Developer Reading Behavior While Summarizing
Java Methods: Size and Context Matters

Nahla J. Abid*, Bonita Sharif’, Natalia Dragani, Hend Alrasheed® and Jonathan I. Maletict
*Department of Computer Science, Taibah University, Madinah, Kingdom of Saudi Arabia
J‘Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA 68588
§Department of Information Technology, King Saud University, Riyadh, Kingdom of Saudi Arabia
J;Department of Computer Science, Kent State University, Kent, Ohio, USA 44242
Emails: nabd@taibahu.edu.sa, bsharif @unl.edu, ndragan @kent.edu, halrasheed @ksu.edu.sa, jmaletic @kent.edu

Abstract—An eye-tracking study of 18 developers reading and
summarizing Java methods is presented. The developers provide
a written summary for methods assigned to them. In total, 63
methods are used from five different systems. Previous studies on
this topic use only short methods presented in isolation usually as
images. In contrast, this work presents the study in the Eclipse
IDE allowing access to all the source code in the system. The
developer can navigate via scrolling and switching files while
writing the summary. New eye-tracking infrastructure allows
for this improvement in the study environment. Data collected
includes eye gazes on source code, written summaries, and time
to complete each summary. Unlike prior work that concluded
developers focus on the signature the most, these results indicate
that they tend to focus on the method body more than the
signature. Moreover, both experts and novices tend to revisit
control flow terms rather than reading them for a long period.
They also spend a significant amount of gaze time and have higher
gaze visits when they read call terms. Experts tend to revisit
the body of the method significantly more frequently than its
signature as the size of the method increases. Moreover, experts
tend to write their summaries from source code lines that they
read the most.

Index Terms—source code summarization, eye tracking, pro-
gram comprehension, empirical study

I. INTRODUCTION

Source code reading and comprehension is an essential and
time-consuming task that programmers perform during soft-
ware maintenance [1, 2]. Natural language documentation and
code summarizations are found to be critical to improve code
comprehension [3]. In fact, expert and novice programmers
tend to read comments more than the source code during
comprehension activities [4]. Unfortunately, comments are
oftentimes incomplete [5] or outdated due to changes in code
during maintenance.

One way to overcome this problem is to automatically gen-
erate summaries directly from source code. Several approaches
are proposed to generate automatic summaries using Natural
Language Processing (NLP) [6, 7], text retrieval [8, 9], and
static analysis [10, 11]. In order to further improve source
code summarization techniques [6—8, 11-16], Rodeghero et
al. conducted an eye-tracking study [17] to determine the
statements and terms (i.e., identifier names) that programmers
view as important when they summarize a method. Their
main results indicate that programmers tend to look at method

signatures the most. They use this information to give more
weight to terms that developers look at more often during
summarization (i.e., signature is given more weight compared
to call statements) as heuristics for their automated summa-
rization approach that was adapted from prior work [8].

Unfortunately the prior eye-tracking study by Rodeghero et
al. [17] is limited in that the study could not be conducted in
a realistic working environment. This is a common limitation
when using eye-tracking equipment. The work presented here
focuses on addressing the two main limitations in the previous
study. The first limitation is that the maximum length of
methods included in their study is only 22 lines. That is, a
single fixed window of source code that must appear all at
once on the screen with no support for scrolling. The second
limitation is that methods are presented in complete isolation
with no ability to look at other methods or related code.

We overcome these two limitations by utilizing a new eye-
tracking infrastructure call iTrace [18, 19] that is developed
specifically for conducting eye-tracking studies within a soft-
ware Integrated Development Environment (e.g., MS Visual
Studio, Eclipse). iTrace supports the implicit tracking of eye
movements in the presence of scrolling and switching between
files within the IDE. Hence we are able to conduct our study
using any sized methods and participants have access to all of
the files and the entire code base for the system being studied.
That is, the study is conducted in the same environment
programmers use daily thus avoiding bias in the experimental
setup and allowing participants to read code as they normally
would. The contributions of this work are as follows:

e An eye-tracking study of 18 developers reading and
summarizing Java methods in the Eclipse integrated
development environment. Unlike the prior study that
concluded developers mostly focus on the signature [17],
the results from our study indicate that developers tend
to focus on the method body more than the signature.

o An analysis of programmers’ gaze time and number of
visits on source code entities with respect to the method
size. For experts, we found that the larger the method,
the less likely its signature is focused on. However, as
the control flow increases in complexity, it is revisited
more. Novices do not seem to be affected by the method
size.

o An analysis of locations outside the method scope that
developers target during method summarization. The re-
sults reveal that experts and novices read other locations
besides the assigned methods (e.g., data members and
class declarations) for about 70% of the tasks.

o A comparison of the lines used by experts to write their
summaries to the lines with the longest gaze time. We
found strong evidence that developers tend to write their
summaries from source-code lines that they read the most
(longest gaze time). Therefore, we conclude that gaze
time can substantially predict lines that are important for
summarizing a method [6, 7, 11, 12, 17].

An overarching goal of this paper is to investigate ways to
improve existing summarization approaches via findings from
the eye-tracking study presented. This is done by examining
what developers read during summarization in addition to what
they include in their summaries. This is one of the first studies
done in a realistic manner similar to how a developer would
work in the field, i.e., the source code is presented in an IDE
instead of a fixed image presented in isolation. This work
also impacts overall tool development for software engineering
researchers and practitioners and learning about differences
between experts and novices.

We present related work on eye tracking in software en-
gineering and code summarization in Section II. Section III
outlines our research questions. Section IV describes the de-
sign of the eye tracking study. Analyses, results, and threats are
presented in Sections V through VII followed by implications
in Section VIII. We end with final remarks in the conclusion
along with future work.

II. RELATED WORK

We focus mainly on relevant eye tracking studies done in
code comprehension. We also discuss relevant work on code
summarization given our work impacts that topic.

Eye Tracking Studies: Eye-tracking technology is being
used in software engineering [20-25] to study how pro-
grammers read [4, 26-30], review [31-33], and summarize
[17, 28, 34] source code. Crosby et al. [4] conducted an early
eye-tracking study of high and low experience programmers
reading a binary search algorithm. Both high and low experi-
ence programmers needed a large amount of fixations in most
areas of source code than participants that read simple natural
language text. The programmers tend to alternate between
source code and comments rather than sequentially reading
the entire document.

Uwano et al. [31] observed that programmers tend to first
read through the entire code snippet, and then focus on some
parts. Furthermore, longer time spent thoroughly reading the
code increases the efficiency of finding the defect in the code.
This correlation was later confirmed by Sharif et al. [32]
stating that the scan time plays an important role in defect
detection time and visual effort required to review source code.
Moreover, experts tend to focus on defects more than novices
[32]. Busjahn et al. [27] found that experts read code less
linearly than novices did. Bednarik and Tukiainen concluded

that low-experience programmers repeatedly fixated on the
same code sections, while experienced programmers target the
output of the code, such as evaluation expressions [25, 26].

Kevic et al. used iTrace to conduct an eye tracking study
on three bug fixing tasks. They found that developers focus
on small parts of methods that are often related to data flow.
When it comes to switches between methods, they found
developers rarely follow call graph links and mostly switch
to the elements in close proximity [35, 36].

Rodeghero et al. conduct an eye-tracking study on isolated
methods to determine statements and terms that programmers
view as important when they summarize them [17]. They
conclude that programmers consider method signatures as
the most important section of code followed by call terms
then control flow terms. Based on these results, a modified
weighted scheme for the Vector Space Model (VSM), an
information retrieval method is implemented. The frequency
of terms in VSM is replaced by the term positions. Therefore,
terms located in the method signature have a higher weight
than method invocation and method invocations have higher
weight than control flow statements. When the term-based
summarization generated using the original VSM and their
improved version is compared to human term-summaries,
the improved version outperformed the original VSM. In an
extended version [34] of their initial work, they concluded that
terms developers used in their method summaries generally
have higher tf/idf scores than terms with high gaze times.
In addition, they concluded that longer viewed terms are
mostly long terms (number of characters) and they are less
likely to appear in developers summaries. The same study
[17] was further analyzed in [28] to find reading patterns of
programmers during summarization. On average, they find that
programmers read from top-to-bottom about 49% of the time.
Finally, they conclude that all of the programmers followed
nearly identical eye patterns in overall reading.

The study we present in this paper is similar to the one
performed by Rodeghero et al. [17] with several differences.
One of our goals was to study if we get the same results
after mitigating limitations related to methods size and the
study environment as described earlier. In addition, our study
compares experts and novices eye movements, and analyzes
them with respect to methods sizes.

Code Summarization: With regards to code summarization
approaches, Sridhara et al. propose techniques to automatically
generate natural language comments for Java methods [6],
sequences of statements [13], and formal parameters [12]
using NLP. Furthermore, Wang et al. propose a model that
defines the high-level action of loops by analyzing linguistic
and structure clues [37]. They also presented an approach to
automatically generate a natural language summary of object-
oriented action units [38].

Moreno et al. [10] use method stereotypes [39] and class
stereotypes [40] to generate natural language summaries for
Java classes. Abid et al. [11] [41] use method stereotypes
to generate a standard summary for C++ methods via static
analysis. McBurney and McMillan propose generating docu-

mentation summaries for Java methods using the call graph
[7]. Furthermore, they propose an approach to evaluate a
summary using textual similarity of that summary to the source
code [42]. Haiduc et al. [8] investigate the suitability of several
text summarization techniques to automatically generate term-
based summaries for methods and classes. This was further
extended by Eddy et al. [9] using a new technique named
Hierarchical PAM.

III. RESEARCH QUESTIONS

The first goal of this study is to understand what terms
developers focus on when they summarize Java source code
using a realistic integrated development environment setting.
The analysis considers three source-code locations namely,
method signatures, method calls, and control flow statements
[17, 28, 34]. These locations were chosen so that we can make
comparisons to the Rodeghero study [17]. A term refers to an
identifier in a specific location, e.g., call terms are identifiers
in a call. In addition to the above, our work expands the
analysis in several different directions based on the level of
expertise of programmers and size (length) of methods. The
second goal is to investigate how experts read source-code
lines during summarization tasks and how this information
can be used to improve source-code summarization and more
broadly documentation. The third goal of our work considers
locations outside the method scope that programmers might
find important such as the class name, data member declara-
tions, and other related methods. Such scope analysis could not
be done in the Rodeghero study as the methods were presented
in isolation [17]. To address the above three goals, we pose
the following research questions.

RQ1 Considering all methods summarized, to what extent
do experts and novices focus on a method’s signa-
ture, method’s body, call invocations in a method, and
method’s control flow?

Does the size (length) of the method (small, medium,
large) have an impact on what experts and novices look
at most during the summarization task?

What source code elements (if any) does a programmer
look at outside the scope of the assigned method to
summarize? How do they use context around the method
in the summarization task?

What source code lines do experts read and use in writing
summaries?

RQ2

RQ3

RQ4

The first research question will help us compare our results
with the Rodeghero study albeit in a more realistic setting. The
second research question digs deeper into the effect method
size has on reading for summarization. The third research
question focuses on context around the method, i.e., what else
besides the method being summarized are looked at in the
source code (note that unlike the Rodeghero study, in this study
the entire source code was provided to the participants with
eye tracking data recorded at the line and term level), Finally,
the fourth research question compares what was looked at
with what was written in the summaries. This analysis was
restricted to just experts as they write accurate summaries.

TABLE I
JAVA SYSTEMS USED IN THE STUDY
System version Domain Total hod: 1 d hod: Classes il
ArgoUML 0.30.2 UML diagramming tool 14,635 15 2,673
MegaMek 0.36.0 Computer game 12,490 15 2,308
Siena 1.0.0 Database library 4,116 12 297
sweetHome3d4.1 Interior design application 6,084 12 1,757
aTunes 3.1.0 Audio player 9,579 9 215
Total 46,904 63 7,250

IV. EYE TRACKING STUDY - EXPERIMENTAL DESIGN

This section describes the process of designing and perform-
ing the eye-tracking study for method summarization tasks.
The study material including tasks, processed eye-tracking
data and the statistical analysis is provided in the replication
package at https://doi.org/10.5281/zenodo.2550768.

A. Study Participants

The study is performed by 18 developers, a typical sample
size for eye-tracking studies. They are 5 experts and 13
novices. Two of the experts are industry professionals working
at a local firm and three are PhD students at a local university.
One industry expert had between two to five years of program-
ming experience and the other four had greater than 5 years
of programming experience. We consider the PhD students
as experts because they are heavily involved in coding for
open source projects. Novices are undergraduate and graduate
students with one to five years of programming experience,
most with about a year of experience.

B. Study Systems and Method Selection

The study includes 63 methods from five open source Java
systems randomly selected from different domains (see Table
I). While the selection of methods chosen to be summarized
is random, we maintain two conditions. First, we eliminate
trivial methods such as setters, getters, and empty methods.
Second, the largest method (excluding blank lines) chosen
was set to 80 LOC. This was done to avoid excessive fatigue
during tasks. Based on the above criteria, a total of 63 methods
were selected from the systems shown in Table 1. Participants
were randomly given a set of 23 methods selected from the 63
methods to summarize. On average, participants summarized
15 of the 23 methods.

The size of short, medium and long methods range between
9-22 LOC, 23-39 LOC, and 40-80 LOC respectively. A line
of code is counted if and only if it is not empty and is not
a comment. We used this split to maintain balanced number
of methods in each size category. Methods in Rodeghero et
al’s study [17] fall in the first category. Therefore, methods
larger than 22 LOC are analyzed separately to study the impact
of summarizing larger methods. Another difference with the
Rodeghero study is that we did not modify the code. In the
Rodeghero study, method text was reformatted to make it fit
on one line on the screen since they were shown in isolation.
In our study, we left the methods as they appear in the code
and did not reformat lines.

https://doi.org/10.5281/zenodo.2550768

C. Task

The participants were told that their main task was to read
the assigned methods and write a summary for the method.
They were also told that they could navigate the codebase
if they needed to. The entire study was conducted inside
the Eclipse environment using the Eclipse plugin iTrace [18].
iTrace is able to collect eye tracking data of where a developer
is looking and map it on the fly to source code elements looked
at even in the presence of file scrolling and file switching.
Code folding was disabled for all participants to avoid any
confounding factors. The Eclipse environment was setup with
all the projects and assigned methods open in various tabs.
No web browser was used in this study. The participants were
also able to view the method while they were writing the
summary. We extended iTrace for this study to include on-the-
fly mapping to more source code constructs such as conditional
and looping structures in addition to what was collected in an
earlier study (method calls, signatures, and definition and use
of variables) [35].

D. Eye Tracking Apparatus and Measures

A Tobii eye tracker (X60) was used to collect gaze data
within the iTrace [18] environment. The eye tracker generates
60 raw gaze samples per second. The eye gaze is then passed
through a fixation filter to generate fixations. A fixation is the
stabilization of the eyes on some object of interest for a certain
duration [43]. As in [17], two types of eye-movement data are
used: number of fixations and their durations (gaze time). We
define gaze time as the total number of milliseconds spent on a
region of interest (ROI) such as a call or keyword. A fixation
filter [44] is set to count fixations that are more than 100
milliseconds (same as Rodeghero and vendor recommended).
Throughout the analysis, we refer to the number of fixations
as the number of visits on particular regions of interest.

E. Study Procedure and Instrumentation

We first obtained IRB approval for the study. On the day
of the study, the participants first signed an informed consent
form and filled out a background questionnaire. Next, they
were given a short description on how the study would be
conducted. They were also given a 1-page overview of each
system and a hard copy of all the method names (body not
included) to be summarized in case they needed to refer to it.
Before beginning the actual study, they were given examples
of three method summaries (by the original developers) taken
from the same systems shown in Table I. The sample methods
are not part of the subsystems used in the study to avoid any
learning effects. These examples included the method’s source
code along with the summary for the methods. This is a neces-
sary step as it was important for the participants to understand
what they were expected to do during a summarization task.
We encouraged them to use their own words to summarize the
methods. The study took between 45-90 mins.

The participants were seated in front of a 24-inch LCD
monitor. They were not required to run or build the software

systems. Before the study began, we calibrated each partici-
pant using a 9-point calibration. This is a necessary step for
the eye tracker to correctly capture data for each participant. A
moderator was responsible to start and stop eye tracking within
iTrace for each method to be summarized. This was done to
have consistency in the starting and stopping of sessions across
all participants. The participants wrote their summary in a text
file present at the bottom of the Eclipse IDE. They were able
to see the code while writing the summary. The font size was
set to 14 points in the Eclipse editor. Gazes on the text files
were also collected. At the end of each task, we had a time-
stamped session of line-level gaze data on the source code and
summary file that we used to answer our research questions.

V. PRE-PROCESSING THE DATA

Before running statistical analysis on the data, we weeded
out samples that were invalid. In addition, we identified the
location (call, signature, control flow) a term belongs.

Data Cleaning: Some invalid samples include writing a
narration of the code word for word (e.g.,”The method uses
an if statement to determine if values are true”). Other cases
were because participants were unable to locate the assigned
method or were unable to understand the assigned method. In
order to catch such cases, three of the authors reviewed the
257 summaries written by developers to judge their suitability
for further analysis. Each human summary is reviewed by two
reviewers. When both reviewers agree about the inclusion of
the summary and its corresponding gaze data for analysis,
it is kept otherwise it is discarded. The computed inter-rater
reliability using Cohen’s kappa (k) is 0.92. There was high
agreement between reviewers on what to discard. At the end
of this step, 44 summaries (6 expert summaries and 38 novice
summaries) are discarded.

Term Location Identification. The eye gaze data are pro-
cessed to identify whether the term looked at corresponds to
a signature, call, or control flow term. Information from the
eye-tracking tool, iTrace [18], includes information about the
line number, the term name and the type of the term (method,
variable, conditional statements, or other types). In some cases,
the exact term that a participant looked at was not identified at
the time of this experiment but the line number was. Since the
code was not edited during the study, we use the line number to
determine in a post processing step the nature of the location.
First, for all methods used in the study, the signature lines
are extracted from srcML [45], an XML representation of the
code. Next, if the line of an eye-tracking record matches the
signature line in the list, the record is considered a signature.
The control flow statements are also identified at the line
level because all of them stand on their own and do not have
multiple statements listed on the same line, i.e., the body of
an if statement appears on another line. This simplifies the
line-level analysis.

Call terms need to be handled differently as the line
containing a call might include other terms that are not part
of the call. We define call terms to include the method call
name and parameters [17]. For example, in the statement,

boolean saved = saveFile (toFile), call terms in-
clude saveFile and toFile. The possibility of identifying
call terms depends on the way the call is written. All calls of
our methods are manually examined to identify call cases.
There were 49,366 total number of eye-tracking gazes inside
all methods for all participants. 18,602 of those records are
successfully identified as calls (38%). 28,275 were non-call
records (57%). The number of eye-tracking records that cannot
be categorized as calls or non-calls is 2,488 (5%). We exclude
this 5% from the analysis of calls vs. non-calls in RQ1 and
RQ2. RQ3 and RQ4 are not affected by this identification.

VI. EXPERIMENTAL RESULTS

We present our findings on each research question along
with a comparison to the Rodeghero study when appropriate.
Because our data is not normally distributed, the Wilcoxon
non-parametric test is used. Additionally, since the same data
is used to test multiple hypothesis, we use Bonferroni p-value
correction. We perform three tests (signature, call, and control-
flow terms) on each set of samples. Therefore, the new p-value
to test against is (0.05/3)= 0.016. Anything before this value
is considered significant. Effect size is given using Cohen’s d.

A. RQI Results: Replicating the Rodeghero study analysis

Methods are read differently if presented in isolation vs.
presented in a realistic environment that developers usually
work in [35]. To this end, we perform the same analysis done
by Rodeghero et al. to study the impact of the differences.

Adjusted Metrics. Number of terms in the signature, call
and control flow vary based on the size of the method. There-
fore, it is necessary to adjust the total gaze time according
to the number of terms in each method, which is the same
adjustment performed by Rodeghero et al. [17]. Let’s assume
one reads the body and signature of a method for 60% and
40% of the time respectively. Consider the body and signature
to be 80% and 20% in terms of overall size of identifiers.
This does not mean that the body is more important. Longer
time in this case is due to size of the body. If the body is
80% of the overall size; the body is read 60/80 = .75 and the
signature is read 40/20 = 2. 2 is greater than .75; therefore
the participant gives signature higher attention. Then, these
two adjusted values are compared using the Wilcoxon non-
parametric test for all collected samples. A sample is a result
from one developer summarizing one method.

The same approach is used to compute the adjusted number
of visits for the signature. The approach to compute the
adjusted gaze time and number of visits for signature and
non-signature terms is also applied to call terms vs. non-
call terms, and control flow terms vs. non-control flow terms.
A total of 26 methods are summarized by five experts and
40 methods are summarized by 13 novices. The analysis of
the eye-movements of experts and novices are discussed for
method signature, calls, and control flow terms. The adjusted
gaze time and number of visits are used in hypothesis testing
for RQ1 and RQ2.

TABLE II
WILCOXON TEST RESULTS OF EXPERTS AND NOVICES. N IS NUMBER OF
SAMPLES. A SAMPLE IS A RESULT FROM ONE DEVELOPER AND ONE
METHOD. T IS THE SUM OF RANKS.

H Metric Location n T Z D
Signature 69 905 -1.809 0.064

Experts Mo Gaze Non-sig 69 1510
H, Visit Slgnan’Jre 69 623 -3.49 <.0001*

Non-Sig 69 1792
Signature 144 3533 -3.36 .001*

Novices Hs Gaze Non-Sig 144 6907
Hy Visit Slgnatpre 144 3101 -4.22 <.0001*

Non-Sig 144 7339
Hs Gaze Call 69 1655 -2.67 <.007*

Experts Non-call 69 760
H Visit Call 69 1554 -2.07 .03*

Non-call 69 861
e Gaze Call 139 7870 -5.28 <.0001*

Novices Non-call 139 2570
H Visit Call 139 7939 -5.28 <.0001*

Non-call 139 2501
He Gaze Ctrl. Flow 69 1246 -1.13 0.25

Experts Non-Ctrl 69 899
Hio Visit Ctrl. Flow 69 1487 -2.71 .007*

Non-Ctrl 69 658
Hyy Gaze Ctrl. Flow 139 5339 -1.47 0.13

Novices Non-Ctrl 139 3977
Hiy Visit Ctrl. Flow 139 5961 -2.83 .005%*

Non-Ctrl 139 3355

Method Signature: We found no evidence that experts read
method signatures more than the method body. On average,
experts spent 9% of their gaze time reading signatures, while
the signatures averaged 10% of the methods. Similarly, the
average gaze time of novices reading signatures is 10% and
signatures are 11% of the methods. We computed the adjusted
gaze time and number of visits of the signature and the body
and pose four hypotheses (H;, Hy, Hs, and H,) as follows.

H,: For [experts / novices], the difference between the
adjusted [gaze time / visit] metric for method signature and
method body is not statistically significant.

Based on computed Z and p values (see Table II), we
reject Hs (medium effect size of 0.30), Hs (small effect
size of 0.20), and H; (medium effect size of 0.25). This
suggests that novices read/visit method bodies more than the
method signatures. We cannot reject H; which means that
there is no statistical difference in the time spent by experts
reading the signature and the body of a method. However,
experts revisit the method bodies more frequently than the
method signatures. When data of both experts and novices
are combined, the results of Wilcoxon test for gaze time and
number of visits is (Z= -3.93, p <0.001 with a small effect
size of 0.19) and (Z= -5.37, p <0.001 with a medium effect
size of 0.26), respectively. This result indicates that developers
read method bodies more heavily than the method signatures
when methods are presented in context. This behavior was
previously observed by Kevic et al. [35].

Calls: We found evidence that developers read method calls
more than other locations. On average, the experts spent 44%
of their gaze time reading calls (= 38% of methods). Similarly,
on average, novices spent 46% of their gaze time reading calls
(= 39% of methods). We define the four hypotheses (H5, Hg,

H7, and Hg) regarding call terms as follows.

H,: For [experts / novices], the difference between the
adjusted [gaze time / visit] metric for call terms and non-
terms terms is not statistically significant.

We reject all the four hypotheses Hs (medium effect size
of 0.25), Hg (small effect size of 0.18), H; (medium effect
size of 0.31), and Hg (medium effect size of 0.31) in Table
II. Both experts and novices read call terms more heavily than
non-call terms when the gaze time and number of visits are
adjusted based on the number of terms.

Control Flow: We found no evidence that experts read
control flow terms longer than other areas but they visit them
more frequently. On average, the experts spent 28% of their
gaze time reading control flow terms (= 26% of methods)
while novices spent 26% of their gaze time reading control
flow terms (= 24% of methods). The following presents the
definition of the four hypotheses (Hy, Hig, Hi1, and Ho).

H,: For [experts / novices], the difference between the
adjusted [gaze time / visit] metric for control-flow terms and
control-flow terms is not statistically significant.

We reject two hypotheses (Hig with small effect size of
0.24, and Hq, with small effect size of 0.18) in Table II. This
suggests that experts and novices revisit control flow terms but
do not read them for a long period of time during each visit.

Adjusted duration and visits based on number of characters:
Gaze time and number of visits for both call terms and control
flow terms are adjusted based on the number of characters.
This assists in determining if the significance of results is
due to the complexity of the terms (number of characters)
[34, 46] or the importance of terms at that location. For
experts, when call terms are adjusted by number of characters,
the difference between call terms and non-call terms is not
statistically significant for the gaze time (Z =-.828, p = .4) and
number of visits (Z = -.332, p = .47). On the other hand, for
novices, when the gaze time and number of visits are adjusted
based on the number of characters, the difference between
call terms and non-call terms remains significant for both gaze
time (Z= -4.46, p <0.001) and number of visits (Z = -3.45, p
<0.001). This indicates that experts spend longer time on call
terms due to their length (number of characters) while novices
demand longer gaze time to comprehend call terms. Identifiers
in all five systems were shown in camel case.

For both novices and experts, the statistical differences of
number of visits remain significant when the results of control
flow terms are adjusted based on the number of characters.
For experts, the statistical results for gaze time and number
of visits are (Z= -1.82, p = .068) and (Z= -3.38, p = .001),
respectively. For novices, the statistical result for gaze time
is (Z= -2.47, p = 0.013) and for number of visits is (Z
= -3.66, p <0.001). Note that when gaze time of control
flow terms is adjusted by number of characters, the difference
between control flow terms and non-control flow terms become
significant. This indicates that, unlike experts, novices need
significant time to comprehend control flow terms.

Therefore, we conclude that calls and control flow terms are
read differently. In particular, call terms require longer gaze

TABLE III
COMPARING RESULTS WITH THE RODEGHERO STUDY|[17]. OUR RESULTS
SHOW DEVELOPERS READ CALL TERMS THE MOST FOLLOWED BY
CONTROL FLOW AND FINALLY THE SIGNATURE. HIGHER RANK IS BASED
ON HIGHER GAZE TIME AND NUMBER OF VISITS.

Rank Rodeghero Ranking This Study Ranking
1 Signature Call terms
2 Call terms Control flow terms
3 Control flow terms Signature

time and higher number of visits while control flow terms are
visited more frequently by experts and novices. However, one
cannot claim to have evidence to order these locations with
respect to their importance (even though this is suggested in
[17]). For example, experts spend a long time comprehending
calls due to their complex identifiers. However, this long
gaze time does not necessarily suggest that call terms are
more important than other locations. If a method has ten call
invocations, these calls may not be equally important. The
same reasoning applies to control flow terms. A more detailed
analysis of this is left as future work.

RQ1 Discussion on Similarities and Differences in Re-
sults with the Rodeghero study: Rodeghero et al. observed
that long identifiers (high number of characters) experienced
long gaze time [34] due to their complexity [46]. Similarly,
we observe that experts read call terms significantly longer
than non-call terms when adjusted by number of terms but
the result becomes insignificant when time is adjusted by
number of characters (no character adjustment was done in
[34]). This indicates that call terms required longer time due
to the complexity of the terms (number of characters) [46].

As seen in Table III, these results do not reproduce results
from the Rodeghero study [17]. They concluded that the
signature is the most important location followed by call
terms and next by control flow terms. However, in the study
presented here, developers read and revisit call terms more
heavily than other locations. Control flow terms are revisited
more frequently than other terms. Finally, signature terms are
revisited less frequently than other locations. Therefore, we
conclude that developers read call terms the most followed by
control flow terms and finally the signature.

We interpret the difference as follows. First, developers
read methods differently when presented inside their inherent
context versus in isolation. Developers tend to focus on the
method’s body more than its signature when the code is
presented in a realistic environment [36]. In the Rodeghero
study, when a developer formulates a hypothesis about a
method and wants to step back, they have no choice but to
look at the signature. However in our case, they can examine
locations outside the method. Second, our study uses longer
and more complex methods (the largest method is 80 LOC)
compared to the Rodeghero study (the largest method 22
LOC). In fact, we found statistical evidence that the larger the
method, the less likely experts fixate or revisit the signature.
Furthermore, Rodeghero et al. concluded that control flow

terms are read statistically less than other areas of a method
[17]. Our result indicates that control flow terms in larger
methods (rated to be harder to summarize by experts) are
visited more frequently than control terms of smaller methods.

RQ1 Finding: Experts and novices spend the longest time
on reading call terms and visit call terms more than non-call
terms. The next most read and visited locations are control
flow terms and the method signature.

B. RQ2 Results: Method Size

We analyze eye-tracking data based on method size using
the same approach in RQ1 by adjusting the gaze time and
number of visits for each location (signature, body, calls,
control flow). Then, methods are divided by their size - large
(40-80 LOC), medium (23-39 LOC), and small (9-22 LOC).
For each category, the eye movements on signature, call,
and control flow statements are analyzed. These findings are
reported for experts and novices. The hypotheses are:

H,,: With respect to [experts / novices] for [large / medium
/ small] methods, the difference between the adjusted [gaze
time/visit] metric for [signature and the body / calls and
other areas / control flow and other areas] is not statistically
significant.

Experts:We only report the statistical significant results due
to space limitations. Experts revisit the body of a method
statistically more frequently than the signature in case of large
methods (n = 18, Z = —2.94, p = .003 with a large effect
size of 0.49). No statistical differences were found in case of
medium (n = 22, Z = -2.22, p = .026) and small (n = 29,
Z =-1.22, p = .22) methods. Therefore, we conclude that as
the size of a method increases, experts visit method bodies
more often than method signatures. For control flow and call
terms, no statistical differences were found in all cases (small,
medium and large methods).

Novices: Novices read the signature significantly less than
the body in case of small methods - in terms of gaze time
(n =68, Z = —3.15, p = .002 with a medium effect size
of 0.27) and number of visits (Z = —3.41, p = .001 with
a medium effect size of 0.29). Novices spent a significant
amount of time reading call terms except for large methods.
They read call terms significantly more than non-call terms
in case of small methods - in terms of gaze time (n = 68,
Z = —3.89, p = <.0001 with a medium effect size of 0.33)
and number of visits (Z = —3.94, p = .0001 with a medium
effect size of 0.37). Novices read call terms significantly more
than non-call terms in case of medium methods in terms of
gaze time (n = 29, Z = —2.69, p = .007 with a medium
effect size of 0.35) and number of visits (Z = —2.86, p = .002
with a medium effect size of 0.37). After manually checking
novices’ answers we observed that they wrote their summaries
from the signature and avoided reading the code especially for
large methods. For control flow terms, no statistical differences
were found in small, medium and large methods.

RQ2 Finding: We found statistical evidence that experts
tend to revisit the body of the method more frequently than
its signature when the size of the method increases.

C. RQ3 Results: Reading Outside of the Summarized Method

As mentioned earlier, since we used the Eclipse plugin,
iTrace [18], the participants were able to context switch to
any file if they needed to. They worked in a very realistic
setting where all the code was provided to them. When a
developer starts summarizing a method and then switches to
some location outside of the scope of the assigned method,
this may be an indication that they need more information to
understand the method or to confirm an assumption. Accord-
ingly, they spend some time looking for clues that might be
found somewhere else, either within the same file or outside
the file that has the assigned method to be summarized. These
possible scenarios are examined for experts and novices.

Both experts and novices read outside of the assigned
method in 70% (213 out of 257) of the tasks. The average time
spent by experts to examine locations outside of the method
is generally lower than the average time spent by novices.
On average, novices spent about 6% of the time examining
outside locations whereas experts spent about 4%. We further
inspected the summary responses collected from the partici-
pants after the experiment and compared their responses to the
average time spent outside the method. All methods for which
participants spent more than average time outside the method,
at least one of the participants described the method (or one
of its components such as a data member or method call) as
vague, used the word “unsure” in their summary, or rated the
method as difficult in a post-questionnaire on task difficulty.

RQ3 Discussion: We discuss three out-of-scope locations
that a participant may have examined while summarizing an
assigned method. These locations are: class declarations, data
members, and close approximation (i.e., statements that belong
to methods that precede or follow the assigned method).

For both experts and novices, the largest duration spent
outside the method scope is to read in close approximation.
Specifically, we observed that when a participant is reading the
first few lines of the assigned method, he or she also looks
at the methods or lines that precede the method (with respect
to the location in the file). Similarly, when a participant is
inspecting the last few statements of an assigned method, he
or she may also look at those lines that appeared after the
method in the file. This observation confirms the result of
[35]. However, it does not provide insight that the participants
might have got help from looking at those nearby locations.

Data members and class declarations are the next common
locations that experts and novices examine outside the as-
signed method. After manually examining the data, we noticed
that locating data members and class declarations is mostly
done by scrolling up or down rather than using the search
option. This might be the case as the class declaration is
always found at the beginning of the file and data members are
found either at the beginning or the end of the source file. Also,
scrolling up or down to look for information is used usually
when the file that contains the assigned method is short. Using
the search option is noticed in cases of large files. On average,
experts spent 11% of the gaze time reading data members and

4% of gaze time reading the class declaration. Novices spent
1% of the gaze time reading data members and 1% of gaze
time reading class declaration. Furthermore, we observed one
expert and one novice switch from a statement with a method
call (within the assigned method to summarize) to an outside
location that follows the sequence of the methods captured in
(or represented by) the call graph.

We posit that for both experts and novices, reading outside
the method scope is more related to developer preference
than their level of expertise. We found three experts and four
novices who read outside a method more often than others.
Finally, a random scan of other methods inside the file is
a behavior that is carried more frequently by novices while
experts tend to focus on the assigned methods and read outside
the method if they are looking for information such as the class
or data member declarations.

RQ3 Finding: All participants looked outside the scope of
the assigned methods at least once during the experiment. On
average, they spend 94.23% of their time examining locations
within the assigned method and 5.77% of the time is spent
examining other locations outside the scope of the method.
All five experts examine data members at least once and three
experts read the class declarations. Searching for them by
scrolling is more common than using the search option.

D. RQ4 Results: Source Lines Read / Used in Summarization

For this RQ, we choose to focus on tasks completed by
experts only because we observe that experts write concise and
high-quality summaries compared to novices. Although the
analysis of novices data can help understand students reading
behavior and eventually can contribute in better teaching
students, such analysis is out of the scope of this paper. Unlike
RQ1 and RQ2 that groups all terms for each statement type
(i.e., control flow), we study each line as whole in RQ3.
Therefore, for each source code line read by an expert, the
total gaze time is computed. The gaze time of a line is the
total amount of time spent reading any term on that line. This
analysis is done on 69 samples (spanning a total of 1168 lines
read by all experts).

We observed that 15% of lines with no gaze data are lines
with no identifiers (e.g., a open/close brace, return false; or
having the ‘else’ keyword) as no higher level information can
be obtained from them. However, a high number of identifiers
on a line may not lead directly to long gaze time. See Figure
1 for a heat map (a common graphical representation of eye-
tracking data) of one sample. Although line 18 is the shortest
line in the method, this participant spent about 3,832ms on
this line which is 6% of the total gaze time. On the other
hand, longer lines could have shorter gaze times such as line
6 (933ms) and line 11 (1,832ms).

We first study the impact of line length on the gaze time
to determine if we need to adjust the gaze time based on
line length to make a fair comparison for analysis. First, for
each data sample, according to the gaze time, lines are sorted
in decreasing order (from largest to smallest). Therefore, the
line with the largest gaze time has a rank of one and the

1 public void deploy(int id, Coords ¢, int nFacing, int elevation,
2 List<Entity> loadedUnits, boolean assaultDrop) {
3 int packetCount = 6 + loadedUnits.size();

4 int index = 8;

5 Object[] data = new Object[packetCount];

6 data[index++] = new Integer(id);

7 data[index++] = ¢;

8 data[index++] = new Integer(nFacing);

9 data[index++] = new Integer(elevation);

18 data[index++] = new Integer(loadedUnits.size())};

11 data[index++] = new Boolean(assaultDrop);

12

13 for (Entity ent : loadedUnits) {

14 data[index++] = new Integer(ent.getId());

15 }

16

17 send(new Packet(Packet.COMMAND_ENTITY_DEPLOY, data));

18 flushConn();

19 }

Fig. 1. Heat map generated for one method and one participant. Longest gaze
time (red lines), long gaze time (orange lines), medium gaze time (yellow
lines), short gaze time (light green lines), shortest gaze time but not zero
(green lines), and zero gaze time (uncolored lines).

line with the lowest gaze time has a rank equal to n, where
n is the number of lines in a data sample. Second, for the
same data sample, we adjust the gaze time for each source
code line based on the number of identifiers. For example,
if a participant spent 100ms reading a line and the line has
4 identifiers, then the adjusted duration is 100/4 = 25ms.
Third, each line is assigned another rank based on the adjusted
gaze time as we did with the actual time in the first step.
Finally, the original list is compared to the adjusted duration
using Kendall’s tau coefficient (T), that evaluates the degree
of concordance between two sets of ranked data [47, 48] -
a suitable test in this case. If Kendall’s tau is 1, then the
two lists are identical, -1 indicates that one is the reverse of
the other. Since critical value of Kendall’s tau depends on n
(number of lines in each sample), samples that has less than
five lines are eliminated because n is not large enough [48].
We found significant agreement between the line ranks of the
actual gaze time and adjusted gaze time in 90% (61 out of 68)
of the samples. Additionally, we found insignificant agreement
between the line ranks of the actual gaze time and adjusted
gaze time in 10% (7 out of 68) of the samples. This strongly
suggests that the length of a line does not significantly impact
the amount of time spent reading the line. Consequently, for
each line, we can use either the actual gaze time or the adjusted
gaze time. We use actual gaze time for the rest of the analysis.

We analyze expert summaries in order to understand what
developers seek in a method summary. These observations can
ultimately produce recommendations and guidelines regarding
source code summarization and source code comprehension.
Lines that experts used to write their summaries are first
manually identified. Then, the gaze time of these lines are
analyzed. Figure 2 demonstrates the three steps performed
for the method shown in Figure 1. We first determine lines
used to write the summary for a method. This is done
by manually examining the expert summaries. Consider the
method presented in Figure 1. The summary written by expert
A is “Deploys units for the game, communicating this over

Step 1 Step 3
4 e
Human The three lines used (1, 2,
summary| pefine lines used Lines used: Compute the number of . and 17) are in the top 30%
One sample: gaze 1 1,2, and 17 | used lines in the top 30%] of the method lines
data of one expert| of all method lines
on one method
> Sort lines in -
Eye- Compute the gaze decreasing order Sorted lines: 1, 17, 13,
tracking iieicreachline based on gaze time 3,2,8,18, etc.
data
Step 2

Fig. 2. Illustrating the three steps performed to answer RQ 4 for the method in Figure 1.

a network connection”. The two words ‘Deploys’ and ‘units’
appear together in the signature on line 1 and 2. The main verb
‘deploy’ also appears on line 17. Therefore, the list of lines
used are: lines 1, 2 and 17. The second part of the summary
“communicating this over a network connection” suggests the
usage of line 17 although none of the words are directly used
from the method call in line 17. The summary of the same
method written by expert B is “Transmit game unit object
data positioning over the network and flush the connection”
which suggests the use of lines 5, 17 and 18. Line 5 is added
because this participant specifies that type and the name of
the data being sent “object data”. Finally, both experts use the
word “game” although it does not appear in the method. They
might have gained this information by reading the description
of the system. Finally, if a phrase used by the developer is
found on multiple lines (e.g., a call that appears three times in
the method), the three lines are included in the lines-used list
as long as the gaze duration is greater than zero. Of the 1,168
lines, 181 lines are used by 5 experts. On average, experts use
content from three lines to write their summaries for a method.

After these lines are determined, they are sorted in decreas-
ing order. Finally, a comparison is made to determine if lines
used (lines 1, 2 and 17 in our example) are lines that the expert
read. As shown in Figure 2, of the 20 lines, line 1 and 17 are
the most read lines and line 2 is the fifth most read line. In
this sample, for a used line to be in the top 30% read lines,
the line should be in the (20 lines)/ 3 = 6" position or higher.
Therefore, expert A wrote her summary using lines that she
read. These three steps are repeated for all 69 experts samples
for the 181 lines used. We found that 70% (127 out of 181) of
used lines are located in the top 30% of lines with the highest
gaze time. 87% (157 out of 181) of used lines are located in
the top 50% of lines with the highest gaze time and finally
100% of used lines are located in the top 86% of lines with
the highest gaze time.

A line from a method can appear more than once in the
set of 181 lines used if more than one expert used it. To
examine if participants use similar lines, we analyze methods
that are summarized by at least two experts. 15 methods are
summarized by 3-5 experts who use 85 unique lines to write
their summaries. 54% of lines are used by one expert only and
46% of lines used by at least two experts. We interpret this as
experts tend to use similar lines but the level of details varies.

RQ4 Discussion: In the list of 181 used lines, there are 124

unique lines from 15 methods. One of the authors manually
examined all 124 unique lines used by experts to determine
the type of these lines. We found that 119 (out of 124) of
lines used by experts belong to one of the summary units
proposed in previous literature on source code summarization
[6, 7, 11, 12, 17]. Summary units are sets of source code lines
that are used to generate an automatic summary of the method.
These proposed tools select the lines from the method based
on linguistic and/or static analysis. Table IV demonstrates
summary unit categories along with summarization lines in-
troduced in the literature and how many of the lines used by
experts (in our study) fall into these categories. For example,
the method name is commonly used to summarize a method
[7, 11, 17] as it describes the goal of a method. In the example
shown in Fig. 1, the last void call summarization unit is used
(the main summary units are lines 17 and 18). Additionally,
one of the secondary summary units can be used to support
one of the main summary units. For example, line 5 - variable
declaration - is used to add more information to line 17. We
conclude that our findings validate the literature at a fine-
grained level. The lines used by experts are actually the same
lines that past literature has proposed. [6, 7, 11, 12, 17].

RQ4 Finding: We found strong evidence that the gaze time
of a line can predict if a line should be in a method summary.
Our analysis reveals that developers tend to use source code
lines that they read the most (highest gaze time) when they
write their own summaries. We found that 46% of lines used
are found in summaries written by at least two experts.

VII. THREATS TO VALIDITY

Internal Validity: When a developer writes a summary for
a method from a class, he/she may build some knowledge
about the class. This might affect the time and the effort to
understand other methods from the same class. To mitigate
this, each developer was asked to summarize methods from
different unrelated classes. To avoid fatigue, we kept the num-
ber of methods to be summarized to 15 with the goal of having
the study completed in about an hour. To reduce the overhead
in browsing many systems, we limit the number of systems
for each developer to three. As developers mostly rely on
comments to understand methods [4], we remove all comments
from the source code (similar to the Rodeghero study). This
was necessary as the goal of the study is to examine source
code statements that developers focus on when they write

TABLE IV
THE TYPE OF SOURCE CODE LINES USED BY EXPERTS TO WRITE THEIR SUMMARIES. THESE LINES MATCH SOURCE CODE LINES PROPOSED BY THE
LITERATURE IN AUTOMATIC SUMMARIZATION/DOCUMENTATION

Category of S y Unit Statements Type St t Subtype # occurrences

Method Signature (1) Method Name and parameters. McBurney’14 [7], Rodeghero’14 [17], Abid’15 [11] 13

(2) Last void call. Sridhara’10 [6] 15

(3) Same action (call name inside method body same as method name) Sridhara’10 [6] 13

ifvine a datz o call 9

Main Summary Units (4) Modifying a data member by Abid’15 [11] assignment 5

e . B . call 4

= (5) Modifying a parameter by Sridhara’11 [13], Abid’15 [11] assignment 0
:2 (6) Return. Sridhara’10 [6], Abid 15 [11] 2
5] (7) Control flow that controls one of the main summary units Sridhara’10 [6], Abid’15 [11] Ir]/jov:)g:h 129

<

E Secondary summary units | (8) Modifying the Returned value by Sridhara’10 [6], Abid’15 [11] assizzll}nent 162
(9) Variable declaration and/or initialization that used in one of the main summary unit Sridhara’10 [6] assigs}:lem]26

Additional Information (10) Variable declaration and/or initialization used in one of the secondary summary units. Abid’ 15 [11] if-stmt 4

(11) Void-call (calls that don’t return a value) 3

Others

(12) If-statement (predicate) 2
Total 124

their own summaries. Construct Validity: Developers have
different IDE environment preferences that might affect their
performance. We kept the default barebones Eclipse syntax
highlighting preferences for all participants. In addition, code
folding was not allowed to reduce any confounding effects.
None of the participants complained about this setting or the
highlighting used. Lines identified in RQ4 are determined by
one of the authors. Future work will involve more than one
author and will report agreement. External validity refers to
generalizing the results to the target population. Our experts
were comparable to industry programmers. To support conclu-
sion validity, we use appropriate statistical tests to match our
data assumptions, i.e., using Wilcoxon signed-rank for paired
non-parametric data and also report effect sizes.

VIII. IMPLICATIONS

These results can be directly applied to automatic sum-
marization approaches. 13 out of 26 (See Table IV) of the
signatures are used by at least one expert to write their
summaries. We observe that the expert starts the summary
with the verb from the signature to explain the main action
of the method. Then, adds more details from a set of selected
calls and other lines from the body. We suggest the following
guidance to summarization tool authors.

o Use the signature to reflect the main action of a method.

o Select one or more main summary units (see Table IV).

Last void call is the main summary unit that is often
used (15 times) by experts as methods often perform a
set of steps to accomplish a final action [6]. Therefore,
we advise to include the last void call of a method to
the method summary. The same action [6] summary unit
should also be used when applicable. Finally, one can
distinguish between three types of summary units: (4)
modifying a data member; (5) modifying a parameter;
and (6) returning a computed value.

o Select one or more secondary summary units related to

the selected main summary unit as shown in Table IV.

The results of this study can benefit other kinds of summa-

rization such as automatic code folding. During maintenance

tasks [36], not all lines are equally important. For example,
developers tend to ignore catch blocks as they are typically
not important for summarization. Furthermore, experts tend to
focus on about 14% of a method to write a summary. This
finding can be used by folding those lines that are commonly
ignored by experts. Additionally, during a maintenance task,
the automatic documentation summary of a method can be
displayed, then using eye-tracking data, one can examine if
developers tend to read and/or use the provided documentation.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents an eye-tracking study of 18 experts and
novices reading and summarizing Java methods. The study
uses methods of different sizes to investigate their influence
on developers’ reading behavior. The results reveal that the
signature of a method is statistically less visited by experts and
novices. They also spend a significant amount of gaze time and
have higher gaze visits when they read call terms. On the other
hand, both experts and novices tend to revisit control flow
terms rather than read them for a long period. Furthermore,
analyzing lines that experts read during summarization can
uncover important lines for automatic summarization.

The main take home message of the results are that con-
ducting eye-tracking studies on a single screen of code does
not always generalize to how a developer behaves in a real
work environment. This has been a limitation of eye-tracking
software but with improvements in infrastructure, researchers
can now study developers in a more realistic setting resulting
in better understanding of how they actually solve software
engineering tasks. As future work, we plan to replicate other
eye tracking studies to see if the results generalize when con-
ducted outside a constrained single-screen study environment.
nabd

ACKNOWLEDGMENT

We are grateful to all the participants who took part in
this study. This work is supported in part by grants from the
National Science Foundation under grant numbers CCF 18-
55756 and CCF 15-53573.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung, “An exploratory study of how developers seek,
relate, and collect relevant information during software
maintenance tasks,” IEEE Transactions on Software En-
gineering, vol. 32, no. 12, pp. 971-987, 2006.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: A study of developer work habits,” in
Proceedings of the 28th International Conference on
Software Engineering, ser. ICSE °06, 2006, pp. 492-501.
B. Fluri, M. Wursch, and H. C. Gall, “Do code and
comments co-evolve? on the relation between source
code and comment changes,” in 14th Working Conference
on Reverse Engineering (WCRE 2007), 2007, pp. 70-79.
M. E. Crosby and J. Stelovsky, “How do we read
algorithms? a case study,” Computer, vol. 23, no. 1, pp.
25-35, 1990.

S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A
study of the documentation essential to software mainte-
nance,” in Proceedings of the 23rd Annual International
Conference on Design of Communication: Documenting
&Amp, Designing for Pervasive Information, ser. SIG-
DOC °05, 2005, pp. 68-75.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker, “Towards automatically generating
summary comments for java methods,” in Proceedings of
the IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE *10, 2010, pp. 43-52.
P. W. McBurney and C. McMillan, “Automatic docu-
mentation generation via source code summarization of
method context,” in Proceedings of the 22Nd Interna-
tional Conference on Program Comprehension, ser. ICPC
2014, 2014, pp. 279-290.

S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On
the use of automated text summarization techniques
for summarizing source code,” in 2010 17th Working
Conference on Reverse Engineering, 2010, pp. 35-44.
B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C.
Carver, “Evaluating source code summarization tech-
niques: Replication and expansion,” in 2013 21st Interna-
tional Conference on Program Comprehension (ICPC),
2013, pp. 13-22.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, and K. Vijay-Shanker, “Automatic generation of
natural language summaries for java classes,” in 2013
21st International Conference on Program Comprehen-
sion (ICPC), 2013, pp. 23-32.

N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic,
“Using stereotypes in the automatic generation of natural
language summaries for c++ methods,” in 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), 2015, pp. 561-565.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automat-
ically detecting and describing high level actions within
methods,” in Proceedings of the 33rd International Con-

[15]

[19]

[20]

ference on Software Engineering, ser. ICSE 11, 2011,
pp- 101-110.

——, “Generating parameter comments and integrating
with method summaries,” in 2011 [EEE [9th Interna-
tional Conference on Program Comprehension, 2011, pp.
71-80.

S. Badihi and A. Heydarnoori, “Crowdsummarizer: Au-
tomated generation of code summaries for java programs
through crowdsourcing,” IEEE Software, vol. 34, no. 2,
pp- 71-80, 2017.

Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu,
and S. Y. Philip, “Improving automatic source code
summarization via deep reinforcement learning,” in The
33rd IEEE/ACM International Conference on Automated
Software Engineering, 2018.

L. Moreno and A. Marcus, “Automatic software sum-
marization: the state of the art,” in 2017 IEEE/ACM
39th International Conference on Software Engineering
Companion (ICSE-C), 2017, pp. 511-512.

P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch,
and S. D’Mello, “Improving automated source code sum-
marization via an eye-tracking study of programmers,’
in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014, 2014, pp. 390-
401.

T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Miiller,
M. Falcone, and B. Sharif, “itrace: Enabling eye tracking
on software artifacts within the ide to support software
engineering tasks,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015, 2015, pp. 954-957.

D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic,
and B. Sharif, “itrace: Eye tracking infrastructure for
development environments,” in Proceedings of the 2018
ACM Symposium on Eye Tracking Research & Applica-
tions, ser. ETRA 18, 2018, pp. 105:1-105:3.

Z. Sharafi, Z. Soh, and Y. Guéhéneuc, “A systematic
literature review on the usage of eye-tracking in soft-
ware engineering,” Information and Software Technology,
vol. 67, pp. 79 — 107, 2015.

B. Sharif, J. Meinken, T. Shaffer, and H. Kagdi, “Eye
movements in software traceability link recovery,” Em-
pirical Software Engineering, vol. 22, no. 3, pp. 1063—
1102, Jun 2017.

Z. Sharafi, T. Shaffer, B. Sharif, and Y. Guéhéneuc,
“Eye-tracking metrics in software engineering,” in 2015
Asia-Pacific Software Engineering Conference (APSEC),
2015, pp. 96-103.

U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A
survey on the usage of eye-tracking in computer pro-
gramming,” ACM Comput. Surv., vol. 51, no. 1, pp. 5:1-
5:58, Jan. 2018.

T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng,
E. Murphy-Hill, and C. Parnin, “Do developers read
compiler error messages?”’ in Proceedings of the 39th
International Conference on Software Engineering, ser.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ICSE ’17, 2017, pp. 575-585.

R. Bednarik and M. Tukiainen, “An eye-tracking method-
ology for characterizing program comprehension pro-
cesses,” in Proceedings of the 2006 Symposium on Eye
Tracking Research &Amp; Applications, ser. ETRA 06,
2006, pp. 125-132.

——, “Temporal eye-tracking data: Evolution of debug-
ging strategies with multiple representations,” in Pro-
ceedings of the 2008 Symposium on Eye Tracking Re-
search & Applications, ser. ETRA 08, 2008, pp.
99-102.

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H.
Paterson, C. Schulte, B. Sharif, and S. Tamm, “Eye
movements in code reading: Relaxing the linear order,”
in 2015 IEEE 23rd International Conference on Program
Comprehension, 2015, pp. 255-265.

P. Rodeghero and C. McMillan, “An empirical study
on the patterns of eye movement during summariza-
tion tasks,” in 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), vol. 00, 2015, pp. 1-10.

A. Jbara and D. G. Feitelson, “How programmers read
regular code: a controlled experiment using eye tracking,”
Empirical Software Engineering, vol. 22, no. 3, pp.
1440-1477, Jun 2017.

S. Lee, D. Hooshyar, H. Ji, K. Nam, and H. Lim, “Mining
biometric data to predict programmer expertise and task
difficulty,” Cluster Computing, Jan 2017.

H. Uwano, M. Nakamura, A. Monden, and K.-i. Mat-
sumoto, “Analyzing individual performance of source
code review using reviewers’ eye movement,” in Pro-
ceedings of the 2006 Symposium on Eye Tracking Re-
search &Amp; Applications, ser. ETRA 06, 2006, pp.
133-140.

B. Sharif, M. Falcone, and J. 1. Maletic, “An eye-
tracking study on the role of scan time in finding source
code defects,” in Proceedings of the Symposium on Eye
Tracking Research and Applications, ser. ETRA 12,
2012, pp. 381-384.

A. Begel and H. Vrzakova, “Eye movements in code
review,” in Proceedings of the Workshop on Eye Move-
ments in Programming, ser. EMIP *18, 2018, pp. 5:1-5:5.
P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan,
“An eye-tracking study of java programmers and applica-
tion to source code summarization,” /[EEE Transactions
on Software Engineering, vol. 41, no. 11, pp. 1038-1054,
2015.

K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C.
Shepherd, and T. Fritz, “Tracing software developers’
eyes and interactions for change tasks,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software

[39]

[42]

[46]

Engineering, ser. ESEC/FSE 2015, 2015, pp. 202-213.

K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. C. Shep-
herd, and T. Fritz, “Eye gaze and interaction contexts
for change tasks - observations and potential,” Journal

of Systems and Software, vol. 128, pp. 252-266, 2017.
X. Wang, L. Pollock, and K. Vijay-Shanker, “Developing

a model of loop actions by mining loop characteristics
from a large code corpus,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (IC-
SME), 2015, pp. 51-60.

——, “Automatically generating natural language de-
scriptions for object-related statement sequences,” in
2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2017,
pp- 205-216.

N. Dragan, M. L. Collard, and J. I. Maletic, ‘“Reverse
engineering method stereotypes,” in 2006 22nd IEEE In-
ternational Conference on Software Maintenance, 2006,
pp. 24-34.

——, “Automatic identification of class stereotypes,” in
2010 IEEE International Conference on Software Main-
tenance, 2010, pp. 1-10.

N. Abid, N. Dragan, M. L. Collard, and J. 1. Maletic,
“The evaluation of an approach for automatic generated
documentation,” in 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2017,
pp- 307-317.

P. W. Mcburney and C. Mcmillan, “An empirical study
of the textual similarity between source code and source
code summaries,” Empirical Softw. Engg., vol. 21, no. 1,
pp- 17-42, Feb. 2016.

K. Rayner, “Eye movements in reading and information
processing: 20 years of research,” vol. 124, no. 3, pp.
372-422, 00 1998.

P. Olsson, “Real-time and offline filters for eye tracking,”
p- 42, 2007.

M. L. Collard, M. J. Decker, and J. 1. Maletic,
“Lightweight transformation and fact extraction with the
srcml toolkit,” in 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation,
2011, pp. 173-184.

B. Liblit, A. Begel, and E. Sweetser, “Cognitive per-
spectives on the role of naming in computer programs,’
in Proceedings of the 18th Annual Psychology of Pro-
gramming Workshop, ser. PPIG °06, Brighton, United
Kingdom, 2006.

S. Siegel, Nonparametric statistics for the behavioral
sciences, ser. McGraw-Hill series in psychology.

H. Abdi. (2007) The kendall rank correlation
coefficient. [Online]. Available: http://www.utdallas.
edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf

http://www.utdallas.edu/~herve/Abdi- KendallCorrelation2007-pretty.pdf
http://www.utdallas.edu/~herve/Abdi- KendallCorrelation2007-pretty.pdf

