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Unlabeled, multi-view data presents a considerable challenge in many real-world data analysis tasks. These

data are worth exploring because they often contain complementary information that improves the quality

of the analysis results. Clustering with multi-view data is a particularly challenging problem as revealing the

complex data structures betweenmany feature spaces demands discriminative features that are specific to the

task and, when too few of these features are present, performance suffers. Extreme learning machines (ELMs)

are an emerging form of learning model that have shown an outstanding representation ability and superior

performance in a range of different learning tasks. Motivated by the promise of this advancement, we have

developed a novel multi-view fusion clustering framework based on an ELM, called MVEC. MVEC learns the

embeddings from each view of the data via the ELM network, then constructs a single unified embedding

according to the correlations and dependencies between each embedding and automatically weighting the

contribution of each. This process exposes the underlying clustering structures embedded within multi-view

data with a high degree of accuracy. A simple yet efficient solution is also provided to solve the optimization

problem within MVEC. Experiments and comparisons on eight different benchmarks from different domains

confirm MVEC’s clustering accuracy.
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1 INTRODUCTION

In many real-world data analysis tasks, the data to be analyzed often comes from heterogeneous
sources and, therefore, represents multiple views of the same or similar information. For exam-
ple, news articles covering the same story might be obtained from the BBC, Reuters, and The
Guardian [8]. Vehicle signal data might be derived from an amalgamation of different acoustic and
seismic sensors [3]. Image data can be described in different ways, e.g., as a wavelet texture, an
edge direction histogram, or a color moment [52], and so on. These multi-view datasets often pro-
vide complementary information to each other, and leveraging the correlations and interactions
between these views is usually beneficial to learning performance. Given the prevalence of unla-
beled multi-view data, multi-view clustering is becoming more popular as a way to integrate all
views in an unsupervised manner [27, 38, 48].

Multi-view clustering is a special learning paradigm, where similar objects are clustered into
groups and the remaining dissimilar objects are clustered into another group by leveraging the in-
formation hidden within the data [1, 34]. There are numerous multi-view clusteringmethods, most
of which are simply extensions of classical single-view clustering methods [44, 45]. For instance,
nonnegative matrix factorization [21] reveals the underlying clustering structures embedded in
multi-view data by reaching a common consensus between the views. Co-regularized multi-view
spectral clustering [19] centers on developing a clustering hypothesis across all views and then as-
similating the clusters from each view that are consistent with the initial premise. Auto-weighted
multi-graph learning [26] is a parameter-free clustering method for multi-view data, which, as
the name suggests, automatically learns the contribution weightings of multiple similarity graphs.
Despite solid demonstrated performance with particular multi-view problems, the current multi-
view clustering methods have been designed to work with original multi-view feature spaces and,
therefore, do not fully consider the discriminative capacity of the data. Performance can be unsta-
ble and susceptible to noise. Given these observations, we find it fundamental and vital to learn a
unified representation that integrates all the different views within multi-view data. Such a rep-
resentation would have the power to reveal better discriminative features and, in turn, further
improve clustering performance.
Generally, nonlinear feature mapping is an effective technique for learning discriminative repre-

sentations from original data. As an emerging type of learning model, extreme learning machines
(ELMs) have shown great potential for converting original data into a new feature space. For this
reason, the topic has attracted great attention in recent years [36, 46]. An ELM can be used to
train a “generalized” single-hidden layer feed-forward neural network (SLFN) and, for a num-
ber of applications, different variants of an ELM have provided an effective solution for learning
representative features. For example, Kasun et al. [17] designed an ELM variant that imposes an
orthogonality constraint on the connected network parameters and can then extract representa-
tive features. The approach shows promising performance in hand-written digit recognition. The
augmented ELM method developed by Uzair and Mian [39] uses a global ELM-based autoencoder
model to learn class-specific ELM-based autoencoder models so as to reveal extra discriminative
representations for domain adaption applications. ELM-based clustering methods [11] cluster the
feature spaces learned by the ELM rather than the features in the original data. The superiority
of this ELM feature mapping method has been empirically verified in experiments. Each of these
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Fig. 1. The discriminative capacity of the original Toy data (a) and the learned features with the Toy dataset

(b). All solid circles represent different labels. The labels with crosses indicate an incorrect prediction. Cluster-

ing accuracy for the original data was 0.740, while the clustering accuracy for the nonlinear features learned

by an ELM was 0.805.

studies demonstrates that designing an effective learning method based on the more discrimina-
tive representations learned by an ELM is a desirable undertaking. Figure 1 illustrates an example
of the difference in discriminative capacity between the original data and the nonlinear features
learned by an ELM on the Toy dataset. The clustering accuracy for the nonlinear features is higher
than that for the original data.
Based on the above encouraging results, we propose a novel multi-view fusion clustering

framework based on an ELM, called MVEC. MVEC offers an unsupervised learning technique
for determining suitable network parameters as the initial inputs to an ELM network. Individual
embeddings of each view in a multi-view dataset are nonlinearly learned by the ELM. These
embeddings are more discriminative than original data. One commonly shared and unified
embedding is then built from an automatic and self-adaptive weighting process, which reflects
the contribution of each learned embedding given the correlations and dependencies between
them. The unified embedding reveals the consistent clustering structures embedded within
multi-view data with greater accuracy and, as such, provides an interpretable and effective
solution to multi-view clustering problems. Experiments and comparisons on a diverse selection
of real-world multi-view clustering tasks confirm MVEC’s effectiveness and efficiency.
The advantages of MVEC and its main contributions are summarized below.

• MVEC is a novel and generalized multi-view clustering model that learns a unified and
representative embedding from a given set of multi-view data via an ELM;

• MVEC unearths the consistent structures within multi-view data in an unsupervised
manner;

• The contribution of each individual embedding to the unified embedding is automatically
weighted through a self-adaptive process;

• The algorithm is optimized with a novel, effective, and efficient iterative solution; and
• Experiments with eight real-world problems verify that MVEC improves clustering accu-

racy at efficient speeds. In addition, we have provided analyses of other pertinent factors,
including convergence, parameter sensitivity, and running time.

The rest of this article is structured as follows: Section 2 briefly surveys related work on multi-
view clustering and ELMs. Section 3 introduces important notations and the problem descrip-
tion. Section 4 sets out the proposed MVEC method in detail along with the novel optimization
algorithm. The analyses of convergence and time complexity follow in Section 5. The experiments
and comparisons are provided in Section 6. Finally, we conclude the article in Section 7.
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2 RELATEDWORK

2.1 Multi-View Clustering

As more and more information becomes available from different sources, datasets are increasingly
comprised of multiple views (i.e., multiple modalities) [33, 35, 40]. Acquiring valid label informa-
tion is expensive in some domains, such as disease diagnosis [10] or multilingual analysis [18].
Combined, these two factors mean there is an abundance of unlabeled multi-view data and, con-
sequently, the popularity of multi-view clustering is on the rise [6, 20, 53]. Multi-view clustering
is a special unsupervised learning paradigm that clusters similar features from different views
into the same group without the need for labels, while dissimilar objects are clustered into a sep-
arate group and set aside. By exploring the interactions and correlations between the different
views, multi-view clustering approaches use the data’s underlying structures to improve clustering
performance.
To date, numerous multi-view clustering algorithms have been proposed to solve a range of

real-world application problems, and many have been effective for the tasks they were designed to
accomplish. Overall, these methods can be broadly categorized into two main approaches: graph-
based clustering and subspace-based clustering [24].

Graph-based clustering approaches construct an affinity graph of each view, which mainly rely
on the quality of the obtained real-world datasets. Among this type of approach, linked matrix
factorization [38] decomposes affinity graph matrices of multiple views into various characteristic
matrices and a shared matrix, then clusters the data according to the results. The multi-modal
spectral clustering method [4] explores a common graph Laplacian matrix by integrating features
from heterogeneous views to boost multi-view clustering. The self-weightedmulti-view clustering
method [27] explores a Laplacian rank-constrained graph as a common graph of all the views. It
also includes an auto-weightingmechanism. Although graph-based clustering approaches gain the
state-of-the-art performance, there still exist at least two limits, i.e., unreliable similarity matrix
and improper neighbor assignment. Actually, for one thing, such methods directly conduct the
followed procedure based on the constructed similarity matrix from original data but they rarely
modify it. For another, those methods may suffer from inferior performance due to noises and
outlying entries are contained in real-world datasets.
Subspace-based clustering approaches learn subspace representations from the original multi-

view data, which are conspicuous for efficiency and excellent clustering performance. The ap-
proach presented in [7] learns the subspace representations while maintaining the consistencies
between different views. The latent multi-view approach [48] generates a shared latent repre-
sentation from all feature views to explore the data’s underlying structures for clustering. The
multi-view low-rank sparse approach [2] constructs a unified affinity matrix from multiple views
to explore a shared subspace representation. Different from graph-based approaches, subspace-
based approaches are based on the assumption that the views are generated from a single latent
source, and the variation within the views is independent with such latent source. Those methods
are often conducted to discriminate each view with the shared variable independently and then
updating the parameters for the shared space.
All of these methods were developed on original multi-view feature spaces. They do not fully

consider the discriminative properties of the data.

2.2 Extreme Learning Machines

ELMs are an emerging learning model for training “generalized” SLFNs with the aim of providing
superior performance and fast learning speeds for complicated application problems [9, 29, 42]. As
opposed to conventional neural networks, which require iterative parameter tuning, ELMs need
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very little parameter adjustment [5, 15]. Typically, basic ELMs are partitioned into two main steps:
ELM feature mapping and ELM parameter solving. In the first step, the original data is transformed
into a latent representation via nonlinear featuremapping and connected network parameters. The
input network parameters are randomly generated, and the selected activation function should be
infinitely differentiable. In the second step, the output network parameters are analytically solved
with a generalized Moore-Penrose (MP) inverse and the minimum norm least-squares solution to
a general linear system without the need for iterative learning. The detailed learning procedure
for training an ELM network is shown in Algorithm 1.

ALGORITHM 1: Training procedure for ELM

Input:

Training Data; Activation Function; Hidden neuron number;

Output:

Output network parameters;

1: Randomly assign input network parameters and hidden biases;

2: Calculate the hidden layer output matrix with training data using matrix multiplication;

3: Calculate output network parameters according to Moore-Penrose generalized inverse.

In reality, neural networks can naturally extract features that are more discriminative than the
original data. As a neural network training method, ELMs show an outstanding representation
ability. For example, ELMs can learn a compressed representation derived from a low-dimensional
feature space or a sparse representation from a high-dimensional feature space [43, 46]. Further,
they can retain the potential information hidden in the original data while learning different rep-
resentations. Due to this outstanding representation ability, ELMs have been applied to a range of
clustering tasks. Huang et al. [14] were the first to propose an unsupervised ELM method to solve
both embedding and clustering tasks. The method is based on Laplacian eigenmaps and spectral
clustering. In [23], Liu et al. presented a novel ELM variant to preserve the manifold data structure
and maximize the separability of different classes for both embedding and clustering. Liu et al. [22]
developed a dual data representation based on a graph clustering method that depends on both the
original data and a nonlinear feature representation obtained by an ELM. The above-mentioned
methods are based on generic data. For multi-view data, in [41], Wang et al. advanced a general
multi-view clustering framework based on ELM feature mapping. The framework can be general-
ized to other multi-view clustering approaches, and the representation ability of the ELM feature
mapping can be analytically verified. For both generic data and multi-view data, those ELM-based
methods show the capability of learning discriminative features for different learning tasks. Given
that ELM feature mapping learns discriminative features from the original data, it has the potential
to benefit a diverse range of learning tasks.
Our contribution to this growing field of discovery is a complete multi-view fusion clustering

framework that incorporates an ELM and automatically weights individual embeddings to create
a unified embedding across an entire set of multi-view data.

3 NOTATION AND PROBLEM DESCRIPTION

Throughout this article, boldface uppercase letters denote a matrix (e.g., X), boldface lowercase
letters denote a vector (e.g., x) and italics denote a scalar (e.g., x ). Calligraphic letters (e.g., X) are
used to denote different sets. For any matrix X ∈ RI×J , xi denotes the ith column vector of X,
where xj means the jth row vector of X and x ji indicates the ith row jth column element of X.

The Frobenius norm (F -norm) is denoted as | |X| |F =
√∑J

j=1

∑I
i=1 x

2
ji . The transpose and inverse
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Table 1. List of Important Notations

Notation Description
x Normal italic letter denotes a scalar
x Boldface lowercase denotes a vector
X Boldface uppercase letter denotes a matrice
X Calligraphic letter denotes a set
| | · | |F Denotes Frobenius norm of matrix
N Denotes number of instances in multi-view dataset
Dv Denotes number of features in the vth view feature space
V Denotes number of feature views in multi-view dataset
L Denotes number of hidden nodes for ELM network
M Denotes dimension of embedding (i.e., number of output nodes for ELM network)

operators of a matrix X are further represented as XT and X−1, respectively. These notations are
summarized in Table 1 along with some additional important notations.

Consider an unlabeled multi-view dataset, X = {X(v ) }Vv=1 are with V different feature views,

where X(v ) ∈ RDv×N is the vth feature view with N instances and Dv features, and D =
∑V
v=1 Dv

is the total number of features in the multi-view dataset. Our goal is to partition N instances into
K clusters by exploiting the information in every different viewV of the data. This is the learning
task for multi-view clustering. More precisely, our aim is to accurately perform clustering from a
unified embedding that captures the complementary information across all views so as to provide
an effective solution for multi-view clustering problems.

4 THE PROPOSED MVEC METHOD

This section begins by presenting MVEC’s formulation. The formulation of the algorithm to solve
the proposed formulation follows. A conceptual view of this framework is illustrated in Figure 2.

4.1 Formulation of MVEC

4.1.1 Unsupervised Parameter Initialization. In diverse ELM learning models, network param-
eter vectors are usually randomly selected from an open set of arbitrary vectors, which may mean
more hidden nodes are required to improve performance. In general, the network parameter vec-
tors in an ELM should easily and accurately separate different samples into different groups. Most
existing methods based on ELMs use label information to determine which vectors are the most
suitable [49, 50]. For some sources of data, acquiring accurate label information means human
annotation, and that is expensive. And, with an ELM, establishing effective network parameter
vectors without label information is a challenging problem.
Typically, the difference vectors of between-class samples in a specific dataset should show out-

standing discriminative characteristics for a range of learning tasks [32]. However, in unsupervised
learning scenarios, little or no label information is known. Motivated by [51], MVEC determines
the network parameters for the ELM by calculating the difference between pairwise samples. To
overcome the deficiency of label information, we use a large threshold to control the difference
for choosing pair-wise samples, which increases the probability of drawing two very distinctive
samples. Suppose that xr1 and xr2 are randomly chosen samples from the original input data, the
weight vector w for all input nodes to one hidden node can be calculated as follows:

w = μ (xr2 − xr1); (1)
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Fig. 2. A conceptual view of MVEC.

where μ is the normalized factor. During ELM feature mapping, the original data x is transformed
into a latent representation:

μxTw + a = μxT (xr2 − xr1) + a; (2)

where a is the bias for the hidden node in relation to the weight vectorw. Notably, samples xr1 and
xr2 from different class-label groups should show a distinct feature mapping, which may provide
more discriminative information when learning the network parameters. The assumption that xr1
and xr2 are mapped to −1 and 1 is represented as follows:

⎧⎪⎨
⎪
⎩

μxTr1 (xr2 − xr1) + a = −1
μxTr2 (xr2 − xr1) + a = 1.

(3)

By solving Equation (3), the normalization factor can be calculated as

μ =
2

| |xr2 − xr1 | |2L2
; (4)

and the corresponding bias can be determined from

a =
(xr2 + xr1)

T (xr2 − xr1)
| |xr2 − xr1 | |2L2

. (5)

The network parameter vectors and the biases for the other hidden nodes can be determined in
the same way. For simplicity, the network parameter matrix that connects the input nodes and the
hidden nodes is denoted asW, and the bias vector for the hidden nodes is denoted as a. The above-
mentioned network parameters are drawn from a constrained set of difference vectors for the pair-
wise samples instead of an open set of arbitrary vectors. This is the foundation for MVEC, which
can provide a more appropriate solution to unsupervised parameter initialization. Appropriate
network parameter initialization is vital to the subsequent learning process (i.e., view-independent
embedding learning and consensus embedding learning). Compared to randomly selected network
parameters, constrained network parameters provide superior input parameters and lead to a satis-
factory performance, as proven in the experiments in Section 6.9. Moreover, this is an unsupervised
parameter initialization method that does not require explicit label information for learning.
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4.1.2 View-Independent Embedding Learning. In general, multi-view data is often not suffi-
ciently discriminative for the learning task at hand. Therefore, to improve the discriminative qual-
ities of the data, it is vital to further explore other representations. As a neural network train-
ing algorithm, ELM is specifically designed for nonlinear feature mapping and can, therefore,
learn new and potentially more distinct representations [47]. For the vth (1 ≤ v ≤ V ) view data

X(v ) ∈ RDv×N , assume there is an ELM network with L hidden nodes. Here, the nonlinear feature
mapping is represented as the following equation:

H(v ) = д
(
X(v )TW(v ) + 1N a

(v )T
)
; (6)

where W(v ) ∈ RDv×L is the constrained input weight matrix and a (v ) ∈ RL is the constrained

hidden layer bias vector of the vth view in the ELM network. (The learning process for W(v ) and

a (v ) can refer to Section 4.1.1.) 1N ∈ RN is the constant vector of all 1’s and д(·) is an activation

function for hidden layer.H(v ) ∈ RN×L is the nonlinear representation of thevth viewX(v ) , where

the jth row and ith column element can be represented by hi (x
(v )
j ) = д(x(v )j

T
wi + ai ).

The nonlinear representation H(v ) of the vth view is also called the hidden layer output ma-
trix. Unlike the unknown feature mapping in other learning models, feature mapping in ELM is
explicit, and it varies with different parameter settings as well as different activation functions.
ELM feature mapping is a simple technique, but it can nonlinearly transform the original data into
another feature space. Further, it can reduce noise while retaining informative information. Exist-
ing research also proves that learning models with ELM feature mapping can produce satisfactory
performance [13, 23]

To formulate the proposed MVEC learning model, the first step is to learn view-independent
embeddings for all views within the entire ELM network. This is accomplished with

min
B(v ),Z(v )

V∑
v=1

���H
(v )B(v ) − Z(v )���

2

F
+ λ

V∑
v=1

���B
(v )���

2

F
; (7)

where H(v ) ∈ RN×L is the nonlinear representation obtained from the ELM feature mapping.

B(v ) ∈ RL×M is the output weight matrix of the ELM network, and Z(v ) ∈ RN×M is the view-
independent embedding learned by the whole ELM network. In Equation (7), the first term is
the loss function to simulate the relation between the nonlinear representations and the view-
independent representations. The second term is the regularization term to avoid overfitting. The
parameter λ is used to balance the loss function and the regularization term. Instead of using orig-
inal data, view-independent embedding learning can maximize the data information within each
individual view. This is an appealing characteristic for diverse learning tasks. Due to the nature of
neural network structures, ELMs have outstanding representation ability across a diverse range of
learning applications, as proven in [16]. By using the constrained network parameters explained
in the previous section, the ELM is able to learn more discriminative representations from the
original multi-view data. Further, this style of learning process provides a solid foundation for ex-
ploring a commonly shared embedding across the different individual representations, which is
the core idea behind MVEC.

4.1.3 Consensus Embedding Learning. With multi-view data, different views often provide in-
formation about complementarity and/or consistency in the data. Learning a common graph or
subspace that captures these properties is prevalent in the literature [19, 21]. The main idea of
our method is to learn a shared embedding via an ELM network structure that is able to handle a
variety of different clustering tasks. Consensus embedding learning is a crucial part in MVEC,
which explores the complementary and/or consistent information within multi-view data for
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clustering. To develop a commonly shared embedding, the learning model is formulated according

to the nonlinear view embeddings Z(v ) described in Section 4.1.2. The commonly shared embed-
ding is represented as

min
Z(v ),Z∗

V∑
v=1

���Z
(v ) − Z∗���F ; (8)

where Z∗ ∈ RN×M is the commonly shared embedding learned across all views. This model mini-

mizes the difference between the view-individual embeddings Z(v ) and the shared embedding Z∗,
which is helpful for obtaining a common, discriminative, and informative representation of the
given multi-view data.
The formulation in Equation (8) is not convex nor smooth. Therefore, it is difficult to solve Equa-

tion (8) in an effective manner. It is feasible to rewrite Equation (8) as a re-weighted formulation,
which is well-accepted in multi-view learning models [45] because a re-weighted scheme can au-
tomatically assign appropriate weights to different views to measure their contributions to the
learning task. Inspired by this, we have rewritten Equation (8) as a more tractable formulation:

min
Z(v ),Z∗

V∑
v=1

βv
���Z

(v ) − Z∗���
2

F
; (9)

where βv is denoted by the form below and is the weight for vth view and determined automati-

cally from the current Z(v ) and Z∗.

βv =
(
2
���Z

(v ) − Z∗���F
)−1
. (10)

The self-weighting strategy to measure the contribution of each individual view is recently
well-accepted in multi-view learning tasks, which avoids introducing additional parameters. For
clustering problem, the auto-weighted multiple graph learning method in [26] is a parameter-
free method, which determines a proper weight for each graph automatically without introducing
extra parameters. The self-weighted multi-view clustering method in [27] explores a Laplacian
rank-constrained graph to be the centroid of the affiliation graph for each view with different con-
fidences. For feature extraction problem, the multi-view unsupervised feature extraction method
in [54] is presented to learn low-dimensional features for multi-view data with structured graphs
and determine suitable weights for each view automatically without requiring an additive param-
eter. For feature selection problem, the multi-view unsupervised feature selection method in [12]
leverages the learning mechanism to characterize the common structures with adaptive similari-
ties and view weights for selecting informative features from multi-view data. The self-weighting
strategy in multi-view learning tasks can be refer to other literatures.

4.1.4 The Objective Function. In the previous sections, we introduced each component of the
MVEC learning model, i.e., Equation (7) and Equation (9), and MVEC can be regarded as a two-
step method. It is clear that these two steps performed separately cannot guarantee an optimal
clustering result. We integrate Equation (7) and Equation (9) by introducing the parameter γ to
balance their relationship. Thus, the optimization framework for MVEC is as follows:

min
B(v ),Z(v ),Z∗

V∑
v=1

���H
(v )B(v ) − Z(v )���

2

F
+ γ

V∑
v=1

βv
���Z

(v ) − Z∗���
2

F
+ λ

V∑
v=1

���B
(v )���

2

F
, (11)

where the first and third terms are used to learn the representative embeddings from each view
through the ELM network, and the second term is used to learn the commonly-shared embedding
from the individual embeddings. This joint optimization formulation automatically calculates the
weights for each individual view, i.e., the measure of each view’s importance to the learning task.
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Consequently, any clusteringmethod (e.g., K-means, fuzzy C-Means, spectral clustering, etc.) could
easily be incorporated into MVEC. In this paper, we have used K-means to conduct the clustering
because this method is able to reveal the underlying data structures in multi-view data.

4.2 Optimization for MVEC

This section demonstrates an alternating algorithm to the traditional approach for solving Equa-
tion (11). For ease of representation, Equation (11) is denoted as

F
(
B(v ),Z(v ),Z∗

)
=

V∑
v=1

���H
(v )B(v ) − Z(v )���

2

F
+ γ

V∑
v=1

βv
���Z

(v ) − Z∗���
2

F
+ λ

V∑
v=1

���B
(v )���

2

F
. (12)

It is clear that the above optimization formulation is convex if we update one variable while fixing
the other two variables. This procedure is repeated until convergence. The pseudocode for the
MVEC algorithm is presented above as Algorithm 2.

(1) Updating B(v ) with a Fixed Z(v ) and Z∗. To calculate the derivative of the objective function

w.r.t B(v ) , we fix Z(v ) and Z∗ and remove irrelevant items. The optimization problem for updating

B(v ) becomes:

F
(
B(v )
)
=

V∑
v=1

���H
(v )B(v ) − Z(v )���

2

F
+ λ

V∑
v=1

���B
(v )���

2

F
. (13)

Taking the derivative of Equation (13) w.r.t B(v ) and setting the derivative to zero, we have

∂F
(
B(v )
)

∂B(v )
= 2H(v )T

(
H(v )B(v ) − Z(v )

)
+ 2λB(v ) = 0; (14)

ALGORITHM 2: MVEC

Input: Multi-view data X = {X(v ) }Vv=1, where X(v ) ∈ RDv×N , Parameters γ and λ, number of clusters C ,
number of hidden nodes L, dimension of embeddingM ;

Output: Consensus embedding matrix Z∗;
1: for v = 1 to V do

2: InitializeW(v ) ∈ RDv×L and a(v ) ∈ RL by Equation (1) and Equation (5);

3: Calculate H(v ) = д(X(v )TW(v ) + 1N a(v )
T
);

4: Initialize B(v ) ∈ RL×M , and Z(v ) ∈ RN×M with randomization;

5: end for

6: Initialize Z∗ ∈ RN×M with randomization;

7: repeat

8: for v = 1 to V do

9: B(v ) = (H(v )TH(v ) + λI)−1H(v )TZ(v ) ;

10: Z(v ) =
H(v )B(v )+γ βvZ

∗
1+γ βv

;

11: end for

12: Z∗ =
∑V
v=1 βvZ

(v )

∑V
v=1 βv

;

13: for v = 1 to V do

14: Update the parameter βv by Equation (10);

15: end for

16: until Convergence

17: Apply K-means to conduct clustering on the consensus embedding matrix Z∗;

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 53. Publication date: October 2019.



Multi-View Fusion with Extreme Learning Machine 53:11

This derives a closed-form solution to update B(v ) ,

B(v ) =
(
H(v )TH(v ) + λI

)−1
H(v )TZ(v ) . (15)

(2) Updating Z(v ) with a fixed B(v ) and Z∗. To calculate the derivative of the objective function

w.r.t Z(v ) , we fix B(v ) and Z∗ and remove irrelevant items. The optimization problem for updating

Z(v ) becomes:

F
(
Z(v )
)
=

V∑
v=1

���H
(v )B(v ) − Z(v )���

2

F
+ γ

V∑
v=1

βv
���Z

(v ) − Z∗���
2

F
. (16)

Taking the derivative of Equation (16) w.r.t Z(v ) and setting the derivative to zero, we have

∂F
(
Z(v )
)

∂Z(v )
= 2
(
Z(v ) − H(v )B(v )

)
+ 2γ βv

(
Z(v ) − Z∗

)
= 0. (17)

This derives a closed-form solution to update Z(v ) ,

Z(v ) =
H(v )B(v ) + γ βvZ

∗

1 + γ βv
. (18)

(3) Updating Z∗ with a fixed B(v ) and Z(v ) . To calculate the derivative of the objective function

w.r.t Z∗, we fix B(v ) and Z(v ) and remove irrelevant items. The optimization problem for updating
W becomes:

F (Z∗) = γ
V∑
v=1

βv
���Z

(v ) − Z∗���
2

F
. (19)

Taking the derivative of Equation (19) w.r.t Z∗ and setting the derivative to zero, we have

∂F (Z∗)
∂Z∗

= 2

V∑
v=1

βv
(
Z(v ) − Z∗

)
= 0; (20)

This derives a closed-form solution to update Z∗,

Z∗ =
∑V
v=1 βvZ

(v )

∑V
v=1 βv

. (21)

In both Equation (18) and Equation (21), the parameter βv can be calculated using Equation (10).
Overall, updating one variable by fixing the other two produces a solution in closed form. In Al-
gorithm 2, the objective function value of Equation (12) monotonically decreases when using the
alternating update rules until the algorithm converges. Successful convergence is theoretically
proven in Section 5.1 and experimentally verified in Section 6.6.

5 ANALYSES FOR MVEC

5.1 Convergence Analysis

This section includes an analysis of Algorithm 2 in Section 5.1, followed by a time complexity
analysis in Section 5.2.

Theorem 1. Updating B(v ) using Equation (15) will monotonically decreases the objective function

in Equation (12).

Proof. Equation (15) is the solution to the following problem,

min
B(v )

���H
(v )B(v ) − Z(v )���

2

F
+ λ���B

(v )���
2

F
. (22)
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It is obvious that the above function describes a convex problem, where the the optimal solution

for B(v ) can be obtained by calculating the derivative of the function w.r.t B(v ) . Therefore, we can
prove the following inequation holds in the t th step,

���H
(v )B(v )t+1 − Z(v )t ���

2

F
+ λ���B

(v )t+1���
2

F

≤ ���H
(v )B(v )t − Z(v )t ���

2

F
+ λ���B

(v )t ���
2

F
.

(23)

Combining Equation (12) and Equation (23), we have

F
(
B(v )t+1,Z(v )t ,Z∗t

)
≤ F
(
B(v )t ,Z(v )t ,Z∗t

)
. (24)

Thus, F (B(v ),Z(v ),Z∗) monotonically decreases using the updating rule in Equation (15) and The-
orem 1 is proved. �

Theorem 2. Updating Z(v ) using Equation (18) will monotonically decreases the objective function

in Equation (12).

Proof. Equation (18) is the solution of the following problem:

min
Z(v )

���H
(v )B(v ) − Z(v )���

2

F
+ λβv

���Z
(v ) − Z∗���

2

F
. (25)

Denote G (B(v ),Z(v ),Z∗) as

G
(
B(v ),Z(v ),Z∗

)
=

1

λ
���H

(v )B(v ) − Z(v )���
2

F
. (26)

Then, Equation (33) can be rewritten as:

min
Z(v )

βv
���Z

(v ) − Z∗���
2

F
+ G
(
B(v ),Z(v ),Z∗

)
. (27)

Note that βv = (2‖Z(v ) − Z∗‖F )−1, and we can derive

���Z
(v )t+1 − Z∗t ���

2

F

2
���Z

(v )t+1 − Z∗t ���F
+ G
(
B(v )t+1,Z(v )t+1,Z∗t

)

≤
���Z

(v )t − Z∗t ���
2

F

2
���Z

(v )t − Z∗t ���F
+ G
(
B(v )t+1,Z(v )t ,Z∗t

)
.

(28)

According to a lemma in [25], for any non-zero matrix P and Q, the following inequality holds:

‖P‖F −
‖P‖2F
2‖Q‖F ≤ ‖Q‖F −

‖Q‖2F
2‖Q‖F . (29)

Therefore, we can derive

���Z
(v )t+1 − Z∗t ���F −

���Z
(v )t+1 − Z∗t ���

2

F

2
���Z

(v )t − Z∗t ���F

≤ ���Z
(v )t − Z∗t ���F −

���Z
(v )t − Z∗t ���

2

F

2
���Z

(v )t − Z∗t ���F
.

(30)
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Summing Equation (28) and Equation (30) on both sides, we have

���Z
(v )t+1 − Z∗t ���F + G

(
B(v )t+1,Z(v )t+1,Z∗t

)

≤ ���Z
(v )t − Z∗t ���F + G

(
B(v )t+1,Z(v )t ,Z∗t

)
.

(31)

The inequality illustrates that the objective function of Equation (12) will monotonically decrease
in each iteration. Combining Equation (31) and Equation (12), we have

F
(
B(v )t+1,Z(v )t+1,Z∗t

)
≤ F
(
B(v )t+1,Z(v )t ,Z∗t

)
. (32)

Thus, F (B(v ),Z(v ),Z∗) monotonically decreases using the updating rule in Equation (18) and The-
orem 2 is proved. A similar proof can be also found in [54]. �

Theorem 3. Updating Z∗ using Equation (21) will monotonically decreases the objective function

in Equation (12).

Proof. Equation (21) is the solution to the following problem,

min
Z∗

V∑
v=1

βv
���Z

(v ) − Z∗���
2

F
. (33)

Equation (33) is partitioned into V subproblems. Following a similar procedure to that in Theo-
rem 2, we can prove each subproblem is a convex problem w.r.t Z∗, which means the objective
function monotonically decreases when using the updating rule in Equation (21). Therefore, we
can prove the following inequation holds in the t th step:

V∑
v=1

βv
���Z

(v )t+1 − Z∗t+1���
2

F
≤

V∑
v=1

βv
���Z

(v )t+1 − Z∗t ���
2

F
, (34)

which is same as:

V∑
v=1

���Z
(v )t+1 − Z∗t+1���F ≤

V∑
v=1

���Z
(v )t+1 − Z∗t ���F . (35)

Combining Equation (12) and Equation (35), we have

F
(
B(v )t+1,Z(v )t+1,Z∗t+1

)
≤ F
(
B(v )t+1,Z(v )t+1,Z∗t

)
. (36)

Thus, F (B(v ),Z(v ),Z∗) monotonically decreases using the updating rule in Equation (21) and The-
orem 3 is proved. �

Combining Equation (24), Equation (32), and Equation (36), we can get

F
(
B(v )t+1,Z(v )t+1,Z∗t+1

)
≤ F
(
B(v )t+1,Z(v )t+1,Z∗t

)

≤ F
(
B(v )t+1,Z(v )t ,Z∗t

)
≤ F
(
B(v )t ,Z(v )t ,Z∗t

)
.

(37)

Therefore, the alternating update rules in Algorithm 2 have been proven to monotonically de-
crease the objective function of Equation (12).
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Table 2. Statistics for the Eight Multi-View Datasets Used in the Experiments

Feature Type BBCSport Blog FOX CNN WebKB 3Sources Yale Digits

1 TextA(3183) Text(5390) Text(2711) Text(3695) Content(3000) BBC(3560) Intensity(4096) FAC(216)

2 TextB(3203) Tag(2003) Image(996) Image(996) Link(1084) Reuters(3068) LBP(3304) FOU(76)

3 - - - - - Guardian(3631) Gabor(6750) KAR(64)

4 - - - - - - - PIX(240)

Instances 544 1000 1523 2107 1051 169 165 2000

Clusters 5 5 4 7 2 6 15 10

5.2 Time Complexity Analysis

In our case,M ≤ L andM ≤ N . The calculations for H(v ) , B(v ) , Z(v ) and Z∗ are the contributors to
MVEC’s time complexity. It takesO (N ·L·Dv ) to calculateH

(v ) . The time complexity for calculating

B(v ) is O (L3 + N ·L2 + N ·L·M ), and the cost for calculating Z(v ) is O (N ·L·M ). Calculating Z∗ is
computationally trivial. Assume that T is the number of iterations, then the overall cost for the
proposed MVEC can simply be denoted as O (T (L3 + N ·L2)). In general, parameter L does not need
to be very large, so the proposed MVEC method can be applied to diverse application problems
with a desirable efficiency.

6 EXPERIMENTS

The experiments we conducted to validate the effectiveness and efficiency of MVEC involved
multi-view clustering tasks with a range of real-world datasets. All experiments were performed
on a PC with an Intel(R) Core(TM) 2.70GHZ CPU and 8GB of RAM using Matlab R2016a.

6.1 Dataset

We selected eight publicly available real-world multi-view datasets, each drawn from different do-
mains and/or data types including text, numerals, and images. Using a diverse selection of datasets
provides a comprehensive evaluation of the algorithm’s performance. Statistics for each of the
eight datasets are summarized in Table 2, and a brief description follows.
BBCSport. A dataset that includes 544 sports news articles with five different categories. This is

a synthetic dataset with two textual views.
Blog. A dataset crawled from Blogcatalog. It includes 1,000 instances with five different cate-

gories. The two views are text in posts and the tags related to the posts.
FOX. A dataset comprising 1,523 news articles with four distinct categories obtained from FOX

and two views – one image, one text.
CNN. A news dataset collected from CNN that contains 2,107 news articles in seven clusters.

Each article is described with text and images.
WebKB. 1,051 web pages from four different universities, with each represented as a content

view and a link view.
3Sources. A dataset of 169 shared stories across six diverse topics. All stories were reported by

three news agencies, (BBC, Reuters, and The Guardian), which represent the three views.
Yale. A dataset of 165 images of human faces that have each been described by 15 different

people. Intensity, local binary patterns (LBP), and Gabor feature views have been extracted from
each image.
Digits. A dataset that includes ten different categories of 2,000 handwritten digits from “0” to

“9”. Four of its feature views were used in our experiments: FAC, FOU, KAR, and PIX.
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6.2 Baseline Methods

To assess MVEC’s effectiveness, we compared MVEC with both ELM-based and non-ELM-based
clustering methods. With the single view methods, multiple view features were concatenated into
a unified feature space. Each of the baseline methods is briefly described below.
ELM-Based Clustering Methods. (a) ELMCKM is a single-view clustering method based on

Fisher’s linear discriminant analysis (LDA) and solved with a K-means kernel [13]; (b) US-ELM
is a single-view clustering method that extends ELM to unsupervised scenarios with manifold
regularization [14]; (c) ELMJEC is a single-view clustering method based on a discriminative
embedded clustering method that simultaneously learns the embeddings and clustering tasks
[23]; (d) CoregSC-ELM extends the co-regularized multi-view spectral clustering method to ELM
feature representation rather than using the original data [41]; (e) MMSC-ELM is an extension to
the multi-modal spectral clustering method, again, using ELM feature representations instead of
the original data [41]; (f) MRSC-ELM extends the robust multi-view spectral clustering method
with ELM feature representation instead of using the original data [41].

Non-ELM-Based Clustering Methods. (a) SEC is a single view spectral clustering method that
imposes a linearity regularization on the objective function [28]; (b) AMGL is a single view
spectral clustering method that imposes a linearity regularization on the objective function [26];
(c) MultiNMF is a multi-view clustering method that searches for a compatible clustering solution
via joint nonnegative matrix factorization [21]; (d) RMKMC is a multi-view K-means clustering
method that learns a shared cluster indicator to solve different problems [3]; (e) CoregSC is a
centroid based multi-view clustering method by learning a consensus clustering representation
across views [19]; (f) MMSC is a multi-modal spectral clustering method to explore a common
graph Laplacian matrix from multiple views [4].

6.3 Evaluation Metrics

We evaluated each of the different algorithms according to their clustering accuracy (ACC) and
normalized mutual information (NMI). These metrics are well-accepted criteria for assessing per-
formance in unsupervised learning tasks [31, 37]. The larger the ACC and NMI, the better the
clustering performance. The formulations for each metric follow.
Clustering Accuracy (ACC). Given a data point xi , let pi be the clustering label and qi be the true

class label:

ACC =
1

N

N∑
i=1

δ (qi ,map (pi )); (38)

wheremap (·) is a permutation function that maps the label of each cluster to a ground truth label.
The best permutation mapping can be found by the Kuhn-Munkres algorithm [30]. δ (q,p) is an
indicator function, where the value is one if q = p and zero otherwise.
Normalized Mutual Information (NMI): LetCt be the ground truth clusters andCe be the clusters

produced by the algorithm. The mutual information is denoted as

MI (Ct ,Ce ) =
∑

c t
i
∈C t ,ce

j
∈Ce

p
(
cti , c

e
j

)
loд

p
(
cti , c

e
j

)

p
(
cti
)
p
(
cej
) ; (39)

wherep (cti ) andp (c
e
j ) are the probabilities that a data point is arbitrarily selected from the cluster cti

and cej , respectively.p (c
t
i , c

e
j ) denotes the joint probability that a data point belongs to both clusters
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Table 3. Clustering Result Comparison of the ELM-Based Clustering Methods

Baseline Method
BBCSport Blog FOX CNN WebKB 3Sources Yale Digits

ACC±std
ELMCKM 0.390±0.062 0.361±0.052 0.460±0.020 0.240±0.016 0.909±0.071 0.314±0.038 0.432±0.041 0.531±0.051
US-ELM 0.549±0.045 0.493±0.047 0.474±0.040 0.260±0.006 0.882±0.045 0.472±0.033 0.521±0.034 0.576±0.052
ELMJEC 0.345±0.004 0.330±0.022 0.460±0.027 0.231±0.016 0.784±0.039 0.317±0.022 0.573±0.019 0.807±0.074

CoregSC-ELM 0.552±0.035 0.502±0.013 0.606±0.001 0.289±0.013 0.907±0.008 0.500±0.042 0.574±0.062 0.779±0.063
MMSC-ELM 0.482±0.040 0.315±0.024 0.574±0.014 0.255±0.015 0.810±0.002 0.442±0.023 0.584±0.038 0.706±0.069
MRSC-ELM 0.706±0.044 0.585±0.007 0.490±0.011 0.306±0.017 0.898±0.005 0.543±0.051 0.566±0.038 0.635±0.038

MVEC 0.829±0.071 0.637±0.074 0.785±0.088 0.545±0.035 0.963±0.048 0.556±0.059 0.595±0.063 0.820±0.059
NMI±std

ELMCKM 0.128±0.042 0.091±0.038 0.111±0.014 0.042±0.005 0.498±0.061 0.124±0.042 0.496±0.034 0.502±0.047
US-ELM 0.285±0.040 0.211±0.011 0.119±0.014 0.050±0.010 0.429±0.037 0.370±0.020 0.577±0.026 0.544±0.013
ELMJEC 0.045±0.062 0.054±0.017 0.123±0.030 0.035±0.008 0.085±0.029 0.092±0.031 0.610±0.014 0.766±0.037

CoregSC-ELM 0.267±0.013 0.259±0.027 0.264±0.001 0.100±0.008 0.503±0.002 0.488±0.035 0.619±0.028 0.745±0.024
MMSC-ELM 0.261±0.059 0.233±0.029 0.264±0.003 0.084±0.006 0.107±0.001 0.430±0.009 0.656±0.012 0.799±0.024
MRSC-ELM 0.431±0.030 0.320±0.029 0.162±0.002 0.119±0.011 0.509±0.003 0.470±0.036 0.599±0.037 0.596±0.012

MVEC 0.728±0.061 0.483±0.025 0.644±0.043 0.376±0.019 0.726±0.001 0.551±0.038 0.660±0.030 0.802±0.027
The best results are highlighted in bold.

cti and c
e
j . The normalized mutual information used in our experiments is defined as follows:

NMI(Ct ,Ce ) =
MI (Ct ,Ce )√
H (Ct )H (Ce )

; (40)

where H (Ct ) and H (Ce ) are the entropies of Ct and Ce .

6.4 Experimental Setting

We employed a sigmoid function as the activation function for the hidden layer of the MVEC
framework, which is a common choice in the literature [5, 49]. The number of hidden nodes was
simply set to 200 for all benchmark datasets in the experiments. The dimensionality of the embed-
ding was selected from {5, 50} in units of 5. Additionally, we set the two parameters γ and λ using
a grid-search strategy from {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Note that these parameters need to
be tuned for each dataset, so we used optimal values for each dataset to conduct the experiments.
The results reported in the following sections were obtained by repeating a K-means algorithm
30 times.

6.5 Performance Comparison

Webegin our discussion on performancewith the comparisons betweenMVEC and the ELM-based
clustering methods. Comparisons to the non-ELM-based methods are discussed in Section 6.5.2.

6.5.1 Comparison with ELM-Based Methods. Table 3 shows the clustering results for the ELM-
based baselines. The best results appear in bold, whichmeans themethod in that row outperformed
the other methods. From Table 3, we can see that MVEC produced promising results compared
to the other ELM-based clustering methods in terms of both ACC and NMI. A summary of our
observations follows.

• In terms of ACC, MVEC significantly outperformed the other ELM-based clustering meth-
ods on all multi-view datasets. The enhancement to ACC MVEC provided is obvious. For
instance, on the CNN dataset, MVEC showed a 23% improvement to the ACC of the other
methods.
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Table 4. Clustering Result Comparison of the Non-ELM-based Clustering Methods

Baseline Method
BBCSport Blog FOX CNN WebKB 3Sources Yale Digits

ACC±std
SEC 0.726±0.028 0.586±0.036 0.478±0.001 0.267±0.010 0.942±0.006 0.439±0.032 0.537±0.049 0.704±0.054

AMGL 0.356±0.002 0.259±0.011 0.443±0.005 0.232±0.006 0.781±0.014 0.376±0.023 0.502±0.056 0.659±0.087
MultiNMF 0.473±0.027 0.635±0.046 0.767±0.027 0.442±0.033 0.793±0.035 0.536±0.044 0.541±0.052 0.671±0.073
RMKMC 0.458±0.006 0.376±0.004 0.420±0.007 0.211±0.003 0.952±0.002 0.521±0.006 0.479±0.007 0.601±0.002
CoregSC 0.598±0.079 0.601±0.021 0.748±0.001 0.363±0.021 0.954±0.001 0.549±0.040 0.575±0.051 0.788±0.072
MMSC 0.559±0.004 0.350±0.001 0.631±0.003 0.249±0.001 0.809±0.002 0.438±0.001 0.588±0.002 0.836±0.001
MVEC 0.829±0.071 0.637±0.074 0.785±0.088 0.545±0.035 0.963±0.048 0.556±0.059 0.595±0.063 0.820±0.059

NMI±std
SEC 0.608±0.016 0.418±0.019 0.155±0.001 0.056±0.001 0.646±0.003 0.362±0.041 0.601±0.029 0.756±0.022

AMGL 0.039±0.006 0.035±0.010 0.063±0.059 0.030±0.004 0.003±0.014 0.176±0.021 0.593±0.031 0.792±0.044
MultiNMF 0.342±0.029 0.468±0.040 0.615±0.012 0.359±0.018 0.382±0.029 0.492±0.051 0.602±0.023 0.665±0.026
RMKMC 0.353±0.001 0.338±0.001 0.114±0.004 0.024±0.005 0.701±0.002 0.336±0.003 0.550±0.002 0.635±0.001
CoregSC 0.427±0.029 0.466±0.033 0.498±0.001 0.182±0.017 0.711±0.003 0.528±0.027 0.632±0.041 0.773±0.033
MMSC 0.364±0.004 0.339±0.005 0.284±0.002 0.085±0.007 0.119±0.004 0.379±0.008 0.646±0.003 0.823±0.005
MVEC 0.728±0.061 0.483±0.025 0.644±0.043 0.376±0.019 0.726±0.001 0.551±0.038 0.660±0.030 0.802±0.027

The best results are highlighted in bold.

• In terms of NMI, MVEC greatly outperformed the other ELM-based clustering methods on
all multi-view datasets, most notably the BBCSport datasets with an NMI improvement of
more than 19%.

• ELMCKM’s performance was poor. ELMJEC was also inferior to MVEC in joint embedding
and clustering, which is mainly attributed to its neglect of the complementary information
within multi-view data.

• The other ELM-based baselines simply extend existing multi-view clustering methods to
a random feature mapping space and, therefore, these methods also demonstrated poor
clustering performance.

The superiority of MVEC compared to these ELM-based clustering methods is clear from these
results. We find that exploring and leveraging the complementary information within multi-view
data is quite beneficial and can boost clustering performance with multi-view clustering tasks.
Further, learning a shared embedding based on the original multi-view data via an ELM network
also contributes to better performance.

6.5.2 Comparison with Non-ELM-Based Methods. Table 4 reports the comparison results for
MVEC and the non-ELM-based clustering methods, with the best results in bold. As shown, MVEC
produced outstanding ACC and NMI results compared to the other non-ELM-based clustering
methods. Overall, the highlights are summarized as follows:

• Compared to AMGL,MVEC performed significantly better becauseMVEC learns a common
embedding that considers the consistencies in the information when clustering.

• MVEC performed better than MultiNMF because MVEC reduces noise and retains helpful
information when it learns the common embedding, which further improves the clustering
results.

• Compared to CoregSC and MMSC, MVEC’s higher performance on most of the datasets is
mainly due to learning the common embedding via an ELM network structure.

Thus, the superiority of MVEC over non-ELM-based clustering methods on all the datasets is
also verified through these comprehensive experiments, with one exception–the Digits dataset.
Here, MMSC performed slightly better than MVEC because the characteristic indicators in the
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Fig. 3. Visualization of the original BBCSport data compared to the BBCSport data embedding learned by

US-ELM, CoregSC, and MVEC.

Fig. 4. Convergence learning curve of MVEC on all multi-view datasets.

original data are explicit, and MMSC directly benefits from this. Considering such data is not
generally available in the real world, MMSC is difficult to generalize. MVEC achieved solid results
over all the datasets, which serves as an indicator of its superior capacity for generalization. We
conclude that nonlinear representation learning via an ELMnetwork structure can be of benefit to a
diverse range of multi-view clustering tasks. The illustrated embedding results from the BBCSport
dataset shown in Figure 3, support this conclusion on an intuitive level, showing that MVEC is able
to unearth more discriminative data structures than the other baseline methods.

6.6 Convergence Study

To solve Equation (12), we devised an alternating optimization algorithm to monotonically de-
crease the objective function value. Figure 4 shows the learning curves for all datasets from our
experiments to test convergence. The default value for parameters γ and λ was 0.1. As the figure
shows, the objective function values rapidly decreased and converged within 10 iterations on all
datasets, and the iterative optimization algorithm quickly converged on a solution to Equation (12),
which supports the algorithm’s effectiveness and efficiency. Moreover, this convergence guarantee
demonstrates that the results from MVEC will reach a sufficient level to at least approximate the
optimal solution.
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Fig. 5. Variations in terms of MVEC’s clustering accuracy w.r.t different values of the parameters γ and λ on
all multi-view datasets.

6.7 Parameter Sensitivity Study

In MVEC, choosing suitable values for the parameters γ and λ is key to ensuring a good result. In
our parameter sensitivity study of γ and λ, we used a grid-search strategy and varied the param-
eters γ and λ within {0.001, 0.01, 0.1, 1, 10, 100, 1, 000}. The results in terms of clustering accuracy
for all datasets are shown in Figure 5. From these figures, we observe that performance varied
according to the value of both parameters, but MVEC’s best performance on all datasets sat at the
top-left corner. For example, MVEC’s best performance on the BBCSport dataset occurred when
we fixed λ = 0.01 or λ = 0.1 with a small γ . On the FOX dataset, λ = 0.1 returned the best perfor-
mance. And, with the Digits dataset, setting γ = 10 produced very superior results. Other similar
findings can be found in Figure 5. Therefore, it is imperative to determine which values for param-
eters γ and λ are most suitable for the given multi-view clustering task.

6.8 Running Time Study

The results of our running time study on all datasets are provided in Figure 6. For each compared
method, the CPU running time varied according to the particular characteristics of the dataset.
ELMCKM, MMSC-ELM, and MVEC returned superior performance in terms of CPU running time,
while CoregSC-ELM, MRSC-ELM, and MultiNMF performed poorly. The running time for both
US-ELM and RMKMC was inferior on the FOX and CNN datasets. But ELMJEC performed well on
the 3Sources and Yale datasets. Overall, MVEC proved to be a computationally efficient method
that shows good clustering performance with a fast learning speed.

6.9 Case Study on Network Parameter Initialization

To assess the importance of our unsupervised parameter initialization technique, we compared two
versions of MVEC, one with and one without unsupervised parameter initialization, denoted as
MVEC-R. In MVEC-R, the initial input weights were selected randomly. Both methods were tested
with learned embeddings of varying dimensions on all datasets. The results appear in Figure 7,
where we observe that MVEC significantly outperformed MVEC-R. This demonstrates that our
technique for parameter initialization takes full advantage of the underlying information in the
original data, which tremendously benefits the model’s clustering performance.
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Fig. 6. Performance comparison in terms of CPU running time (measured by second) on all multi-view

datasets.

Fig. 7. Case study on network parameter initialization for all multi-view datasets. MVEC and MVEC-R

denote the proposed method with and without the proposed unsupervised parameter learning technique,

respectively.

7 CONCLUSION

In this article, we proposed a novel multi-view fusion clustering framework, called MVEC, which
benefits from the representation learning ability of an ELM. MVEC is designed to perform multi-
view clustering tasks by constructing a unified embedding from the individual embeddings using
an ELM network structure. We first learn individual embeddings from each view, and minimize
the difference between view-independent embeddings and the commonly shared embedding to
explore the commonly shared embedding. An effective and efficient alternating solution is in-
troduced to solve the formulation of MVEC. The ability of the ELM to leverage the correlations
and dependencies within multi-view data significantly improves the discriminatory power of the
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features, and comparative experiments on eight multi-view datasets demonstrate that MVEC im-
proves clustering accuracy with fast running times compared to a range of baselines.
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