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Abstract—In era of big data, we have easier access to the
data with multi-view representations from heterogeneous feature
spaces, where each view is often unlabeled, partial and even full
of noises. These unique challenges and properties motivate us to
develop a novel robust multi-view subspace clustering framework
(RMSC), which learns a consensus affinity matrix with the ideal
subspace structure, by extending our joint feature selection and
self-representation model (JFSSR). Concretely, RMSC learns the
consensus graph across diverse views with exactly k connected
components (k is the number of clusters), which is encoded by a
block diagonal self-representation matrix. Besides, we emphasize
�2,1-norm minimization on the loss function to reduce redundant
and irrelevant features, and implicitly assign an adaptive weight
to each view without introducing additional parameters. Lastly,
an alternating optimization algorithm is derived to solve the
nonconvex formulated objective. Extensive empirical results on
both synthetic data and real-world benchmark data sets show
that RMSC consistently outperforms several representative multi-
view clustering approaches.

Index Terms—multi-view, clustering, robust, sparsity

I. INTRODUCTION

SUBSPACE clustering, which assumes that high dimen-

sional data are drawn from the union of multiple low-

dimensional linear subspaces, aims to assign data to their

respective subspace corresponding to a cluster, a class or

category. As a kind of representative subspace clustering

method, the spectral clustering attracts more attention due to

its simplicity and outstanding performance. Various spectral-

type methods primarily differ in the approaches to learning

the affinity matrix [12], [15].

Traditional clustering methods only use a single set of

features or one information window of the subjects. Nowadays

more and more data have been collected from multiple sources

or different views. Therefore, numerous multi-view clustering

methods emerge, including co-training [12], multiple kernel

learning [5], and multi-view subspace learning [16], [17]. In

this paper, we focus on multi-view subspace clustering.

Some multi-view subspace clustering methods work on

the assumption that all the views are reliable and therefore

maximize the consensus of the cluster structure shared by

* Hui Yan is corresponding author.

X = XZ + E

Fig. 1. Schematic of our Robust Multi-view Subspace Clustering framework.
Suppose data samples with 3 views X(1), X(2), X(3) and 1 view of noisy
features X(4), our framework pursues a diagonal block self-representation
coefficient matrix Z by removing redundant and irrelevant features shown
in red elements in E. Note that the last several rows in E shows that our
framework potentially learns view weights where most of non-zero rows
correspond to insignificant view.

multiple views [3], [16], [17]. In reality, the views of data

could be either inherently strong or weak, which means the

final performance will be severely deteriorated if we ignore to

distinguish different views. Accordingly, [8] computes roughly

the weights for different views by combining the prior knowl-

edge. Different from this manually intervening approach, [1]

explicitly define these view weights as variables and then learn

them by optimizing the corresponding objective function.

Although existing subspace multi-view clustering algo-

rithms achieve promising performances, they have the fol-

lowing two main drawbacks. (1) Robustness: The nature

of multi-view information acquisition techniques determine

that each view is often redundant, noisy or even incomplete.

Unfortunately, the aforementioned methods treat the features

in the same source as equally vital, which means the final

results will be degraded in the presence of irrelevant noisy

features. (2) Consensus-preservation: It is not reasonable to

learn a consensus subspace representation matrix or pair-wise
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similarity matrix across multiple views, since the magnitude

of element values in such matrix can be dramatically different.

Comparatively, a consensus cluster indicator matrix seems to

be a more feasible choice. Unfortunately, the corresponding

binary optimization is NP-hard. It seems plausible that learning

a consensus cluster structure could have advantages in both

measure rationality and optimization efficiency.
To circumvent the issues mentioned above, we propose

a joint feature selection and self-representation framework

(JFSSR), emphasizing �2,1-norm minimization on loss term

and block diagonal regularizer on self-representation coef-

ficient matrix. We also further extend the proposed single

view representation learning model for multi-view learning

in the presence of error dubbed robust multi-view subspace

clustering (RMSC). Eventually, corresponding optimization

algorithms based on the Augmented Lagrange Multiplier

(ALM) [6] are proposed. Extensive experiments demonstrate

the effectiveness and competitiveness of the proposed methods

compared with several state-of-the-art clustering approaches.

Please notice that the word “error” in this paper focus on

the deviation between model assumption (i.e., subspaces) and

feature-specic corruptions.
Fig. 1 illustrates the proposed RMSC framework. We aim to

recover the consensus subspace structure reflected by exactly

k non-lapping blocks in the diagonal of self-representation

coefficient matrix Z of multi-view data.
In summary, the main contributions of this paper can be

delivered as follows:

• We propose a novel joint feature selection and self-

representation framework by combining feature reduction

and direct diagonal block self-representation learning,

which is further extended to a robust multi-view subspace

clustering method dubbed RMSC.

• We take both view diversity and feature-specific error

into account by introducing reasonable relaxations and

regularizers. As a result, the learned self-representation

discovers consistency and specificity hidden in multiple

views, which contributes to its robustness to noisy fea-

tures and non-independent subspaces.

• Experiments are conducted on real-world benchmark data

sets show so as to demonstrate the super performance of

the proposed frameworks.

The rest of this paper is organized as follows. The next

section reviews related works briefly. Section III and Section

IV introduce the proposed joint feature selection and self-

representation learning framework, and robust multi-view

subspace clustering method, respectively. Comprehensive

experimental results and discussions are provided in Section

V. Finally, we give the conclusions in Section VI.

Notations. We define matrices by boldface capital letters,

e.g., A, vectors by boldface lowercase letters, e.g., a, and

scalars by lowercase letters, e.g., a. For A, its (i, j)-th entry

is denoted as Aij ; for a, its i-th entry is denoted as ai.
The absolute matrix of A is denoted by |A|. We define

diag(A) as a vector with its i-th entry being the i-th diagonal

element of A, and Diag(a) as a diagonal matrix with its

i-th entry on the diagonal being ai. The all one vector and

all zero vector are denoted as 1 and 0, respectively. The

identity matrix is denoted as I. If A is positive semi-definite,

we note it as A � 0. If all entries in A are nonnegative,

we note it as A ≥ 0. The trace of a square matrix A is

denoted as Tr(A) and its transposition is denoted as AT .

We note it as [A]+ = max(0,A). Some norms will be

used, including Frobenius norm (or �2-norm of a vector)

||A||F =
√∑

ij A2
ij and �2,1-norm ||A||2,1 =

∑
i

√∑
j A2

ij .

For symmetric matrices A,B, we denote A � B if B−A � 0.

< ·, · > defines the matrix inner product. For ease of

presentation, the horizontal (resp. vertical) concatenation of

a collection of matrices along row (resp. column) is denoted

by [X1,X2, ...,Xn] (resp. [X1;X2; ...;Xn]).

II. RELATED WORK

Given data X = [X1,X2, · · · ,Xk] ∈ R
d×n drawn from

k subspaces corresponding to different clusters, where d
indicates the dimension of the samples, Xi ∈ R

d×ni means

the submatrix in X that belongs to the i-th cluster, and

n(n =
∑k

i=1 ni) is the total number of samples. Subspace

clustering aims to cluster the n samples into k classes.

Self-representation based subspace clustering looks for a

linear representation Z, whose general formulation can be

presented as

min
Z

loss(X,XZ) + λΩ(Z)

s.t., diag(Z) = 0 (1)

where Z ∈ R
n×n is the self-representation coefficient matrix,

and it is expected not to be an identity matrix under the

constraint in Eq. (1). loss(·) and Ω(·) denote the loss function

and regularization terms, respectively. And the scalar λ > 0
balances the reconstruction error and the regularization for Z.

In the ideal case, each sample is represented as a linear

combination of samples belonging to the same subspace. In

this case, Z has the k-block diagonal structure [2].

III. JOINT FEATURE SELECTION AND

SELF-REPRESENTATION LEARNING

A. Preliminary

Definition 1 (k-block diagonal matrix [2]). For any matrix B ∈
R

n×n, B is k-block diagonal if it has k connected components

(or submatrices, blocks).

Definition 2 (Laplacian matrix). In graph theory, the Laplacian

matrix of the affinity matrix B(B ≥ 0,B = BT ) is defined as

LB = Diag(B1)− B

Definition 3 (k-block diagonal regularizer [2]). For any affinity

matrix B, its k-block diagonal regularizer denoted by ||B||k
is defined as the sum of the smallest k eigenvalues of the

corresponding Laplacian matrix LB.

Theorem 1 [18]. For any affinity matrix B, the multiplicity k
of the eigenvalue 0 of the corresponding Laplacian matrix LB
equals to the number of connected components (blocks) in B.
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It can be seen that if the affinity matrix B is k-block

diagonal, ||B||k = 0. In contrast, if ||B||k = 0, at least B
has k blocks.

B. Formulations

Considering the feature specific corruption and leveraging

the k-block diagonal regularizer prior, we propose joint feature

selection and self-representation learning framework:

min
Z,E
||E||2,1 + λ||Z||k

s.t., X = XZ + E
diag(Z) = 0,Z ≥ 0,Z = ZT (2)

where λ > 0 is a penalty parameter, and E ∈ R
d×n denotes the

reconstruction error. Here we emphasize �2,1-norm on the error

term E because: (1) �2,1-norm minimization encourages the

rows of E to be zero. Therefore, row-sparse regularized loss

function can eliminate the redundant or irrelative features. (2)

Such �2,1-norm regularized model can be further extended to

multi-view subspace learning. Note that different from existing

�2,p-norm (0 ≤ p ≤ 1) regularization based feature selection

methods [7], we enforce the row-sparsity on error matrix,

not the feature weight matrix. Besides, we want to model

the feature-specific corruptions via the row-sparsity property,

while the previous self-representation method [15] models the

sample-specific noise away from the underlying subspaces as

the error term with column-sparsity supports.

We require the representation matrix Z in Eq. (2) to be non-

negative and symmetric, which are necessary properties for

defining the block diagonal regularizer. But these restrictions

on Z will limit its representation capability. Introducing an

intermediate term S, we get

min
Z,S,E

||E||2,1 + λ||S||k + ρ||Z− S||2F
s.t., X = XZ + E

diag(S) = 0, S ≥ 0, S = ST (3)

The above two models are equivalent when ρ > 0 is

sufficiently large. As will be seen in Section Optimization,

another advantage of the relaxation term ||Z − S||2F is that

it makes the objective function separable. More importantly,

the subproblems for updating Z and S are strongly convex,

leading to the final solutions are unique and stable.

C. Optimization

Note that ||S||k is a nonconvex term, and we introduce a

property about the sum of eigenvalues to reformulate ||S||k.

Theorem 2 [20]. Let L ∈ R
n×n and L � 0. Then

n∑
i=n−k+1

λi(L) = min
W

< L,W >

s.t. 0 � W � I, T r(W) = k

where λi(L) are the eigenvalues of L in the decreasing order.

So Eq. (3) is equivalent to

min
Z,S,E,W

||E||2,1 + λ < Diag(S1)− S,W > +ρ||Z− S||2F
s.t., X = XZ + E

diag(S) = 0, S ≥ 0, S = ST

0 � W � I, T r(W) = k (4)

The ALM with Alternating Direction Minimizing (ADM)

strategy [19] is an efficient and effective solver for our

problems. Then the problem in Eq. (4) is transformed into

the equivalent ALM problem as follows:

L(E, S,Z,W)

=||E||2,1 + λ < Diag(S1)− S,W > +ρ||Z− S||2F
+ < Y,X− XZ− E > +

μ

2
||X− XZ− E||2F

s.t., diag(S) = 0, S ≥ 0, S = ST

0 � W � I, T r(W) = k (5)

where μ is a positive penalty scalar.

We divide the problem in Eq. (5) into four subproblems, and

develop an alternative and iterative algorithm to solve them.

Z sub-problem: To update Z, we minimize the following

objective function by fixing other variables

L(Z) = < Y,X− XZ− E > +
μ

2
||X− XZ− E||2F

+ ρ||Z− S||2F
Taking the derivative with respect to Z and setting it to zero,

we get

Z∗ =(μXTX + 2ρI)−1

(μXT X + XT Y + 2ρS − μXT E) (6)

S sub-problem: Fixing the other variables, we update S by

solving the following problem

S∗ =argmin
1

2
||S− (Z− λ

2ρ
(diag(W)1T −W))||2F

s.t., S ≥ 0, S = ST , diag(S) = 0

This problem has a closed form solution given by

S∗ = [(A + AT )/2]+ (7)

where A = (Z− λ
2ρ (diag(W)1T −W)).

W sub-problem: Fixing the others variables, we update W
by the following rule

W∗ =argmin < Diag(S1)− S,W >

s.t., 0 � W � I, T r(W) = k (8)

Note that the above subproblem is convex and has closed

form solutions, i.e., W = UUT , where U ∈ R
n×k consists

of k eigenvectors associated with the k smallest eigenvalues

of Diag(S1)− S.
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E sub-problem: The reconstruction error E is updated by

solving the following problem

E∗ =argmin ||E||2,1
+ < Y,X− XZ− E > +

μ

2
||X− XZ− E||2F

=argmin
1

μ
||E||2,1 + 1

2
||E− (X− XZ + Y/μ)||2F (9)

This subproblem can be efficiently solved by Lemma 3.2 in

[9].

Updating Multipliers:{
Y = Y + μ(X− XZ− E)
μ = min(γμ, μmax)

(10)

The procedure depicted as in Algorithm 1 solves the prob-

lem in Eq. (3).

Algorithm 1 Joint Feature Selection and Self-Representation

Learning

Input:
Data matrices X, hyper-parameters ρ, λ,

and the number of clusters k.

Initial:
E = 0, S = Z = 0, Y = 0,

μ = 10−6, γ = 1.1, ε = 10−4, μmax = 106.

While not converge do
Update E according to Eq. (9)

Update S according to Eq. (7)

Update W according to Eq. (8)

Update Z according to Eq. (6)

Update multipliers Y and μ according to Eq. (10)

Check the convergence conditions:

||X− XZ− E||∞ < ε
End while
Output: Z, S

IV. MULTI-VIEW SUBSPACE LEARNING

In this section, we extend JFSSR to multi-view clustering.

A. Formulations

Given multi-view observations {X(1),X(2), ...,X(v)} which

consist of v different views, we aim to discover latent clus-

tering structure by learning a consistent self-representation

coefficient matrix Z ∈ R
n×n shared by all views. Self-

representation property with block diagonal regularizer in each

view can be denoted as

min
Z,S,W,E(i)

v∑
i=1

||E(i)||2,1 + λ < Diag(S1)− S,W > +ρ||Z− S||2F

s.t., X(i) = X(i)Z + E(i), i = 1, 2, ..., v

diag(S) = 0, S ≥ 0, S = ST

0 � W � I, T r(W) = k (11)

where X(i) ∈ R
di×n denotes the feature matrix with the

dimension di corresponding to the i-th view. E(i) ∈ R
di×n

denotes the reconstruction error in each view. It is worth

mentioning that this �2,1-norm regularized model can be

treated as a self-weighted model, which implicitly assigns an

adaptive weight to each view without introducing additional

parameters [1].

Besides the consistency term Z comprised in Eq. (11), the

unique part in each view could be considered. Thus, we further

relax the restrictions on Z and reformulate it as a pretty

simplified and compact form:

min
Z,Ẑi

,S,W,E
||E||2,1 + β

v∑
i=1

||Ẑ(i)||2F + ρ||Z− S||2F

+ λ < Diag(S1)− S,W >

s.t., X = XZ + P + E
diag(S) = 0, S ≥ 0, S = ST

0 � W � I, T r(W) = k (12)

where X =
[
X(1);X(2); ...;X(v)

]
, E =

[
E(1);E(2); ...;E(v)

]
,

and P =
[
X(1)Ẑ

(1)
;X(2)Ẑ

(2)
; ...;X(v)Ẑ

(v)
]
.

B. Optimization

The augmented Lagrange function of the problem in Eq.

(12) is as follows:

L(E, Ẑ
(i)
, S,Z,W)

=||E||2,1 + β

v∑
i=1

||Ẑ(i)||2F + ρ||Z− S||2F

+ λ < Diag(S1)− S,W >

+
v∑

i=1

< Y(i),X(i) − X(i)(Z + Ẑ
(i)
)− E(i) >

+
v∑

i=1

μ

2
||X(i) − X(i)(Z + Ẑ

(i)
)− E(i)||2F

s.t., S ≥ 0, S = ST , diag(S) = 0
0 � W � I, T r(W) = k (13)

We divide the problem in Eq. (12) into several sub-

problems, and develop Algorithm 2 to solve them.

We give the procedure of clustering as previous works [9].

Given the data matrix X, we obtain the consistent representa-

tion coefficient matrix Z by solving RMSC problem in Eq. (12)

using Algorithm 2. Both of them can be used to infer the data

clustering. The affinity matrix can be defined as (|Z|+|ZT |)/2,

followed by the spectral clustering [12] to achieve the final

result.

V. EXPERIMENTS

A. Date sets and evaluation metrics

In this section, we performed extensive experiments to eval-

uate the effectiveness of the performance of JFSSR (Algorithm

1) and RMSC (Algorithm 2) on some real-world benchmark

data sets. ORL1 contains 10 different face images of each of

1https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Algorithm 2 Robust Multi-view Subspace Clustering

Input:
Multi-view matrices {X(1), ...,X(v)},
hyper-parameters β, ρ, λ and the number of clustering k.

Initial:
E = 0, S = Z = 0, Ẑ

(i)
= 0, Y = 0,

μ = 10−6, γ = 1.1, ε = 10−4, μmax = 106.

while not converge do
1. Update E using

E∗ =

argmin
1

μ
||E||2,1 + 1

2
||E− (X− XZ− P + Y/μ)||2F

2. Update S using S∗ = [(A + AT )/2]+
where A = (Z− λ

2ρ (diag(W)1T −W)).

3. Update W using W∗ = UUT

where U ∈ R
n×k consist of k eigenvectors associated

with the k smallest eigenvalues of Diag(S1)− S.

4. Update Z using

Z∗ =(μXT X + 2ρI)−1

(μXT X + XT Y + 2ρS − μXT E− XT P)

5. Update Ẑ
(i)

using

Ẑ
(i)∗ =

(
2β

μ
I + X(i)T X(i))X(i)T (X(i) − X(i)Z− E(i) +

Y(i)

μ
)

6. Update multipliers Y using Y = Y+μ(X−XZ−P−E)
7. Update the parameter μ by μ = min{ρμ,maxμ}
8. Check the convergence conditions:

||X− XZ− P− Eh||∞ < ε
end while
Output: Z, S

40 distinct subjects, which is associated with three views. 3

Sources 2 includes 169 news stories collected from three online

news sources. Each story is manually annotated with one of

the six topical labels. Notting-Hill [13] video face dataset is

derived from the movie Notting-Hill. The faces of five main

casts are collected, including 4,660 faces in 76 tracks. We

randomly sample 110 images of each cast.

For evaluation metrics, we use Normalized Mutual Informa-

tion (NMI), Accuracy (ACC), F-measure (F1), and Rand Index

(RI) to comprehensively measure the clustering performance

in our experiments.

B. BDR vs. JFSSR

To give an intuitive example to illustrate the effectiveness

of �2,1-norm regularized loss minimization function in Eq.

(3), we compare JFSSR with BDR [2]. Because the main

difference between both lies in the used regularization for the

error term E.

2http:://mlg.ucd.ie/datasets
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Fig. 2. Affinity matrices and error matrices of JFSSR on (a) View 1 of ORL
and (b) View 1 of ORL with additional noisy features (λ = 1 and ρ = 10 )

TABLE I
BDR VS. JFSSR ON ORL

Data Methods ACC NMI F1 RI

View 1 BDR 72.50±0.09 86.69±0.02 64.12±0.10 98.24±0.00
JFSSR 75.95±0.08 88.78±0.00 68.61±0.04 98.44±0.00

View 1 BDR 60.00±0.03 75.29±0.01 44.76±0.02 97.38±0.00
+ Noise JFSSR 73.20±0.03 86.17±0.01 64.05±0.06 98.26±0.00

We select View 1 of ORL as X̂ = [X1,X2, ...,X40] ∈
R

4096×400, and randomly generate noisy feature matrix Ef ∈
R

1000×400 from N (0, 1). As shown in Table I, our method

achieves much more stable results compared with BDR. And

the corresponding affinity matrices (|Z| + |ZT |)/2 and error

matrices E obtained by JFSSR are shown in Fig. 2.

C. Experiments to Evaluate RMSC

We compare our method with the baselines such as LMSC

[17], GMC [14], SWMC [1], MultiNMF [9], MVKMBD [10],

DEKM [11], RDEKM [4], and SPC [3]. For the existing

methods, we use the codes released by the authors.

For all the compared methods, we tune the parameters (for

some methods, we use the parameters which are given in their

codes for some data sets) and use the ones which achieve the

best results in most cases for each data set. For our method, we

tune all parameters from {0.01, 0.1, 1, 10, 100} to report best

performances. We run 10 times for each method and report the

mean values and standard deviations. The experimental results

on the three data sets are presented in Table II, which shows

that our approach almost outperforms all the baselines.

To further investigate the improvement of our method, we

conduct BDR on each single view and the learned consensus
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TABLE II
RESULTS ON THREE DATASETS (MEAN ± STANDARD DEVIATION). THE HIGHEST VALUES ARE IN BOLDFACE, AND THE SECOND BEST ONES ARE IN

ITALIC. HIGHER VALUE INDICATES BETTER PERFORMANCE.

Datasets LMSC GMC SWMC MultiNMF MVKMBD DEKM RDEKM Co-Reg RMSC

NMI 49.14±4.87 62.16±0.00 15.43±0.00 42.36±3.85 40.23±0.00 34.17±0.00 48.09±0.00 52.67±3.14 62.18±0.02
3 Source ACC 62.78±4.15 69.23±0.00 36.09±0.00 49.92±3.62 54.44±0.00 50.30±0.00 61.54±0.00 56.07±5.48 70.41±0.07

F1 58.74±4.25 60.47±0.00 36.91±0.00 42.61±3.35 47.89±0.00 46.40±0.00 60.31±0.00 50.35±5.40 67.73±0.15
RI 81.27±1.92 75.56±0.00 32.23±0.00 72.37±3.49 78.14±0.00 78.16±0.00 82.94±0.00 78.25±3.48 83.54±0.02

NMI 90.31±0.98 85.71±0.00 84.99±0.00 84.77±1.33 73.90±0.00 70.36±0.00 74.56±0.00 88.62±1.72 91.93±0.06
ORL ACC 76.48±3.04 63.25±0.00 74.75±0.00 69.79±2.81 51.25±0.00 44.50±0.00 53.25±0.00 74.45±3.88 81.50±0.05

F1 70.46±3.04 35.99±0.00 44.30±0.00 58.45±3.61 38.32±0.00 31.64±0.00 38.93±0.00 68.41±4.57 74.44±0.15
RI 98.52±0.19 93.57±0.00 95.16±0.00 97.82±0.26 96.60±0.00 96.06±0.00 96.62±0.00 98.46±0.25 98.73±0.05

NMI 69.56±5.15 87.07±0.00 83.11±000 76.85±1.41 68.28±0.00 68.96±0.00 68.60±0.00 76.08±4.71 85.17±0.00
Notting ACC 81.70±5.28 74.55±0.00 84.73±0.00 87.76±0.95 65.64±0.00 68.36±0.00 69.64±0.00 78.10±5.29 90.36±0.00
-Hill F1 70.35±7.97 80.12±0.00 87.78±0.00 82.71±0.95 65.14±0.00 66.67±0.00 66.62±0.00 77.77±6.66 88.84±0.00

RI 86.78±3.75 91.38±0.00 94.31±0.00 92.40±0.40 85.13±0.00 85.74±0.00 85.63±0.00 90.43±2.78 94.74±0.00
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Fig. 3. Performance comparison between BDR with each view and RMSC
versus ACC on three datasets.

BDR by RMSC on all three datasets, respectively. According

to the results in Fig. 3, the clustering performances with

consensus BDR are usually better than those of each single

view, which empirically proves that the learnt consensus BDR

is more reasonable than each single view.

VI. CONCLUSION

In this paper, we introduce joint feature selection and self-

representation learning framework and extend it to multi-

view subspace clustering. Multi-view latent cluster structure

is encoded by a block diagonal self-representation coefficient

matrix. Moreover, irrelevant features and the view without dis-

criminant information could be removed by the proposed �2,1-

norm minimized loss function. Experimental results demon-

strate the effectiveness of the proposed methods.
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