre-trained on the large dataset
like Wikipedia could give the contextual wording reward rB (yt ) =
pB (yt |y1, ...,M ), which is the probability of word yt given by BERT
model. Moreover, for the domain-speci�c, we also use the decoder
of the pre-trained Seq2Seq module as a trained LM Reward RNN
which is able to score the probability of the next word given the
words generated so far. Thus, the wording reward of the t-th word
in the well-formed question is:

rw (yt ) = rB (yt ) + plm (yt+1 |kt ), (5)
where kt is the current state which is the hidden representation of
the generatedwell-formed questionwith t words so far: [y1,y2, ...,yt ]
and yt+1 is the generated word in the (t + 1)-step.

Answer Correlation Reward The re�nement result should not
only improve the readability of the question, more importantly, have
better ability to address its correlation to the answer once re�ned.
With this motivation, we design an answer correlation reward rac
to further measure the correlation of the re�ned question to its
answer on the question-level as a whole. As answers themselves
are sometimes ill-formed and contain a large amount of unrelated
information, they may not share lexical units with the well-formed
question directly. But the well-formed question is semantically
easier to answer than the ill-formed question. Following the similar
ranking loss in [10, 33], the answer correlation module de�nes the
training objective as a hinge loss:
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Figure 1: The architecture of the proposed model Qrefine. 1© The encoder of the agent module reads the ill-formed question

and the decoder generates a well-formed question, one word/phrase at a time. 2© The well-formed question being generated

so far is sent to a pre-trained reward module, which calculates a word-level wording reward from word-level LM and BERT

Reward and a question-level answer correlation reward from QA similarity. 3© The PPO module updates agent’s generation

policy, aiming to maximize the rewards.

rac (y) =max {0, ϵ − sim(LSTMq (x), (6)
LSTMa (a)) + sim(LSTMq (y), LSTMa (a))},

where we use two separate LSTMs, LSTMq and LSTMa, to encode the
question and answer to the vector representation. The well-formed
question and ill-formed question share the same LSTMq , and ϵ
is the constant margin. Furthermore, sim(LSTMq (x), LSTMa (a)) =

LSTMq (x)WsimLSTMa (a)T computes a bi-linear term between the
question and its correct answer. We train the model by maximizing
answer correlation reward rac using ground-truth well-formed and
ill-formed questions to learn the weight of LSTMq , LSTMa network
and Wsim. After that, we hold a �xed copy of networks to give
rewards to the generated well-formed question.

Accumulated RewardWe add the answer correlation reward to
the end of the wording reward, as the overall evaluation of the
generated question. The Qrefine reward r of each word is the
combination of the wording reward and the answer correlation
reward,

r (yi ) =

{
rw (yi ), i , M
rw (yi ) + c1rac (y), i = M

(7)

where c1 is the parameter to tune the weight between wording
reward rlm and answer correlation reward rac ; Since we want Qre-
fine module to have the ability to infer reward even if not reaching
the end of the generation process and the future reward will in-
�uence the current reward, we adopt the accumulated Qrefine
rewardR with the discounted factorγ and the accumulated Qrefine
discounted reward of t-th word is represented as,

R (yt ) = γ
0r (yt ) + γ

1r (yt+1) + · · · + γ
M−t r (yM ). (8)

By using the accumulated reward, we are able to infer the answer
correlation reward even if we are not reaching the end of the gen-
eration process.

3.4 Question Generation

A popular choice of loss in traditional models is the cross-entropy
used to maximize the probability of the next correct word. However,
this loss is at the word-level and the performance of these models

is typically evaluated using discrete metrics. To overcome, we draw
on the insights of deep reinforcement learning, which integrates
exploration and exploitation into a whole framework. Instead of
learning a sequential recurrent model to greedily look for the next
correct word, we utilize a policy network and a reward function to
jointly determine the next best word at each time step, which aims
to maximize the reward of the whole sentence.

Question re�nement can be formulated as a Markov decision
process (MDP) (S,A, P ,R), where S is a set of states st = {y1:t−1,x},
A is a set of actions at = yt , P is the transition probability of the
next state given the current state and action, R is a reward function
r (st ,at ) for every intermediate time step t , and γ is a discount
factor that γ ∈ [0, 1].

The actions are taken from a probability distribution called policy
π given the current state (i.e., at ∼ π (st )). In question re�nement,
π is a seq2seq model. Therefore, reinforcement learning methods
are suitable to apply to question re�nement model by learning
the seq2seq model, or policy π , that can gain reward as much as
possible.

3.4.1 On-policy Optimization. Due to the high dimensional ac-
tion space for question re�nement and high diversity of the required
generation result, policy gradient method, like REINFORCE [4] are
more appropriate in the question generation than value-based meth-
ods like Q-learning [20].

For a given ill-formed question x, we want to return a formulated
question y, maximizing an accumulated reward R. The answer a
is the known given by the database. The question y ∼ πθ (·|x) is
generated according to πθ where θ is the policy’s parameter and
the goal is to maximize the expected reward of the reformulated
question under the policy, Ey∼πθ ( · |x)[R (y)].

Given reward rt at each time step t , the parameter π of policy π
(a seq2seq model) is updated by policy gradient as follows:

Ey∼πθ ( · |x)[R (y)] ≈
1
N

N∑
i=1

R (yi ),yi ∼ πθ (·|x). (9)
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To compute gradients for training we use REINFORCE[36],
∇Ey∼πθ ( · |x)[R (y)] (10)
= Ey∼πθ ( · |x)∇θ loд(πθ (y|x))R (y)

≈
1
N

N∑
i=1
∇θ loд(πθ (yi |y1:i−1,X ))R (yi ),yi ∼ πθ (·|x).

This estimator is often found to have high variance, leading to
unstable training [12]. We reduce the variance by using a baseline:
B (x) = Ey∼πθ ( · |x)[R (y)] [32]. This expectation is also computed by
sampling from the policy given x.

To avoid the model not being able to explore new words that
could lead to a better answer correlation question, we use entropy
regularization:

H[πθ (y|x)] =
N∑
i=1

∑
yi ∈V

loд(πθ (yi |y1:i−1, x))πθ (yi |y1:i−1, x) (11)

The �nal objective is:
Ey∼πθ ( · |x)[R (y) − B (x)] + λH[πθ (y|x)], (12)

where λ is the regularization weight. R (y) − B (x) can be inter-
preted as the goodness of adopted action at over all the possible
actions at state st. Policy gradient directly updates π to increase
the probability of at given st when advantage function is positive,
and vice versa.

3.4.2 Off-policy Optimization. The vanilla policy gradientmethod
is on-policy method and have convergence problem [28]. Empiri-
cally they often lead to problems like low data e�ciency and unreli-
able performance, as shown in subsection 4.6. We use the advanced
deep reinforce method proximal policy optimization (PPO) [29] to
learn a more stable policy.

Proximal policy optimization (PPO) [34] is an approximation
method of trust region policy optimization (TRPO) [28]. Di�erent
from TRPO which uses a second-order Taylor expansion, PPO uses
only a �rst-order approximation, which makes PPO very e�ective
in RNN networks and in a wide distribution space:

maxθL
TRPO (θ ) = E[ πθ (at |st )

πθold (at |st )
At ], (13)

subject to E[KL[πθold (at |st ) ,πθ (at |st )]] ≤ δ

where πold is the old parameters before update. The updated
policy π cannot be too far away from the old policy πold , because
the KL-divergence between π and πold is bounded by the small
number δ .

To optimize policy, PPO alternates between sampling sentence
generated from the current policy and performing several epochs of
optimization on the sampled sentences. According to the paper [29],
the clipped objective to heuristically constrain the KL-divergence
setting achieves the best performance:

LCLIPt (θ ) = Et [min(rt (θ )clip (rt (θ ), 1 − ϵ, 1 + ϵ ))Ât ], (14)

where βt denotes the probability ratio πθ (at |st )
πθold (at |st )

and ϵ is a

hyperparameter (e.g., ϵ = 0.1). When Ât is positive, the objective
is clipped by (1 + ϵ ); otherwise the objective is clipped by (1 − ϵ ).

Algorithm 1 QREFINE-PPO
Input: Ill-formed question X , Well-formed question Y , rating data

R, the number of episodes K , ε-greedy parameter ε , ratio of
language model reward and answer correlation reward c1, the
discounted factor of RL λ, the threshold ϵ and the entropy
regularization c2

Output: the learned policy pθ
1: Initialize policy pθ and old policy pθold with supervised pre-

trained policy pθ ′
2: for episode = 1, ..., K do

3: Uniformly pick a batch of ill-formed question u ∈ Utrain as
the environment

4: Start to generate the word according to pθold (yi |X ) until the
<EOS> token is generated, the generated sentence as Y ′

5: Send X and Y ′ to the BERT mechine and pretrained word
embedding model to calculate the word-level reward

6: Send X , Y and Y ′ to the qa-lstm model to calculate the
sentence-level reward, based on Eq. 7

7: Calculate the advantage function of each time step according
to Eq. 15

8: repeat

9: Update the policy pθ using Eq. 16
10: until convergence
11: Set old policy pθold to policy pθ
12: end for

Ât is the expected advantage function (the expected rewards
minus a baseline like value function V (kt ) of time kt ) which can
be calculated as:

Ât = δt + (γλ)δt+1 + · · · + · · · + (γλ)T−t+1δT−1, (15)
δt = rt + γV (kt+1) −V (kt ).

To improve the exploration of our model for generating diverse
yet coherent words that could constitute a better well-formed ques-
tion, we use entropy regularization. The integrated PPO method is
shown as below:
LPPOt (θ ) = Et [LCLIPt (θ ) + c2πθ (yt+1 |kt )loд(πθ (yt+1 |kt ))]. (16)

The algorithm of QREFINE with PPO optimization shows in Alg. 1

Learning The training stage of traditional models su�er from the
exposure bias [27] since in testing time the ground-truth is missing
and previously generated words from the trainedmodel distribution
are used to predict the next word. In the testing phase, this exposure
bias makes error accumulated and makes these models suboptimal,
not able to generate those words which are appropriate but with
low probability to be drawn in the training phase.

In order to solve the exposure bias problem, we train the model
by using MIXER algorithm described in [27] to expose both training
data and its predictions. In the inference stage, we greedily selected
the word that has the highest probability to generate the question
stopping until the <EOS> token is generated.

4 EXPERIMENTS

In this section, we evaluate the proposed methods on two real-
world datasets, by examining the readability of the re�ned questions
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both quantitatively and qualitatively. A question-answer retrieval
experiment is used to evaluate the performance of the generated
question. In the end, we further conduct the ablation study and
learning curve of the method.

4.1 Dataset

The datasets are formatted as triples, where each instance consists
of a well-formed question, an ill-formed question and an answer in
each triple.
Yahoo: The Yahoo non-factoid question dataset 2 is collected from
Yahoo Webscope that the questions would contain non-factoid an-
swers in English. After limiting the length of the answer, we have
85k questions and their corresponding answers. Each question con-
tains its best answer along with additional other answers submitted
by users. The average length of ill-formed questions is around 12
tokens and the average length of well-formed questions is around
10 tokens, with 73k vocabulary size and 44 di�erent characters. The
average length of answers is around 39 tokens.

To testify the re�nement performance from ill-formed to well-
formed question, we generate the ill-formed question on three types
of the ill-formed question, wrong words, wrong order and Noisy
background. We randomly change the character of the words or
change the order of the character of words to generate the Wrong

Word dataset. For theWrong Order dataset, we randomly change
the order of some fragments in the well-formed question. For the
Noisy Background dataset, we randomly sampled an arbitrary
length phrase from the other answer and add to the original clean
question. For the Yahoo dataset, we randomly execute those three
operations to generate threefold noisy questions, which contains
254k triples. The example of ill-formed question in those datasets
are shown in Table 2.

Customer Service Userlog (CSU): This anonymized dataset
contains online question-answering Userlog from a commercial
customer service platform containing 1 million instances in chi-
nese language. The ill-formed question is the question asked by
users and the well-formed question is selected from a pool of FAQs
collected by editors. After we delete the duplicated triples, the left
triple size is 111k. The average length of ill-formed questions is
around 6 tokens, and the average length of well-formed questions is
also around 6 tokens while the average length of answers is around
54 tokens with 14k vocabulary size and 2041 characters.

4.2 Baselines and Benchmarks

The compared methods are summarized as follows:
Seq2Seq is a basic encoder-decoder sequence learning system with
Luong attention [18] and Bi-direction LSTM on encoder model.
PARA-NMT [8] is a NMT-based question paraphrasing method
which assigns higher weights to those linguistic expressions likely
to yield correct answers. AQA [6] is the reinforce method seeking
to reformulate questions such that the QA system has the best
chance of returning the correct answer in the reading comprehen-
sion task. Since our datasets do not contain the context information,
we use the QA-lstm to measure the similarity between the gener-
ated question and the answer as the reward. Following [5], we use a
2https://ciir.cs.umass.edu/downloads/nfL6/

bidirectional LSTM as the encoder and a 4-layer stacked LSTMwith
attention as the decoder. TOQR [23] is the query reformulation
method with reinforcement learning to maximize the number of
relevant documents returned. TOQR use reinforcement method to
select terms from the original query and candidate retrieved doc-
ument to reformulate the query, and the reward is the document
recall.

Since the proposed Qrefine consists of several components, we
consider several variations of Qrefine as follows:
QR-word is the reinforce model only using wording reward, which
is viewed as word-level reward. QR-ans is the reinforce model
using answer correlation as the reward, which is views as question-
level reward. Qrefine-RF combines both word-level wording
reward and question-level answer correlation reward and uses RE-
INFORCE policy gradient based to optimize.
Qrefine-PPO is the proposed model using PPO and combining
both word-level wording reward and question-level reward.

Experimental SettingWe randomly divide the dataset into a train-
ing | development | test set (80% | 10% | 10%). We tune the hyper-
parameters on development set and report results on test set. We
implement all model by Tensor�ow using Python on a Linux server
with Intel Xeon E5-2620 v4 CPU and an NVIDIA 1080Ti GPU. The
code is available on Github. 3

On Yahoo dataset, we use the released skip-gram model word
embedding [19] with 300 dimensions 4. We �x the word representa-
tions during training. The character embedding of is 50 dimensions
for each character. The number of hidden unit in character Bi-LSTM
is 100. We add <EOS> at the end of sentences. And we set the word
out of the vocabulary as <UNK>. We choose word embedding of
200 dimensions for CSU dataset and use the Glove model [26] to get
the pre-trained word embedding. The character embedding of CSU
dataset is 50 dimensions for each character. The number of hidden
unit in character Bi-LSTM is 50. For BERT word embedding 5, it
gives us 768 dimensions of the word embedding on both datasets.
We combine contextual-free word embedding, BERT embedding
and character embedding for each of word on both dataset.

We set the LSTM hidden state to 300 on CSU dataset and 500 on
WikiAnswer dataset. Optimization is performed using Adam [14],
with an initial learning rate of 0.001. The mini-batch size for the
update is set at 64 on both datasets. During reinforcement training,
we set the ratio of language model reward and answer correlation
reward c1 as {0.1, 1, 10}, the discounted factor of RL λ is [0, 1), the
threshold ϵ is {0.1, 0.2, 0.3} and the entropy regularization c2 is
{0.1, 1}.

4.3 Question Generation

In this section, we give the experimental analysis to quantitatively
and qualitatively evaluate the quality of generated questions.

4.3.1 Quantitative Evaluation of Question Generation. To
evaluate the quality of the generated well-�ned question, we �rst
use automatic metrics to quantitatively show the performance. We

3https://github.com/yeliu918/QREFINE-PPO
4https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
5https://github.com/hanxiao/bert-as-service
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Original well-formed question : why don’t european restaurants serve water?

Type Ill-formed question

Wrong word/typo why don’t oeurpan rantaurest serve wataar?

Wrong order european restaurants why serve don’t water?
Noisy background concerned with the digestive process why don’t european restaurants serve water?
Three operations why digistive process with the restarunts european don’t serve water?

Table 2: Example of the three operations to generate ill-formed question on Yahoo Dataset

Wrong Word Wrong Order Noisy Background

Method BLEU-1 Rouge Meteor BLEU-1 Rouge Meteor BLEU-1 Meteor Rouge

Seq2Seq 47.10 60.41 30.95 53.11 67.67 36.37 50.17 62.19 31.75
PARA-NMT 53.10 64.91 35.59 59.13 73.75 41.27 55.37 68.45 37.56

TOQR 43.15 56.04 28.47 49.60 45.49 56.76 32.75 57.85 45.39
AQA 61.93 77.36 45.91 63.34 80.83 50.15 61.08 74.14 42.10

QREFINE-RF 67.82 83.16 51.07 70.74 87.21 55.24 69.12 85.21 53.17
QREFINE-PPO 68.83 84.76 52.72 72.22 88.94 56.22 71.57 86.12 53.22

Table 3: Question Generation Evaluation on Yahoo dataset to test models ability to correct wrong words, order and remove

background.

Yahoo CSU

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge Meteor BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge Meteor

Seq2Seq 39.50 31.53 23.81 16.78 53.07 22.76 72.76 53.17 37.49 26.17 68.39 35.57
PARA-NMT 41.08 33.74 26.50 19.73 55.10 23.80 73.18 59.41 56.53 36.44 69.05 57.18
AQA 43.40 37.14 30.80 24.58 58.37 27.17 74.13 65.53 58.00 31.63 74.40 62.67
TOQR 31.23 20.69 12.45 5.89 41.92 15.19 48.92 44.69 40.34 35.73 65.10 33.00
QR-word 47.73 42.46 37.09 31.46 63.03 31.00 77.49 69.61 62.00 34.91 77.71 66.17
QR-ans 47.17 41.80 36.36 30.66 62.48 30.55 78.50 70.95 63.08 36.99 78.72 67.07
Qrefine-RF 48.72 44.20 39.58 34.74 64.60 32.59 79.71 72.43 64.59 37.54 79.96 68.40
Qrefine-PPO 50.90 47.47 43.91 40.19 67.41 35.37 82.55 75.54 67.63 40.33 82.74 71.54

Table 4: Question Generation Evaluation on Yahoo and CSU dataset.

use the precision-based automatic metrics BLEU-1, BLEU-2, BLEU-
3, BLEU-4 [25] which measures the average n-gram precision on a
set of reference sentences, with a penalty for overly short sentences,
and ROUGE [17] based on recall and METEOR [3] that is based on
both precision and recall to measure the generation results.

In Table 3, our model performs best on each single task, wrong
word, wrong order or removing noisy background. Since Qrefine
uses character-level embedding, contextual-free and contextual
word embedding BERT, it can better deal with the misspellings and
understand the ill-formed question than all baselines. By using the
word-level reward, our model can learn a better language policy,
hence it can perform well on correcting the word order and wrong
word. Besides, since our model considers the answer correlation as
the reward, so it can capture the useful information in the question
and achieves superior results on the noisy background.

For the three operations composite task, as shown in Table 4,
our model performs the best on both datasets. In PARA-NMT, the
paraphrased questions are very similar, and therefore there is a great
chance that paraphrased questions always get the same answer.
The reinforced query reformulation method TOQR reformulates
the query by selecting terms from the retrieved documents by using
the document recall as reward. Since the query is a list of terms,
therefore, the generated sequence of terms have poor readability,
resulting in lowest performance among all baselines. The original

AQA re�nes the question for the reading comprehension. We use
the QA-lstm as reward, which has similar framework as PARA-NMT
but using REINFORCE optimization. Therefore AQA has the same
problem as PARA-NMT. Compared to QR-ans, QR-word has a better
performance, which shows that QR-word contributes more to the
readability. Qrefine-PPO is higher than Qrefine-RF, which may
because PPO method can improve the high variance problem using
REINFORCE method on question re�nement task.

4.3.2 Case Study. To demonstrate the readability and e�ective-
ness of the proposed method, Table 5 shows examples of generated
outputs on Yahoo and CSU dataset. As we can see, Qrefine has
the ability to correct the wrong words (shown in Case 1), change
the question word order for better readability (shown in Case 2)
and remove the unnecessary background in the original question
(shown in Case 3). For example, “di�erncee” can be correct as “dif-
ference”. And the re�ned question by our model is readable. But
the question generated by other baselines cannot well express the
original meaning in the ill-formed question or be misleading and
also have problems like repeatedly the useless words (e.g., Seq2Seq
in Yahoo/Case 1), no natural language sentence (e.g., TOQR in Ya-
hoo/Case 1) and express the di�erent meaning with the ill-formed
question (e.g., AQA in Yahoo/Case 1). Therefore, the question gen-
erated by Qrefine is more readable than other alternatives and is
able to keep the original user intention of asking the question.
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Yahoo

Dataset/Case Ill-formed Well-formed

what’s the differncee Seq2Seq: what’s the difference between human beings and cancer cancer?
Yahoo/Case 1 between climate chnage TOQR: differncee between climate chnage and global wraming
Wrong word and global wraming? oxygen weather warming

AQA: what’s the difference between global and global warming war?
QREFINE: what’s the difference between climate change and global warming?

how safe to meet is Seq2Seq: how to make it is an adult professional?
Yahoo/Case 2 it an american? TOQR: how safe meet an american again powerful secretary
Wrong order AQA: an animal how safe is it to meet an american?

QREFINE: how safe is it to meet an american?

who would able help Seq2Seq: what is empirical and how is it used mechanics?
Yahoo/Case 3 what is string theory TOQR: able help string theory and how is it used
Noisy Background and how is it used? theory physics used model

AQA: what is turbo motion and how it is used?
QREFINE: what is string theory and how is it used?

CSU

Dataset/Case Ill-formed Well-formed

???????? Seq2Seq: ??????? How to use the coupon
CSU/Case 1 ?????? TOQR: ??? ??? ???? ??? ????
Wrong word I want to ask why coubon coupon service regulations validity bargain goods

coubon cannot be used AQA: ??????? how can I get coupon
QREFINE: ?????????? What should I do if the coupon cannot be used

????????? Seq2Seq: ???????? how do I find the lost phone
CSU/Case 2 I do what phone has TOQR: ???? ???? ?? water damage avoid water absorb water
Wrong order water damage AQA: ????? my phone has water damage

QREFINE: ??????? What should I do if the phone has water damage

?????? Seq2Seq: ??????? What should I do when cannot log in
CSU/Case 3 ???????? TOQR: ???? ???? ???? ?? ????
Noisy Background forgot the password and forget password cannot login block account number wrong password

repeatedly log in right AQA: ??????? What should I do when I forget password
now cannot log in QREFINE: ?????????? What should I do when login password forgot

Table 5: Cases study of Generated Results on Yahoo dataset and Commercial Customer Service Userlog dataset. Typos and

substitutions are shown in underscore.

4.4 Answer Retrieval

To validate the e�ectiveness of question re�nement in helping
retrieve answers in existing QA systems, we use PyLucene 6 for
retrieving the answer to the search question.
Hits@K: The top K relevant answers retrieved by the search ques-
tion using PyLucene. If the gold answer is inside of the top K re-
trieved answers, then the Hits@K of this search question equals
1, otherwise, it equals 0. The whole Hits@K of questions is the
average development set question’s Hits@K.
Results In Table 6, we can see the all re�ned question generated
can be better than the Ill-formed question, which shows that the
re�nement process is needed. TOQR, which aims to maximize the
retrieval results achieves the good performance compared with
other methods. However, our model Qrefine achieves very better
performance comparing with TOQR in most case and the question
re�ned by our model has better readability. The Hits@K score re-
trieved by Qrefine-word is higher than Seq2Seq, which indicates
that by improving the readability of question, the retrieval ability
also be improved. As Qrefine-sen performs better than Seq2Seq,
it shows that the reward considering over-all question structure

6http://http://lucene.apache.org/pylucene/

for a better correlation with re�ned question to its answer is im-
portant. This result shows the superiority of Qrefine in greatly
improving QA utility via explicitly re�ning the question for enhanc-
ing its readability and retrieve ability for both computer and human.

4.5 Ablation Study

In order to �nd out which part of the model improves the auto-
matic evaluation performance, we do the ablation study. S2S+W is
seq2seq model using word-level embedding. S2S+W&C is seq2seq
model using word-level and char-level embedding. S2S+W&C&B

is seq2seq model using word-level, char-level, and BERT embedding.
QR-word is seq2seq model considering three embeddings and us-
ing word reward to train the RL model. QR-ans is seq2seq model
considering three embeddings and using answer coherence reward
to train the model. QR-RF considers multi-grain word embedding
and both word reward and sentence reward but uses REINFORCE
method. QR-PPO is our model.

From Fig. 2(a) and 2(b), we can see that using multi-grain word
embedding can help the model better to correct the ill-formed ques-
tion than just using single word embedding. And using PPO rein-
forcement learning with the word-level and sentence-level reward
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Yahoo Hits@1 Hits@3 Hits@5 Hits@10

Ill-formed 3.35 4.89 8.68 14.98
Seq2Seq 3.60 4.50 8.99 16.97
PARA-NMT 6.47 7.95 12.01 17.21
AQA 6.48 8.12 13.06 18.78
TOQR 7.27 10.25 22.83 32.43

QR-word 7.11 9.34 20.79 29.88
QR-ans 7.16 9.67 22.45 30.89
Qrefine 8.09 10.76 23.95 32.23

CSU Hits@1 Hits@3 Hits@5 Hits@10

Ill-formed 10.34 18.72 26.78 39.78
Seq2Seq 11.84 19.83 27.25 40.12
PARA-NMT 15.59 21.09 30.95 40.33
AQA 16.89 20.00 31.81 40.67
TOQR 20.41 27.98 34.59 48.78
QR-word 21.23 25.98 33.04 46.19
QR-ans 19.64 26.11 34.67 47.76
Qrefine 22.10 28.69 35.98 49.16

Table 6: Answering Retrieval Result on Yahoo and CSU

dataset.

(a) Yahoo (b) CSU

Figure 2: The ablation study on Yahoo and CSU dataset

can improve the model to learn a stable policy that can generate
the appropriate well-formed question.

4.6 Learning Curves Analysis

The BLEU-2 scores and learning curves of di�erent optimization
algorithms are presented in Figure 3(a) and 3(b). From the testing
results in Table 4, we can see that the two optimization methods
have comparable performance, but PPO achieves a slightly higher
BLEU-2 score than REINFORCE. Moreover, we �nd out that the
training progress of PPO is more stable and converge earlier than
policy gradient. This shows that PPOmethods can improve the high
variance problem of using REINFORCE, and can help the learning
converge quickly.

5 RELATEDWORK

5.1 Generative Text Re�nement

The generative ability of deep neural networks leads to the preva-
lence of Seq2Seq models for reformulation task. These methods
typically accomplish the reformulation by training a recurrent neu-
ral network such as an LSTM network to predict the next word
in a sentence sequence. [23] uses the reinforcement learning to

(a) Yahoo (b) CSU

Figure 3: The learning curve analysis on Yahoo and CSU

dataset

reformulate the query to maximize the number of relevant docu-
ments retrieved. Our work di�ers with their method in that we
generate natural language sequences rather than terms; thus their
reformulated query doesn’t contain the propriety of readability
and understandability. [39] proposed the sentence simpli�cation
task, which aims to make sentences easier to read and understand.
Similarly, [37] operates on the character level to �exibly handle
orthographic errors in spelling, capitalization, and punctuation.
Although their frameworks can reform the sentences to be more
readable, their objective does not include the capability of re�ning
the question to get answers easier. Active QA (AQA) [6] uses an
agent as a mediator between the user and a black box QA system,
e.g. BiDAF, to generate questions that elicit the best possible answer.
Since the pretrained �xed environment, BiDAF, is not updating with
the model, feedback on the quality of the question reformulations
could be quite noisy which presents a challenge for training. More-
over, BiDAF works on the reading comprehension, the answer is
the paraphrase in the context, therefore there is a great change
that this model always generates the same answer, which brings
another challenge for training.

5.2 Reinforcement Learning for QA

Due to the high dimensional action space for text generation and
high diversity of the required generation result, policy gradient
methods are more appropriate in the text generation than value-
basedmethods like Q-learning [20]. By using policy gradientmethod,
the limitation of cross-entropy loss that inherently comes with
word-level optimization is alleviated and allowing sequence-level
reward functions, like BLEU, to be used [27]. [1] extends this line of
work using actor-critic training. Uses of policy gradient for QA in-
clude [16], who train a semantic parser to query a knowledge base,
and [30] who propose query reduction networks that transform a
query to answer questions that involve multi-hop common sense
reasoning. Li et al. [15] use RL and SL to learn the paraphrase of the
sentence. The on-policy method like REINFORCE su�ers the high
variance and slow to converge. The o�-policy method like TRPO
and PPO [28, 29] recently applied on the game like Atari. They can
deal with the problems by regularizing the gradient of policy. Tuan
et al [34] apply the o�-policy gradient method to the sequence
generation task and shows that PPO surpass policy gradient on
stability and performance.
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6 CONCLUSION AND FUTUREWORK

Question re�nement aims to re�ne ill-formed questions, which
typically includes various types of subtasks such as spelling er-
ror correction, background removal and word order re�nement.
Instead of tackle these subtasks separately, we develop a uni�ed
model, based on Seq2Seq, to handle this task in a data-driven way.
We improve the question representation by incorporating character
embedding and contextual word embedding such as BERT. To make
the re�nement process more controllable, we combine Seq2Seq
model with deep reinforcement learning. We de�ne a sequence
generator by optimizing for a combination of imposed reward func-
tions. The experimental results show that our method can not only
produce more readable question but also signi�cantly improves the
retrieval ability of question for downstream QA system.

Question re�nement is a challenging task and there are several
directions to improve. One direction is to develop the advanced
method, such as creating di�erent awards that are more suitable
to deal with the three subtasks. Besides, In our setting, the ill-
formed and well-formed questions still need to be paired. In most
of realistic cases, we only have a pool of well-formed. We seek
to use inverse reinforcement learning [35] to learn the intrinsic
representation of the well-formed question. Therefore, given an ill-
formed question, the model can re�ne it to the well-formed. Finally,
it is also interesting to make use of the result of question re�nement
to improve other related tasks such as question understanding and
question answering recommendation.
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