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Efficient Traffic Estimation With Multi-Sourced
Data by Parallel Coupled Hidden Markov Model

Senzhang Wang , Xiaoming Zhang , Fengxiang Li, Philip S. Yu, Fellow, IEEE, and Zhiqiu Huang

Abstract— Traffic congestion estimation in arterial networks
with sparse GPS probe data is a practically important while
substantially challenging research issue. The effectiveness and
efficiency of the existing GPS probe data-based traffic estimation
models are largely limited due to the following two challenges.
First, due to the low sampling frequency of GPS probes, probe
data are usually sparse, especially for some road links not
located in the central urban areas. Second, due to the very
complex temporal and spatial dependencies among the road links,
the variable space of the existing traffic estimation models is huge.
It is time consuming to get an accurate estimation of a large
arterial road network with thousands of road links. To address
the abovementioned issues, this paper proposes to extract traffic
event signals from social media and incorporate them with
GPS probe data to alleviate the data sparse issue. We first
collect traffic-related posts that report various traffic events,
including traffic jam, accident, and road construction from
Twitter. By considering the GPS probe readings and the traffic
event tweets as two types of observations, we next extend the
conventional coupled hidden Markov model for integrating the
two types of data to obtain a more accurate estimation of traffic
conditions. To address the computational challenge, a parallel
importance sampling-based electromagnetic algorithm is further
introduced. We evaluate our model on the arterial network of
downtown Chicago. The experimental results demonstrate the
superior performance of the model in both effectiveness and
efficiency.
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I. INTRODUCTION

CURRENTLY, GPS based probe vehicle data have
become a significant data source available for traf-

fic monitoring and sensing. As such, there is considerable
research interests in exploring GPS probe data for conduct-
ing various traffic related applications such as traffic states
estimation and prediction [1], [2]. However, the characteris-
tics of probe data, including the low sampling frequency,
and the randomness of its spatiotemporal coverage, make it
insufficient for fully estimating traffic conditions of a large
transportation network [3]. There are two major issues that
largely limit the usability of the GPS probe data in traffic
states estimation. First, the sampling frequency of GPS probes
is usually relatively low, making the probe readings on some
road links sparse, especially for the road links far away from
the central urban areas. Second, due to the complex spatial
and temporal dependencies among the road links, the variable
space of the traffic estimation model can be huge and thus the
computational complex is high.

Currently, it is a common practice for pedestrians, drivers
and official transportation departments to share instant traf-
fic information through social media like Twitter [4], [5].
A considerable amount of tweets that report traffic events
like congestion and accident are posted instantly every day.
Previous study [6] showed that there are thousands of traffic
event tweets posted every day in some big cities of United
States like Chicago and Los Angeles. Many such tweets,
like “Harrison St: accident at Kilbourn Ave, 2:04-4/2/2015,”
explicitly give the type of traffic event, time, and loca-
tion information. Motivated by the rich traffic informa-
tion available in social media, rising research efforts have
been made to explore social media data for facilitating
traffic related applications, including traffic event location
identification [7], [8], traffic event detection [9], [10], and
traffic congestion estimation [6], [11]–[13]. Although the util-
ity of social media data has attracted much research attention,
less attention is paid on developing both effective and efficient
models to combine the multi-source data, particularly the
social media data and the GPS probe readings for improving
traffic states estimation.

The aims of this paper are 1) incorporating traffic event
signals extracted from Twitter with GPS probe readings
for more accurately estimating urban traffic conditions, and
2) propose an efficient solution to make the algorithm more
scalable such that it can work on large transportation networks
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with thousands of road links. The challenges of the studied
problem are three-fold. Firstly, the traffic information extracted
from Twitter can be associated to multi-typed traffic events
including congestion, accident, road construction, etc. It is
difficult to model the potential impacts of the diverse traffic
events on traffic congestion. For example, given a tweet that
reports a traffic accident, how can we quantitively measure
its impact on traffic congestion? Secondly, it is also difficult
to combine the two types of data with totally different data
formats seamlessly. A piece of GPS probe reading normally
contains the time, speed, heading, and the exact location
(longitude, latitude) information of a vehicle; while a tweet
that reports a particular traffic event typically will mention
the traffic event type, the time, and the road or road link
information. It is non-trivial to integrate the two types of data
directly to feed them into a traditional traffic estimation model.
Thirdly, CHMM is shown to be effective to capture the spatial
and temporal dependencies among the road links in traffic
estimation, but the high computational complexity makes it
infeasible to handle large road networks [1], [14].

To address the above challenges, we take Twitter as a
complementary data source and collect traffic related tweets.
We first extract the traffic event type, time, and location
information from the tweets by data processing. To effectively
fuse Twitter data and GPS probe data, we next extend the
conventional CHMM [1], [15]. The extended model considers
the GPS probe data and the traffic event tweets as two types
of observations generated from two different distributions
independently. The final estimation result is a weighted com-
bination of the estimation results based on the two types of
data. As the exact solution of CHMM is infeasible for a
large network due to the exponential space and time con-
sumption, we propose a parallel particle filtering method to
more efficiently estimation the variables in the E-step of
the EM algorithm. The proposed parallel algorithm evenly
distributes the particles into multiple processors and conduct
the resampling procedure in parallel. A rebalancing strategy
is also introduced to guarantee the new sampled particles
evenly distributed in the processors. Meanwhile, in the M-step
we formulate the original optimization problem decomposable
into smaller problems that can also be optimized in parallel.

To summarize, this paper makes the following contributions.
• An extended Coupled Hidden Markov Model is proposed

to effectively combine the traffic event related tweets
and traditional probe GPS readings for more accurately
estimating traffic congestions.

• To reduce the computational complexity, a parallel
EM-algorithm is proposed to more efficiently estimate
the large number of variables in the model.

• The evaluation on both the arterial network of downtown
Chicago and the synthetic datasets shows that 1) incorpo-
rating the social media data can significantly improve the
performance of traffic estimation compared with existing
methods, and 2) the proposed parallel algorithm achieves
nearly linear speedup.

The remainder of the paper is organized as follows.
Section II discusses related work. In Section III, we introduce
the preliminary and show the framework of our method.

Section IV introduces Twitter data collection. Section V
elaborates the proposed CHMM. We describe the paralleled
parameter inference in Section VI and evaluate our model in
Section VII. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Traditionally, traffic monitoring and estimation mainly rely
on various road sensors, and can be roughly categorized into
traffic modeling on individual roads [16]–[18] and on a road
network [1], [2], [19], [20]. Helbing [17] employed a Funda-
mental Diagram to learn the relations among vehicle speed,
traffic density, and volume for a particular road to estimate
traffic condition on an individual road. Muñoz et al. [16] pro-
posed a macroscopic traffic flow model SMM by utilizing the
loop detector data to estimate the traffic density at unmonitored
locations along a highway. Porikli and Li [18] proposed a
Gaussian Mixture Hidden Markov Models to detect traffic
condition with the MPEG video data. Gahrooei and Work [21]
studied how to use hidden Markov Model to infer the traffic
signal phases from the turning movement counters. Researches
on traffic monitoring on a road network usually need to capture
and model the correlations of the traffic conditions among
the road links connected to each other [1], [2], [22]. Such
models mainly utilized the Floating Car Data (FCD) or probe
data generated by the GPS sensors equipped in vehicles.
Fabritiis et al. [22] studied to use FCD data based on the traces
of GPS positions to predict the traffic on Italian motorway
network.

Herring et al. [1] have pioneered to apply a coupled Hidden
Markov Model to capture the spatiotemporal dependencies
among the road links of a road network in traffic state
estimation. Although CHMM is shown to be effective in
traffic state estimation, a major limitation is that CHMM is
very time consuming to solve, and thus it is infeasible to be
applied to large transportation networks. Herring et al. [1] and
Wang et al. [23] proposed to apply particle filtering algorithm
to estimate the parameters of CHMM. An important issue in
particle filtering is the particle degeneracy. To address this
issue, Polson and Sokolov [24] and Sokolov and Polson [25]
proposed a Bayesian particle filter for tracking traffic flows
that is capable of capturing nonlinearities and discontinuities
present in flow dynamics. They showed that their proposed
Bayesian particle filter is less prone to the degeneracy issue.
However, particle filtering is still very time consuming because
it needs to conduct a large number of simulations. To reduce
the computational complexity, Mihaylova et al. [26] proposed
a parallel particle filtering algorithm by dividing a large
traffic network into several subnetworks. However, the issue
is that it is not clear how to decompose the large traffic
network. Unlike other types of networks that usually present
community structures, it is hard to divide a road network of
a city into a group of small road networks with very few
connections among them. Thus a new parallel particle filtering
algorithm that does not need to decompose the traffic network
is necessary.

As the traffic sensor data such as GPS probe data
are usually sparse, some researchers tried to collect traffic
information from social media. Recently exploring traffic
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Fig. 1. Framework of the proposed model.

related information from Twitter to detect traffic events
or monitor traffic conditions has been a hot research
topic [4], [6], [9], [11], [13]. Most previous works focused on
investigating either how to extract and visualize the traf-
fic event information from tweets [4], [9], [11] or how to
locate the traffic events mentioned in the tweets [7], [8].
As traffic event data are usually sparse and imbalanced,
imbalanced learning techniques are usually explored [27]. The
work in [13] is the first to estimate traffic congestion of
an arterial network by collecting traffic related tweets from
Twitter. Wang et al. [6] further incorporated other information
such as social events and road features with social media
data to more effectively estimate citywide traffic congestions.
However, as the probe data are not explored, the performance
are usually not desirable due to the sparse and noisy Twitter
data [13]. Our previous work [14] proposed an enhanced
CHMM model namely E_CHMM to integrate the GPS probe
readings and traffic event tweets. However, E_CHMM uses
traditional sequential parameter estimation algorithms, and
thus it is still less efficient when dealing with large transporta-
tion networks. About traffic state estimation, Seo et al. [28]
provided a comprehensive survey that one can refer to for
more information on this research problem.

III. FRAMEWORK AND PROBLEM DEFINITION

In this section, we will first give some definitions. Then
we will introduce the framework of our model followed by
a formal problem definition. Next we will make some basic
assumptions to model the problem.

Definition 1 (An Observation of Traffic Event Tweet
et,l,i [14]): We represent a tweet observation of traffic event
occurring on the road link l at time t as such a tuple et,l,i =
(c, loc, t), where c is the traffic event category, loc represents
the location or road link, and t denotes the time.

Definition 2 (An Observation of GPS Probe Reading
yt,l,i [14]): We represent an observation of GPS probe read-
ing on the road link l at time t as a vector yt,l,i =
(s, lat, lon, head, t), where s is the vehicle speed, lat is the
latitude, lon is the longitude, head is the heading of the probe,
and t is the time.

Definition 3 (A Road Link l [14]): We use the intersec-
tions to partition an arterial road R into several road links
R = {l1, l2, . . .}. Each road link l can be represented as a tuple
l = (Link_I D, Star t_ Inter, End_Inter), where link_I D is
the ID of the road link, Star t_Inter is the start intersection,
and End_Inter is the end intersection.

Definition 4 (Neighbor Road Links [14]): Two road links
l1 and l2 are called neighbor road links if they connect to each
other, namely they share an intersection. Particularly, the road
link l is also considered as a neighbor road link of itself.
We denote all the neighbor links of road link l as Nl .

A. Traffic Congestion

Traffic congestion refers to a condition on transportation
networks that occurs as use increases, and it is characterized
by slower speeds, long trip times, and increasing vehicular
queueing. As a fuzzy concept, the definition of traffic conges-
tion can vary significantly from time to time and place to place.
For example, the concept of congestion in highway can be very
different from it on an arterial road in urban area. Therefore,
congestion is difficult to define precisely in a mathematical
sense [29]. A straightforward definition of traffic congestion,
which is also used in this paper is that the average vehicle
speed is lower than a threshold. In this paper, we use the
5-state traffic condition system based on the average vehicle
speed defined by Chicago Transit Authority (CTA), and we
will introduce it in detail later.

Fig.1 shows the framework of our method. It contains two
parts: the data collection and processing part, and the model
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part. One can see that there are two types of data in the model,
traffic event tweets and GPS probe readings. From each traffic
event tweet, we first extract the traffic event type, location, and
time information, and then map it to the corresponding road
link by geocoding. Similarly, we extract the exact location
and travel speed information from each GPS probe reading,
and then map it to the corresponding road link. For each road
link, we assume the occurrence of traffic events on it follows a
multinomial distribution, and the vehicle speed in a particular
time interval follows a Gaussian distribution [1].

We model the spatiotemporal conditional dependencies of
arterial traffic using a probabilistic graphical model Coupled
Hidden Markov Model (CHMM). A CHMM models a system
of multiple interaction processes which are assumed to be
a Markov process with unobserved states. In our model,
the multiple processes evolving over time are the discrete
traffic states of each link in the road network (the circles in the
model part of Fig.1). Since we do not observe the state of each
link for all times, we consider them as hidden. We can observe
the vehicle speed and traffic events from GPS probe and tweets
(the blue and red squares in the model part of Fig.1), and the
traffic speed and event on each link are conditioned on its
hidden state. In addition, a coupled structure to the HMM
specifies the local dependencies between adjacent links of
the arterial network. Given the problem framework illustrated
in Fig.1, we formally define the studied problem as follows.

B. Problem Definition

Given an arterial road network G with L road links in
T time intervals, the tweet observations of traffic events
{et,l,i }l=1:L

t=1:T , and the GPS probe readings {yt,l,i }l=1:L
t=1:T on G, our

goal is to accurately and efficiently infer the hidden congestion
states {zt,l}l=1:L

t=1:T for each road link l in each time interval t .
Following previous traffic estimation models [1], [15],

we make the following assumptions for computational
tractability.
• Discrete traffic states: For each time interval t , the traffic

condition on link l is represented by a discrete value sl
t ,

which indicates the level of congestion.
• Conditional independence of link travel speed: Condi-

tioned on the state sl
t of a link l, the travel speed

distribution on l is independent from all the other traffic
variables.

• Conditional independence of traffic events: Conditioned
on the state sl

t of a link l, the probability of traffic event
et,l,i occurring on link l is independent from all the other
traffic variables.

• Conditional independence of state transitions: Condi-
tioned on the states of link l and its neighbor links in time
interval t , the state of link l at time t + 1 is independent
from all the other current link states, all the past link
states and observations.

The second and third assumptions show that the two types
of observations are conditionally independent and only deter-
mined by the current traffic states of the road links. The
fourth assumption implies that the traffic state of each link
is only related to its neighbors in the last time interval, but
independent of the states of other links in earlier time intervals.

IV. DATA COLLECTION

A. Twitter Data Collection

This paper focuses on studying the traffic conditions in
Chicago, and we collect tweets in Chicago from two types
of accounts as in [14]: traffic authority Twitter accounts and
regular Twitter user accounts.

1) Traffic Authority Twitter Accounts: Traffic authority
Twitter accounts refer to the Twitter accounts that specialize in
posting traffic related information. Such accounts are mostly
operated by official transportation departments. Tweets posted
by these accounts are formal and easy to process, and the
exact location and time information are explicitly given such
as the tweet “Heavy Traffic on NB Western: Fullerton to
Kennedy Expy. 06:15 pm 02/13/2015.” We identify 10 such
Twitter accounts that report real-time traffic information of
Chicago: ChicagoDrives, ChiTraTracker, roadnowChicago,
traffic_Chicago, IDOT_Illinois, WGNtraffic, TotalTrafficCHI,
GeoTrafficChi, roadnowil, and rosalindrossi.

2) Regular Twitter User Accounts: We also collect traffic
related tweets from regular users. We selected 100,000 Twit-
ter users registered in Chicago, and crawled more than
32.3 million tweets posted by these users. Next, two major
steps are conducted for data preprocessing. 1) Traffic Event
Tweets Identification. We select traffic event tweets from all the
crawled tweets which match at least one term of the predefined
vocabularies: “stuck,” “congestion,” “jam,” “crowded,” “pedes-
trian,” “driver,” “accident,” “crash,” “road blocked,” “road
construction,” “slow traffic,” “heavy traffic,” “bad traffic” and
“disabled vehicle.” We first select the tweets that contain
at least one of the above keywords by keywords matching.
Based on the keywords, we can also identify the traffic event
category. 2) Tweet Geocoding. We then geocode tweets to the
road links.

For the tweets collected from traffic authority accounts,
we can very easily locate the road link where the traffic event
occurs as such tweets usually have fixed formats. Taking the
tweet “Heavy Traffic on NB Western: Fullerton to Kennedy
Expy. 06:15 pm 02/13/2015” as an example again, we can
extract the road link through the pattern {on R1: R2 to R3},
where R1, R2, and R3 are street names. For the tweets
collected from general sensor users, it is harder to map them to
the exact road links. A small proportion (less than 5%) of such
tweets are geo-tagged. Thus we can correctly map them to
the corresponding road link. For most tweets without geotags,
we extract the name of the streets and landmarks information
from the tweets. Taking the tweet “Bad traffic at Roosevelt
this morning” as an example, we can extract the street name
“Roosevelt” by matching it with all the Chicago street names.
Thus we can map the traffic event to the road link “Roosevelt.”
If only one street name is mentioned in the tweet as in the
example, we roughly consider the traffic event will influence
the entire street. If two street names are mentioned and forms
the pattern {on R1…R2}, we consider the traffic event happen
on the road link of street R1 that is close to the intersection
between R1 and R2.

As shown in Table I, in all we obtain 245,568 traffic event
tweets from April 2014 to December 2014, around 80% of
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TABLE I

STATISTICS OF THE DATA IN CHICAGO

which are collected from traffic authority accounts. Each tweet
reports a traffic event. 163,742 of them are related to traffic
congestion, 77,454 are related to accident, and 4,372 are
reporting other traffic events such as road construction and
road closure. We categorize these tweets into three types:
congestion, accident and others. Other traffic events include
road construction, road closure, etc.

B. GPS Probe Data

We have two parts of GPS probe data collected in down-
town Chicago. The first part pf probe data is generated by
more than 2,000 Chicago Transit Authority (CTA for short)
public passenger buses from 11/25/2014 to 12/30/2014. Every
10 minutes the probe will produce a probe reading including
the speed and location information of the CTA bus. This data
contains about 5 million GPS probe readings in total, and it is
publicly available1. We use the CTA bus probe data as ground
truth (introduce in detail later). The second part of probe data
is collect from probes installed in normal vehicles including
cars and trucks. In this part of data, probes produce readings
in every 15 minutes. There are more than 10 million readings
in total, and we select more than 2.35 million of them that are
produced in the time period from 11/25/2014 to 12/30/2014.
Each such probe reading contains the following information:
time, latitude, longitude, heading, and speed. For each probe
reading, we first map it to the corresponding road link based
on its latitude and longitude information through geocoding.
Table I shows the statistics of our traffic event tweets and GPS
probe reading data. One can see that on average there are only
2.6 probe readings per link per hour, which is sparse.

V. PE_CHMM: PARALLEL COUPLED HIDDEN MARKOV

MODEL TO INCORPORATE MULTI-SOURCED DATA

Before introducing the method, we first give some notations
and their meanings in Table II. We use boldface capital letters
to denote the observations or hidden state matrixes on all the
road links in all the time intervals. For example, Y denotes
all the GPS probe observations. We use capital letters with
subscripts to denote the observations or hidden state vectors
in a particular time interval. For example, Yt denotes the GPS
probe observations on all the road links in time interval t .

There are three groups of variables that we need to estimate
in our model, the initial traffic state probability matrix �,

1https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-
Historical-Congestion-Esti/77hq-huss/data

TABLE II

NOTATIONS AND MEANINGS

the traffic state transition probability matrix A, and the distri-
bution parameters P of the observations. Next we introduce
these variables in details. Each element π s

l in � denotes
the initial probability of road link l in traffic state s. Al of
A is the traffic state transition probability matrix for link l.
It is a matrix of size S|Nl | × S, where S|Nl | represents the
number of all possible states of the neighbors Nl of link l.
Each element Al(Ri , s) represents the probability of link l
transiting to state s given that its neighbors Nl are in states
Ri = (ri1, ri2, . . . ri|Nl |). We give an example in Table II to
further explain the transition matrix of a road link. Assume
the neighbor links of l1 are (l1, l2), and there are two traffic
states 1 (congestion) and 0 (flow). The first column in Table III
gives the current traffic states of all the neighbor links, and
the second and third columns are the probabilities of the road
link l1 transiting to traffic state 0 and 1 in the next time slot,
respectively. One can see that the sum of the two probability
in each row is 1, and these probabilities are unknown and
need to estimate. For the observation distribution parameters P,
it contains the Gaussian distribution parameters g(·) for the
probe speed observations and the multinomial distribution
parameters f (·) for the traffic event observations. gs

l (·) is
the probability density function of vehicle speed for link l in
state s. We assume it follows Gaussian distribution [1]. f s

l (·)
represents the distribution of traffic event number for link l in
state s. We assume it follows Multinomial distribution.

With the above notations, we give the complete log likeli-
hood of the observation data and hidden variables. Typically,
the log likelihood of the hidden variables and observations can
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TABLE III

AN EXAMPLE OF THE TRANSITION MATRIX OF ROAD LINK l1 WITH (l1, l2)
AS ITS NEIGHBOR LINKS ON A 2-STATE TRAFFIC STATE SYSTEM

be written as follows,

ln P(Y, E, Z)

= ln P(Z1)+
T∑

t=2

ln P(Zt |Zt−1)+
T∑

t=1

ln P(Yt , Et |Zt )

= ln P(Z1)+
T∑

t=2

ln P(Zt |Zt−1)+
T∑

t=1

ln P(Yt |Zt )

+
T∑

t=1

ln P(Et |Zt ) (1)

On the second line, the first term of the formula (1)
represents the initial probability of traffic states Z1 for all
the road links, the second term represents the probability
that traffic states Zt−1 in time interval t − 1 transit to the
states Zt in the next time interval t , and the third term is the
probability of observations Yt and Et conditioned on the traffic
states Zt . Since the GPS probe observations are conditionally
independent from the traffic event observations, we can further
decompose

∑T
t=1 ln P(Yt , Et |Zt) as shown in the third line of

formula (1).
The initial probability of the congestion states in the first

time interval is

ln P(Z1) =
L∑

l=1

S∑

s=1

zs
1,llnπ s

l (2)

The log probability of congestion state transiting from time
interval t − 1 to t can be further represented as follows,

ln P(Zt |Zt−1) =
L∑

l=1

S∑

s=1

S |Nl |∑

i=1

(
∏

Nlj∈Nl

z
ri j
t−1,Nlj

zs
t,l ln Al(Ri , s))

(3)

The third summation of formula (3) is over all the possible
traffic states S|Nl | of the neighbors Nl , while the subsequent
product is over terms on each of its individual neighbor state
given the neighbor states (ri1, . . . , ri|Nl |).

The probability of probe speed observations Yt given the
congestion states Zt can be represented as

ln P(Yt |Zt ) =
L∑

l=1

S∑

s=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i ))) (4)

The probability of traffic event observations Et given the
congestion states Zt can be represented as

ln P(Et |Zt) =
L∑

l=1

S∑

s=1

zs
t,l(

∑

et,l,i∈et,l

ln( f s
l (et,l,i ))) (5)

A. Solution: EM Algorithm

Given the distribution function parameters Ps
l of the obser-

vations and the state transition matrix Al , it is possible to
estimate the congestion states of the links. Similarly, given
the congestion states of the road links, we can estimate the
parameters in the model. Motivated by this idea, EM algo-
rithm can be applied to solve the model.

In the E-step, for each road link l we compute the expected
state probabilities zs

t,l and the transition probabilities q Ri ,s
t,l

given the observations (yt,l , et,l), the distribution parame-
ters Ps

l , and the state transition probability matrix Al .

zs
t,l ← E(zs

t,l |yt,l, et,l , Ps
l , Al) (6)

q Ri ,s
t,l ← E(q Ri ,s

t,l |yt,l, et,l , Ps
l , Al) (7)

Note that the traffic state zs
t,l is inferred based on both the

GPS probe observation yt,l and the tweet observation et,l .
To distinguish the importance of the two types of observations,
we rewrite formula (7) as follows.

zs
t,l ←

⎧
⎪⎨

⎪⎩

E(zs
t,l |et,l, Ps

l , Al) if Cardinali ty(yt,l) = 0

αt,l E(zs
t,l |yt,l, Ps

l , Al)

+ (1− αt,l)E(zs
t,l |et,l, Ps

l , Al) otherwise

(8)

If only the tweet observation et,l is available on road link l in
time interval t , the congestion state zs

t,l is estimated only based
on et,l . Otherwise, zs

t,l is estimated by using both types of
observations. αt,l is the confidence of the probe observations.
The idea is that if sufficient probe observations are available,
we trust more on the traffic state zs

t,l estimated by probe
observations. If the probe data are very spare, we trust more
on the estimation results with the tweet observations. Here
we use a sigmoid function to estimate the importance of the
coefficient αt,l = 1

1+eθ−Cardinality(yt,l ) , where θ is a threshold of
the probe observation size. More probe observations result in
a larger αt,l . In this paper we set θ = 3.

In the M-step, we maximize the expected complete
log-likelihood, given the probabilities zs

t,l and the transition

probabilities q Ri ,s
t,l .

(Ps
l , Al , π

s
l )

← argmax
P,A,�

ln P(Y, Z, E, P, A,�)

subject to
S∑

s=1

Al(Ri , s)=1, Al(Ri , s)∈[0, 1], ∀l, Ri , s;
S∑

s=1

π s
l = 1, π s

l ∈ [0, 1], ∀l, s. (9)
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VI. PARAMETER INFERENCE WITH PARALLEL

PARTICLE FILTERING

On small networks, it is possible to do exact inference
in the CHMM by converting it to a HMM. However, it is
intractable to do exact inference for any reasonable traffic
network with the naive solution due to the following reasons.
1) Computation of the forward variable involves SL additions
and N multiplications at each of T time steps; 2) each forward
variable requires 8SL bytes of memory to store, and all T
of them must be stored; and 3) the transition matrix itself
is SL × SL . To address this computational challenge, previous
work proposed to apply importance sampling based method to
approximately estimate the large number of variables [1], [15].
However, the time cost of importance sampling based variable
estimation methods is still high since a large number samples
are needed to obtain an accurate estimation. In this section,
we will first introduce to apply sequential particle filtering to
estimate the variables in the E-step. Based on it, next we will
propose a parallel particle filtering algorithm which can evenly
partition the samples into multiple processors and conduct
particle filtering in parallel.

A. Parameter Inference With Parallel Particle Filtering

1) Sequential Particle Filtering: As a popular sequen-
tial importance sampling method, particle filtering is widely
adopted to approximately estimate the internal states in
dynamical systems such as signal processing and Bayesian
statistical inference [24], [25]. In our setting, each parti-
cle or sample represents an instantiation of the traffic state
evolution on the traffic network. Given the observed probe
readings and the traffic event tweets, each particle or sample is
assigned a weight proportional to the probability of the obser-
vations. With a large number of sampled particles, particle
filtering can estimate the traffic state probabilities for all the
road links and the traffic state transition probabilities.

The details of the sequential particle filtering algorithm to
estimate traffic states in the E-step is given in Algorithm 1.
One can see that the Sequential Particle Filtering algorithm
(SPE for short) contains three major steps: particles gener-
ation, weight computation, and resampling. In the particle
generation step, the algorithm generates new particles based
on the sampled particles in the last time step and the state
transition matrix. In the weight computation step, the algorithm
computes the weight of each particle based on the probability
of generating the traffic event observations Et and the probe
observation Yt given the traffic state xt

k . With the computed
particle weight, the resampling step first normalizes the
weight and then resamples the particles with replacement to
avoid the particle degeneracy problem. The degeneracy occurs
when one particle has an accumulated weight close to one
while the weights of all the other particles are close to zero.

Although SPF is an efficient method to approximately
estimate the state probability distribution matrix Z and the
transition probability Q based on a large number of generated
particles, it is still very time consuming and hard to scale up to
a large arterial network in practice. Its major limitation is that
to obtain a relatively accurate estimation, usually a very large

Algorithm 1 Sequential Particle Filtering for Traffic States
Estimation

Input: Number of particles K and time intervals T ,
the state transition matrix A, the parameters of
the observation probability function Ps

l for each
road link l.

Output: The state probability distribution matrix Z, and
the transition probability Q.

1 Initialization: randomly sample K particles {x0
k}Kk=1;

2 for t = 1 : T do
3 // particles generation;
4 Generate K traffic state particles {xt

k}Kk=1 based on
previous particles {xt−1

k }Kk=1 and state transition matrix
A: xt

k ∼ q(xk |xt−1
k );

5 // weight computation;
6 Compute the weights: wt

k = p(Yt , Et |xt
k);

7 // resampling;

8 Normalize the weights: ŵt
k = wt

k∑K
j=1 wt

j
;

9 Resample K random particles {x̂t
k}Kk=1 from {xt

k}Kk=1
with replacement in proportion to the weights:
{ŵt

k}Kk=1;
10 Replace the particle set with these new particles:

{xt
k}Kk=1 ← {x̂t

k}Kk=1 ;
11 Set the weights to be equal: ŵt

k = 1
N , k = 1, . . . , N

12 Estimate the state probability matrix Z based on equation
(8) and transition probability Q based on equation (7)
with the K samples;

13 return Z, Q

number of particles are needed, and more particles mean a
larger computational cost. In our case, as the number L of road
links can be large, the computational complexity becomes even
higher as each particle is a L-dimensional vector. The overall
computational complexity of SPF is O(K T L), where K is the
number of particles, T is the number of time intervals, and L
is the number of road links. If we also consider the iteration
times N in the EM algorithm, the computational complexity
is O(N K T L), which is very time consuming.

2) Parallel Particle Filtering: To reduce the computational
complexity, we propose a parallel particle filtering schema.
The particle generation and weight computation steps are
readily parallelizable, being independent operations on each
particle xt

k and its weight wi
t . The resampling step, however,

is a collective operation across all the particles and weights,
making the parallelism difficult. The resampling step contains
two steps. The first step is to normalize the weights such that
the weights of the particles is considered as the probability
of resampling them in the next iteration. The normalization
operation requires accessing the weights of all the particles.
The second step resamples the samples with replacement based
on their weights, and thus the algorithm needs to interact with
all the particles. We follow the work [30] and exploit a data
parallel approach to conduct the parallelism. As a straightfor-
ward approach, it first partitions all the particles into several
subsets of the same size. Each subset is then assigned to
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Fig. 2. Framework of the parallel particle filtering.

one processor, and multiple processors process corresponding
particle subsets separately in parallel. To address the issue that
the resampling step of SPF is hard to parallel, we propose a
local resampling strategy. In addition, a particles rebalancing
algorithm is also proposed to avoid the need of operating
on all the particles and weights. Assume there are O + 1
processors denoted as {Co}Oo=1, and one is the master processor
and the others are subtask processors. The framework of the
proposed parallel approach is depicted in Fig. 2. We first
describe the notations and then briefly introduce the workflow
of the algorithm. {xt

k}Kk=1 is the initially generated particles,
C0 is the master processor and {Co}Oo=1 are the subtask

processors, where {x̂t
k}N

t
o

k=1 is the locally resampled Nt
o particles

in processor o. The workflow of the algorithm in each iteration
is as follows:
• Partition the particles into O subset of the same size, and

assign each subset to a processor Co;
• Generate particles {xt

o;k}K/O
k=1 in parallel for all the subtask

processors;
• Compute the particle weights in parallel for all the

subtask processors;
• The master processor sums the particle weights and

calculates the number of the resampled particles for each
subtask processor;

• Resample the particles {x̂t
o;k}N

t
o

k=1 in parallel for all the
subtask processors;
• The master processor rebalances the subset particles to

make their size equal;
Instead of conducting the resampling operation on the entire

particle set, we conduct a local resampling on each particle
subset separately and independently, making the resampling
step readily to run in parallel. However, a problem is that
we need to determine the size of the resampled particles for
each subset. As the the particles are randomly sampled to
assign to each processor, the particle weights are not evenly
distributed. For example, assuming the sums of the particle
weights of two particle subsets are 0.2 and 0.3, respectively,
we should resample more particles from the second subset
than the first one since its total particle weight is larger.
To address this issue, we first calculate the weight distribution
of all the particle subsets, and then resample new particles
based on their weight distribution from each subset separately

Algorithm 2 Parallel Particle Filtering for Traffic States
Estimation

Input: The same as in Algorithm 1
Output: The same as in Algorithm 1

1 Initialization: randomly sample K particles {x0
k}Kk=1;

2 for t = 1 : T do
3 for processor o = 1 : O do
4 // particle generation in parallel;
5 Generate K/O particles xt

o;k : xt
o;k ∼ q(xo;k|xt−1

o;k );
6 // weight computation in parallel;
7 Compute the weights: wt

o;k = p(Yt , Et |xt
o;k);

8 Sum the local weights: wlocal;o =∑K/O
i=1 wt

o;i ;
9 // global weight summation;

10 Upload the sum of local weights wlocal;o to the
master processor;

11 Wait for the master processor to return the global
sum of the weight: wglobal =∑O

o=1 wlocal;o;
12 // resampling in parallel;
13 Calculate the number of resampled particles for

processor m and upload to the master processor:
Nt

o = �K wlocal;o
wglobal

�;
14 Locally normalize the weights: ŵt

o;k =
wt

o;k∑K/O
k=1 wt

o;k
;

15 Resample Nt
o particles {x̂t

o;k}N
t
o

k=1 from {xt
o;k}K/O

k=1
with replacement in proportion to the weights
{ŵt

o;k}Kk=1;
16 Replace the sample set with these new samples,

i.e. {xt
k}Kk=1 ← {x̂t

k}K/O
k=1 ;

17 Set the weights to be equal:
ŵt

k = 1
N , k = 1, . . . , N ;

18 // particles rebalance;
19 Rebalance the number of particles for all the

processors with Algorithm 3.

20 Estimate the state probability matrix Z and transition
probability Q with the K samples;

21 return Z, Q;

and independently. Specifically, as show in the lines 7-15 of
Algorithm 2, we first compute the weights in parallel for
each processor (Line 7). Then each subtask processor sums
the local weights and upload the sum wlocal;o to the master
processor (Line 8-10). When all the subtask processors have
submitted corresponding weight sums, the master processor
computes the global weight sum wglobal by summating all
the local sums and return the value to each subtask processor
(Line 11). Next each subtask processor calculates the number
of the resampled particles based on its local weight sum and
the global weight sum by Nt

o = �K wlocal;o
wglobal

�, where �� denotes

rounding up the number (Line 12-13). With the resample size
Nt

o and locally normalized weight ŵt
o;k, each subtask processor

locally resamples the particles with replacement (Line 14-15).
The rebalance algorithm used in line 16 of Algorithm 2 is

given in Algorithm 3. Given the unevenly distributed particles
in the O processors, the goal of this algorithm is to rebalance
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Algorithm 3 Particles Rebalance Algorithm
Input: Number of particles distributed in the O

processors {Nt
o}Oo=1.

Output: A balanced particle distributions in the O
processors with each one having N/O particles

1 for processor o: 1 to O do
2 if Nt

o > N/O then
3 Randomly sample Nt

o − N/O particles without
replacement and put them to the particle pool;

4 else if Nt
o > N/O then

5 Randomly sample N/O − Nt
o particles without

replacement from the particle pool and assign them
to processor o;

the particles such that the particles are evenly distributed in
the processors. The algorithm first scans all the processors
to check their numbers of particles. If there are more than
N/O particles in a processor, the algorithm randomly samples
Nt

o − N/O particles without replacement and puts them to
a particle pool; otherwise, the algorithm randomly samples
N/O − Nt

o particles without replacement from the particle
pool and assigns them to the processor. Note that the particle
rebalance algorithm also runs in parallel, and each processor
can interact with the particle pool independently.

B. M-Step: Road Network Decomposition

In the M-step, we update three groups of parameters: the
initial congestion state probability π s

l , the observation distri-
bution function parameters Ps

l , and the transition probability
matrix Al . To update these parameters, the expected complete
log-likelihood is maximized given the probability zs

t,l that each

link l is in state s at time t and probability q Ri ,s
t,l of link l to

be in state s given that neighbors of link l are in states Ri at
time t − 1.

max
P,A

�(Y, E|Z, Q, P, A,�) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∑

s=1

Al(r, s)=1, ∀l, r

Al(r, s)∈[0, 1], ∀l, r, s
S∑

s=1

πl,s = 1, ∀l

πl,s ∈ [0, 1], ∀l, s

(10)

Based on formulas (1)-(5), the expected complete log like-
lihood is as follows.

ln P(Y, E|Z, Q, P, A,�)

=
L∑

l=1

S∑

s=1

T∑

t=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i ))

+
∑

et,l,i∈et,l

ln( f s
l (et,l,i )))

+
L∑

l=1

T∑

t=2

S∑

s=1

S |Nl |∑

i=1

q Ri ,s
t,l ln(Al(Ri , s))+

L∑

l=1

S∑

s=1

zs
1,lln(πl,s)

(11)

We can simplify the computation of formula (11) in the
following two ways. 1) One can see that formula (11) is com-
prised of three parts. Different parameters appear in different
parts, and thus the three parts can be solved separately. 2) The
optimization problem on the entire road network can be further
decomposed into S × L smaller optimization problems with
each one associated to a particular congestion state and road
link of the network. Thus the optimization on formula (11)
can be decomposed as optimizing the following three subtasks
independently.

max
Ps

l

T∑

t=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i ))+

∑

et,l,i∈et,l

ln( f s
l (et,l,i )))

(12)

max
q

Ri ,s
l,s

T∑

t=2

S |Nl |∑

i=1

q Ri ,s
t,l ln(Al(Ri , s)) (13)

max
zs

1,l

zs
1,l ln(πl,s) (14)

Based on formula (12)-(14), it is not hard to derive that the
parameters can be inferred by the following equations based
on Lagrangian method.

π s
l =

∑T
t=1 zs

t,l∑S
s=1

∑T
t=1 zs

t,l

(15)

Al(Ri , s) =
∑T

t=1 q Ri ,s
t,l∑S

s=1
∑T

t=1 q Ri ,s
t,l

(16)

μl,s =
∑T

t=1 zs
t,l

∑It,l
i=1 yt,l,i

∑T
t=1 It,l

(17)

σ 2
l,s =

∑T
t=1 zs

t,l

∑It,l
i=1(yt,l,i − μl,s)

2

∑T
t=1 It,l

(18)

f s
l (et,l,i ) =

∑T
t=1 zs

t,lnt,l,i
∑S

s=1
∑T

t=1 zs
t,lnt,l,i

(19)

It,l is the number of the probe readings on the road link l
in the time interval t . μl,s is the mean probe speed on link l
associated with traffic state s. σ 2

l,s is the variance of the probe
speed. nt,l,i is the total number of traffic states for traffic
event tweet mi on road link l in time interval t . f s

l (et,l,i )
is the parameter for the multinomial distribution denoting
the probability of observing traffic event et,l,i on road link
l associated with traffic state s.

VII. EVALUATION

A. Experiment Setup

1) Real Dataset: The real dataset is introduced
in Section IV.

2) Synthetic Dataset: To evaluate the speedup performance
of the proposed algorithm, we also generate a group of
synthetic datasets with much larger number of road links.
We first set the number of the road links L and the number of
time intervals T of the synthetic dataset. Then we generate a
L×L road link matrix with each entry denoting the connection
between two road links. For each road link, we randomly select
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several other road links as its neighbors and set the value of
corresponding entires as 1, and the other entries are set to 0.
Then for each time interval, we generate some GPS probe
readings based on a Gaussian distribution and traffic event
observations based on a multinomial distribution on each road
link. As the synthetic datasets are only used to evaluate the
efficiency of our model, the ground truth traffic states of the
road links are not required in the experiments.

3) Ground Truth: Chicago Transit Authority (CTA) defines
a 3-state traffic conditions in downtown Chicago by fully
considering the traffic situations in urban area2. The 3 states
are heavy congestion, medium, and flow. In this paper, we add
two traffic states and use a 5-state traffic conditions: heavy con-
gestion, medium-heavy congestion, medium, light, and flow.
The corresponding traffic speeds of the 5 traffic states are
0-10, 10-15, 15-20, 20-25, and over 25 mph, respectively.
Note that except for a vary few road links, speed on arterial
roads of downtown Chicago is limited to 30 mph by ordinance.
To quantitively distinguish the 5 states, we assign different val-
ues to different states. We assign larger values to worse traffic
conditions and smaller values to better conditions. We first
assign 1 to the traffic state heavy congestion, and set the
value difference between two successive traffic states as 0.2.
Thus the values for the remaining four states medium-heavy,
medium, light and flow are 0.8, 0.6, 0.4, and 0.2, respectively.
In the following part of this paper, we use the 5 traffic states
defined by CTA as a measure of traffic conditions.

The traffic conditions are estimated based on more than
5 million GPS traces generated by more than 2,000 CTA public
passenger buses from 11/25/2014 to 12/30/2014. As the real
time GPS traces for some links are sparse, we also consider
the historical average traffic speed for each road link in the last
3 years. Given a time interval t and a road link l, the traffic
speed can be estimated as speedt,l = w

∑n
i=1

speedt,l,i
n +

(1 − w)speedh
t,l , where speedt,l,i is the i th real time probe

speed record, speedh
t,l is the historical speed, and w is a

weight. In this paper we set w to 0.8. For simplicity, we can
consider there are only two traffic states: congestion and
normal. In the 2-state traffic condition system, we consider
a road link is in congestion if the average speed is lower than
15 mph, and it is in normal state otherwise.

4) Competitive Methods: We compare PE_CHMM with the
following baselines.
• E_CHMM with probe and tweets observations [14].

E_ CHMM is our previously proposed model. The major
difference is that E_CHMM uses sequential particle fil-
tering to estimate parameters, and thus is less efficient.

• CHMM with probe observations (P_CHMM) [1].
To study whether and to what extend the performance
can be improved by incorporating the Twitter data,
we compare the proposed mode with P_CHMM which
only utilizes sparse GPS probe data to estimate traffic
congestions on an arterial network.

• CTCE model [6]. CTCE is a recently proposed traf-
fic congestion estimation model with social media as

2https://data.cityofchicago.org/api/assets/3F039704-BD76-4E6E-8E42-
5F2BB01F0AF8

the primary data source. Instead of utilizing CHMM,
CTCE models the traffic information on the road links
as matrices and tensors, and applies matrix factorization
technique to address the estimation task.

• CHMM with tweet observations (T_CHMM). In this
model, only the tweet observations are available. We use
this baseline to evaluate the performance of the CHMM
model with the tweet observations only.

• Linear combination of two CHMMs (LC_CHMM).
We use two CHMMs with each one associated with
one type of observation to estimate the traffic conditions
separately. Assuming the estimation results of the two
models are Z1 and Z2, the final estimation is the linear
combination of the two results, Z = αZ1 + (1− α)Z2 .

B. Evaluation Results

1) Evaluation Metrics: We use the following metrics to
evaluate the performance of the proposed model: accuracy,
precision@k, and Root Mean Square Error (RMSE). We use
accuracy to evaluate the estimation performance on all the
road links in all the time intervals. Normally, in a particular
time interval only a small number of road links are in con-
gestion. Thus to better evaluate whether the proposed model
can give good estimations on the road links that are very
likely to occur congestion, we also use precision@k as a
metric. We first rank the congestion probabilities zs

t,l for all
the road links in all the time intervals. Then we only consider
the road links with the top-k congestion probabilities are in
congestion. To further evaluate the performance of the model
on the above mentioned 5-state traffic conditions, we use the
Root Mean Square Error (RMSE) as the evaluation metric:

RM SE =
√∑

t,l (zt,l−ẑt,l )2

L∗T , where zt,l is the estimated traffic
state of link l in time interval t , and ẑt,l is the ground truth.

2) Evaluation With precision@k: Table IV shows the aver-
age precision@k of different methods over various k with the
2-state traffic condition. As the traffic conditions on weekdays
and weekends are different, we present the results by weekday
and weekend separately. We run the algorithm and calculate
the precision@k on each day, and then average the results.
The best results are highlighted in bold font. One can see
that E_CHMM performs best among all the methods. The
performance difference between E_CHMM and the paral-
lel algorithm PE_CHMM is not significant. precision@k of
PE_CHMM is lower than E_CHMM by only around 0.015 on
weekday and 0.01 on weekend. LC_CHMM model is inferior
to E_CHMM and PE_CHMM, but better than the other
methods. It is no surprise that T_CHMM presents the worst
performance among all the methods. One can infer that the
traffic event tweets are too sparse for the T_CHMM model to
get an accurate estimation. P_CHMM can achieve comparable
performance with CTCE, but both methods are inferior to
the three methods LC_CHMM, E_CHMM, and PE_CHMM.
Compared to P_CHMM, E_CHMM and PE_CHMM improve
precision@k by around 6%, which shows that incorporating
Twitter data does help to improve the estimation accuracy.

3) Performance Evaluation in Rush Hours: People concern
more on the traffic conditions in rush hours of a day. Thus we
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TABLE IV

AVERAGE PRECISION @k OF DIFFERENT METHODS

Fig. 3. RMSE comparison of various methods in rush hours.

also evaluate the performance of the different models in rush
hours. Fig. 3 shows the experiment results in the rush hours
of 6:00-10:00 and 15:00-17:00 on weekday and weekend,
respectively. One can see that the RMSE of PE_CHMM and
E_CHMM are mostly lower than the other four methods.
The performance of PE_CHMM is comparable to E_CHMM
with its RMSE higher than E_CHMM by 0.05 on weekday
and 0.03 on weekend on average. The result shows that
PE_CHMM is a good approximation of E_CHMM and can
achieve comparable estimation performance. The performance
of T_CHMM is the worst among all the methods, which is
consistent with the previous experiment results. LC_CHMM
is consistently better than P_CHMM and CTCE, which means
incorporating traffic event information from tweets does help
us better estimate traffic conditions. However, LC_CHMM is
inferior to E_CHMM and PE_CHMM. Thus we can conclude
that although LC_CHMM is a straightforward method com-
bining the two types of data, the performance it achieves is less
desirable. By comparing the results on weekday and weekend,
one can see that on average the RMSE of various methods
on weekday is larger than that on weekend. This finding also
verifies that traffic conditions on weekend is harder to estimate
than on weekday due to the irregular travel plans of people.

C. Efficiency Evaluation

To evaluate the efficiency of the proposed algorithm,
we compare the computational time of PE_CHMM with

Fig. 4. Efficiency evaluation on running time. (a) Running time of
PE_CHMM with difference number of subtask processors. (b) Running time
of PE_CHMM on different size of road links.

different numbers of processors and different numbers of road
links. Fig. 4(a) shows the running time of PE_CHMM with
different number of subtask processors on different numbers
of road links. One can see that, first the E_CHMM algorithm
(PE_CHMM with only one subtask processor) is time con-
suming. It takes more than 7 hours for the E_CHMM to give
an estimation result for a road network with 1000 road links.
This is unacceptable for a real application scenario where
a timely estimation result is essential. Second, the running
time of the algorithm increases with the increase of the road
link numbers. More road links mean more variables to be
estimated and thus need more computational time. With the
increase of the subtask processors, the running time decreases
significantly showing the efficiency of the proposed parallel
algorithm. It takes 7 hours for only 1 processor to estimate
traffic conditions on a road network with 1000 road links, but
less than one hour for 8 processors to conduct the same task.
It implies that the proposed PE_CHMM can effectively and
evenly distribute the entire computation to different proces-
sors. However, when there are too many subtask processors,
the efficiency improvement becomes less significant. As show
in Fig. 4(a), the decrease trend of the curves become smooth
when more than 4 processors are used. This is mainly because
that more processors mean more data interactions among the
processors, which may consume more additional time for
particles rebalance.
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Fig. 5. Particle distribution changes over iteration without applying the
particle rebalancing strategy.

To further evaluate the efficiency of PE_CHMM on larger
road networks. We run the algorithms on a synthetic road
network with 2,000 road links. Fig. 4(b) shows the increase
trend of the running time of the algorithms with the increase
of the road links. From this figure, one can see that the running
time curves all show a linear increase trend. PE_CHMM with
8 subtask processors achieves about 6 times speedup compared
to E_CHMM. On the road network with 2,000 road links,
E_CHMM needs more than 12 hours to complete the estima-
tion while PE_CHMM needs only about 2 hours. This result
verifies that our proposed paralleled algorithm PE_CHMM can
achieve nearly a linear speedup associated with the processor
number.

D. Effect of the Particles Rebalancing Strategy

A key step of the proposed parallel solution of particle
filtering is that we apply a rebalancing strategy after each
iteration to make the new sampled particles evenly distributed
on the subtask processors. In this subsection we conduct
experiments to investigate the effect of the rebalancing strategy
on the speedup performance of the algorithm.

We first study how the particle distribution on multiple
processes changes over iterations if the particle rebalancing
strategy is not applied. Fig. 5 illustrates the particle distribution
changes over 4 iterations on the real dataset by using 8 subtask
processors. One can see that at first the particles are evenly
distributed, and each processor is assigned the same size
of particles. From the second iteration on, some processors
are assigned more particles while some are assigned less,
leading to an unbalanced distribution of the particles on the
8 subtask processors. In Algorithm 2, in each iteration the
master processor needs all the subtask processors to submit
their local weights and then return the global weight. Thus
if the particles are not evenly distributed, the local weight
computation time varies with the particle size of the processor,
and the master processor has to wait for all the subtask
processors to submit their local weights. The subtask processor
with the larger number of particles will hurt the speedup of
the algorithm as it need longer time to compute its local
weight and resample the particles. Fig. 5 shows that without
the particle rebalancing strategy, the particle distribution tends
to become skewed.

Table V shows the speedup comparison between
PE_CHMM with and without the particle rebalancing
strategy on both real and synthetic datasets. One can see that

TABLE V

SPEEDUP COMPARISON WITH AND WITHOUT PARTICLE
REBALANCE (8 SUBTASK PROCESSORS)

the speedup of the algorithm decreases with the increase of
iteration on both datasets. This is because the distribution
of particles becomes more skewed as the iteration increases,
and more skewed particle distribution leads to worse speedup
performance. By using 8 subtask processors, the overall
speedup of PE_CHMM with rebalancing strategy on the
two datasets is 7.54 and 7.44, while the numbers are
6.06 and 5.7 for the algorithm without rebalancing strategy.
It demonstrates that the proposed particle rebalancing strategy
can effective improve the speedup performance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an effective and efficient frame-
work PE_CHMM to integrate two types of data, traffic event
tweets and GPS probe readings to enhance citywide traffic
congestion estimation. As GPS probe data are sparse and
relying them only can hardly achieve a promising estima-
tion result, we first extensively collect traffic related tweets
and extract various traffic events including traffic jam, acci-
dent, and road construction. To utilize the extracted traffic
events and model their potential impact on traffic congestions,
we extended the traditional Coupled Hidden Markov Model
by considering the traffic event tweets as a new type of obser-
vations following multinomial distribution. To address the
high computational challenge of solving CHMM, we further
proposed a parallel algorithm which can effectively decompose
the entire computation task into several subtasks and solve
the subtasks in parallel on multiple processors. Experimental
results on both real dataset and synthetic dataset showed the
efficiency and effectiveness of the proposed PE_CHMM.

One potential research direction in the future is that we
will study on the impact of various traffic events on traffic
conditions. For example, how long and to what extent a car
accident will affect the traffic congestion? Based on this study,
we will further investigate how to use real time traffic event
information to perform traffic condition prediction continu-
ously. Another research issuer we are interested in is detecting
traffic event based on GPS probe data.
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