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To fix ideas, let’s focus on systems of reaction-diffusion
equations,

u, = Au+ f(w), (1)

where u : Qx[0,0) - R", Q c RY, f : R* - R",
A=V-V =08 +-+ 0%, and there are accompanying
initial conditions and possibly also boundary conditions
for 4Q, which for the moment I will leave unspecified. I
will assume f and 0Q are smooth.

Reaction-diffusion equations are a class of parabolic
PDEs for which it is interesting to study the dynamics
specifically because well-posedness is known: under rea-
sonably mild assumptions, unique solutions exist and de-
pend smoothly on the initial data and the function f. This
means that one can focus on the resulting behavior of so-
lutions as time evolves and in many cases obtain quite de-
tailed information. They are also relevant because they
appear in a wide variety of applications, for example, in
chemistry, biology, and ecology, which means that not
only are there specific models in which to test the theory
but there are also important open questions originating in

VoOLUME 67, NUMBER 4



other sciences that can point to interesting new mathemat-
ical directions.

It is worth noting that many of these properties that
have just been described are also present in other types
of PDEs, such as the nonlinear Schrédinger equation and
the Korteweg-de Vries equation, both dispersive evolution
equations, and so much of what will be discussed below
can be applied not just to reaction-diffusion equations but
also more broadly. See [7] for a variety of examples related
to the context of this article.

Stability
In order to describe the dynamics of the PDE one often
begins by identifying specific solutions, such as stationary
or time-periodic patterns, and then seeking to understand
the extent to which such solutions will be observed in the
long-time dynamics. Within this context, one might ask
about two types of stability. The first is related to robust-
ness of the solution to perturbation in the system param-
eters or, in other words, to perturbations within the PDE
itself. This type of stability is referred to as structural stabil-
ity, and it typically falls within the subfield of bifurcation
theory. The second type of stability, and the one that is a
focus of this article, is stability in time or dynamic stability:
can one expect to observe this solution in the dynamics of
a fixed PDE as time evolves? This has to do with robust-
ness of the solution to perturbations in the initial condi-
tion or to perturbations in the current state of the system.
In this sense, stable solutions attract (or at least do not
repel) nearby data. Unstable states repel (at least some)
nearby data, which will be driven away to some structure
that is dynamically attracting. Structural and dynamic sta-
bility are of course connected; one could, for example, ask
how dynamic stability is affected by changes in system pa-
rameters. But for the remainder of this article, stability will
always refer to stability in time.

Let’s suppose that we are given a stationary solution of
(1), ¢(x), so that

0= A+ f(p), ()
and we want to investigate its stability. We can write the
solution to (1) as u(x,t) = @(x) + v(x,t) and derive an
evolution equation for the perturbation v:

v = Av +df(@u+ [flp +v) — flp) —df(@)v].

=LV =N(v)

If v(x,0) is small in some appropriate sense (so we are fo-
cusing on local rather than global stability), will the per-
turbation decay to zero, or at least remain small, for all
t>0?

Because the perturbation v is small, at least initially,
one could expect the linear term Lv to dominate the
nonlinear one N'(v) in determining the dynamics, simply
because |[v|P < |v| if p > 1 and |v| < 1. Thus, one could
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focus initially on the linear dynamics, in which case the
spectrum of £ plays a key role. This relies on the fact that
the linear operator is nice: it generates an analytic semi-
group, and so there is a clear connection between spec-
trum and dynamics. Unstable (positive real part) spec-
trum leads to exponential growth, stable (negative real
part) spectrum leads to exponential decay, and if there is
spectrum on the imaginary axis then one must take the
nonlinearity into account.

Here the focus will be on detecting spectral instabilities.
The spectrum of £ can be divided into two parts: the essen-
tial spectrum and the point spectrum or eigenvalues. At
the moment the details of this decomposition are not so
important; what is important is the fact that the essential
spectrum is relatively easy to compute, whereas the point
spectrum is typically difficult to compute. Thus, if one cal-
culates the essential spectrum and it lies in the right half-
plane, then an instability has been detected. The more in-
teresting case is therefore when the essential spectrum is
stable and one needs to understand the point spectrum.
Thus, the question of detecting an instability is reduced to
determining whether or not there are any eigenvalues of
the linearized operator that have positive real part.

The simplest case is a scalar equation in one space di-
mension: n = d = 1. If Q = (a,b) and we consider zero
Dirichlet boundary conditions, then we are in the classical
setting of a Sturm-Liouville eigenvalue problem:

Av = Uxx + df(go(x))u,
v(a) = v(b) = 0.

x € (a,b),

Note that the linear operator is self-adjoint, so the spec-

trum is real.? Consider the Priifer coordinates
v =rsinb, U, =rcosb,

which in this setting are essentially just polar coordinates
in the phase plane. By differentiating the relations r?> =
v? +v2 and tan 6 = v/v, and solving for r, and 6,, we find
the dynamics of r and 6 to be governed by

r(1+ A1 —df(e(x)))cosBsinb,
cos? 6 + (df (p(x)) — A) sin” 6.

x
Ox

One can now make three key observations: the dynamics
for 6 have decoupled from those for r, the set {r = 0} is in-
variant, and therefore a solution that is not identically zero
can satisfy the boundary condition only if 8(a; 1), 8(b; 1) €
{im}jez. Thus, the second-order eigenvalue problem has
been reduced to the study of the first-order equation for

20n the bounded domain considered here, one could attribute the realness of
the spectrum to the fact that the operator is second-order and scalar, since any
second-order scalar operator can be put into self-adjoint form by means of an ap-
propriate integrating factor. Later, however, we will consider operators on the
entire real line that act on vector-valued functions, in which case the realness of
the spectrum will result from the self-adjointness of the operator.

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 501



Figure 1. A pulse and its derivative.

g: if for a given A there exists a solution 8 satisfying the
boundary condition, then 2 is an eigenvalue of £.

Let’s shift our perspective slightly, and rather than think-
ing of x as a spatial variable, let us view it as a time-
like variable. (This is an example of spatial dynamics.)
If 6(a;1) & {jm}jez, then 6 cannot be an eigenfunction;
therefore to determine if 4 is an eigenvalue, by periodic-
ity we can assume 8(a; 1) = 0. Because of the structure of
the equation, for A4 large and negative we expect 6 to os-
cillate and to find eigenvalues. Suppose we have found
one, and we label it 1; to indicate 8(b;4;) = (k + 1)7«.
If we continuously increase 4, we continuously decrease
6(b; 1), and the next eigenvalue occurs when we reach the
point where 8(b; A;_;) = k. Expanding on this argument,
one can prove there is a sequence of simple eigenvalues
Ao > A4 > --- and corresponding sequence of solutions
such that 8(b; 1)) = (k + 1)z. This in turn implies that the
corresponding eigenfunction v(x; A;) has exactly k simple
zeros in the interval (a, b).

From the perspective of stability, this is an extremely
powerful result. This is classically illustrated by consid-
ering a scalar reaction-diffusion equation on the entire
real line that has a pulse as a stationary solution; see Fig-
ure 1. This is a natural example to consider for at least
two reasons. First, in the context of applications reaction-
diffusion equations are often posed on the entire real line
so as to avoid any potential complications arising from
the boundary while still capturing the experimentally ob-
served behavior. Second, pulses are among the simplest
and most common type of coherent structures found in
such models. The relevant elements of the above theory re-
main when we replace the interval (a, b) with the real line
R, as long as we work in an appropriate function space,
such as I*(R). Because ¢ satisfies (2), if we take an x-
derivative of this equation we find that 0 = Lg,, and so
@, is an eigenfunction of £ with eigenvalue zero. As illus-
trated in Figure 1, ¢, has exactly one zero. This implies
that 0 = 4,, and so there must be a positive eigenvalue,
Ao > 0. As aresult, any stationary pulse solution of a scalar
reaction-diffusion equation on the real line must be unsta-
ble. The details of the function f are not relevant, other
than that the resulting equation has a pulse solution, nor
are the details of ¢, other than that it is a pulse (or more
generally has at least one local extrema). A complementary
result holds if ¢ is a monotonic front, in which case ¢,. has
no zeros, and so the largest eigenvalue is zero: 1y = 0.
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Figure 2. The square illustrating that the number of conjugate
points for 1 = A, is equal to the number of eigenvalues 1 > 1,.

In this example, the zeros of the eigenfunction are be-
ing used as a proxy for the eigenvalues. This suggests the
alternative perspective of conjugate points, which can be
described as follows. Above, the domain (a, b) was kept
fixed, 1 was allowed to vary, and the values of 1 where the
solution satisfied the boundary condition were recorded.
Instead, let's fix A and allow the domain to vary: x € (a, s)
with s € [a, b]. The number s is defined to be a conjugate
point for A if 4 is an eigenvalue of the Dirichlet problem
posed on the domain [a,s]. We can play a similar game
if we fix A = 1. We therefore know that if s = b, then
0(b; 1) = (k + 1)w. We can now continuously decrease s
from b so that 0 has less time to oscillate (that’s the spatial
dynamics perspective again) and record the values s; where
0(sj; Ak) = (j+ . In this way, we get a sequence of conju-
gate points s = b > sp_1 > Sg_ > +-+ > Sy > a that are in
one-to-one correspondence with the eigenvalues that are
strictly bigger than A;.

This result is illustrated using the “square” depicted in
Figure 2. To complete the picture, one needs to show that
for 1 = A, sufficiently large there are no conjugate points,
and note that for s = a there are no eigenvalues simply
because there are no dynamics. To detect instabilities, one
can fix 1, = 0, and then the number of conjugate points
must be equal to the number of unstable eigenvalues. In
the example above regarding pulse instability, by counting
zeros of ¢, we were effectively counting conjugate points
to prove the existence of an unstable eigenvalue. This is a
simple case of what's often called the Morse Index Theo-
rem, and it goes back to the work of Morse [16], Bott [6],
and others.

The idea of counting unstable eigenvalues by instead
counting conjugate points seems nice, but it appears to be
restricted to the scalar case, where we can use polar coor-
dinates to define the angle 6. However, Arnol'd [1, 2] real-
ized that a generalization of this angle to the system case
(n > 1) was possible using the Maslov index and that this
enabled the study of the associated oscillations. His ideas
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were then utilized in [12] to prove instability of a standing
wave in a nonlinear Schrodinger-type equation. This latter
paper was the catalyst for the ideas that we now describe.

Let’s return to equation (1) but retain the restriction to
one space dimension: d = 1. To most directly utilize the
Maslov index, we'll assume the nonlinearity is a gradient,
f = VG for some G : R" — R. The eigenvalue problem
then becomes

A = vy, + V2G(p(x))v = Lu,

where now Q = R and it is required that v € I*(R;R"),
in lieu of specifying boundary conditions. Note that
the linear operator is again self-adjoint, so 4 € R. To
fix ideas, let’s again suppose ¢ is a pulse, meaning that
limy_ .o @(x) = @, for some ¢, € R". As mentioned
above, the most interesting case is to assume the essential
spectrum of £ is stable, so we can focus on detecting unsta-
ble eigenvalues. It turns out this is equivalent to assuming
that V2G(g,,) is a negative matrix; this will be utilized be-
low. This second-order eigenvalue problem can again be
written as a first-order system, now via

(o) =0 0) (7 ) e

=J =B(x;A)

x €ER,

There’s that spatial dynamics perspective again.

To understand how to associate an angle with this first-
order eigenvalue problem, let’s step back and discuss the
Maslov index. An accessible explanation of the topics we
are about to describe can be found in [11]. To begin, con-
sider the symplectic form w(U, V) := (U,JV )p2n, where J is
defined in (3) and (-, -)g2n is the usual inner product in R?",
The associated Lagrangian-Grassmannian is the set of all
n-dimensional subspaces of R?"* on which the symplectic
form vanishes:

A(n) ={¢ Cc R*™ : dim(¢) = n, w|yy, = O}

Each Lagrangian plane has an associated frame matrix, de-
fined in terms of square matrices A, B € R™" such that

= {()usuew).

The plane is just the column space of the frame matrix.
In fact, the above frame matrix is not unique, and each
plane corresponds to an equivalence class of frame ma-
trices. Suppose we have a path of Lagrangian subspaces,
£(¢t) fort € (a,b), and we are interested in intersections of
this path with a fixed reference Lagrangian plane, say the
Dirichlet plane: D = {(0,v) € R** : v € R"}. (This is
analogous to looking for conjugate points.) Associate the
path £(t) with frame matrices A(t), B(t). Arnol’d showed
there is a well-defined angle 6(t) such that

e = det[(A(t) — iB(t))(A(t) + iB(t))~1]. (4)
=W (1)
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Figure 3. The subspaces of decaying solutions.

The reason this works is that the Lagrangian structure of
¢ forces W to be unitary, so its spectrum lies on the unit
circle. Moreover, it can be shown that

dim[ker(W(t) + I)] = dim(€(¢t) n D).

Note that the quantity on the left-hand side refers to
the complex dimension of the complex vector space
ker(W(t) + I) c C", whereas the quantity on the right-
hand side refers to the real dimension of the real subspace
of £(t)n D C R?". To write the definition of the Maslov in-
dex in full detail would be quite lengthy; here the key fact
is that the Maslov index counts, with multiplicity and di-
rection, the number of times an eigenvalue of W(¢) crosses
through —1. Hence, it is also counting intersections of the
path £(t) with the reference plane 2. In this sense, the
Maslov index counts conjugate points. The Maslov index
is related to the fact that the fundamental group of the
Lagrangian—-Grassmannian is the integers: if () is a loop,
its Maslov index is its equivalence class in the fundamental
group [1].

Let’s return now to our eigenvalue problem (3). Our as-
sumption that the essential spectrum is stable, V2G(¢,,) <
0, implies that the asymptotic matrices lim,._, ., JB(x; 1)
are both hyperbolic, with stable and unstable subspaces
of dimension n. If we let E%(x; 1) and E% (x; 1) denote the
subspaces of solutions that are asymptotic to the unstable
eigenspace at —oo and the stable subspace at +o0, respec-
tively, then in order to have an eigenfunction v € I? we
must have (v, w)(x; 1) € B4 (x; A)NES.(x; 4). Otherwise, the
solution would be growing exponentially fast in forward or
backward time, thus preventing v from being square inte-
grable. See Figure 3.

Studying the intersection of these subspaces leads to the
now standard theory behind the Evans function [19]. So
far we have made no reference to any Lagrangian structure.
It turns out that our assumption that f = VG implies that
in fact both E%(x; 1) and E5 (x; 4) are paths of Lagrangian
subspaces. With this additional structure, we can adopt a
different perspective and look for conjugate points: given
£(x; A) == E%(x;1) € A(n), we define a conjugate point to
be a value of x such that £(x; 1) N D # {0}.

Using this framework, in [3] it was shown that the
square depicted in Figure 2, suitably adapted to reflect the
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fact that the spatial domain is now all of R, holds for the
eigenvalue problem (3). This relies on the homotopy in-
variance of the Maslov index and the fact that the bound-
ary of the square maps to a null-homotopic curve in the
Lagrangian-Grassmannian. Thus, one can count unstable
eigenvalues by instead counting conjugate points. Further-
more, this result was used to prove that in equations of
the form (1) with Q = R and f = VG, any generic pulse
solution must necessarily be unstable. This is again quite
powerful; no further information is needed about the func-
tion f or the pulse ¢ that it supports. The topology is, in a
sense, forcing the existence of a positive eigenvalue.

Some remarks may be helpful here. First, the proof of
the “square” relies on the Maslov index and its topologi-
cal properties, although the definition of 6 given in (4) is
not directly used. Instead, the result is developed using
the associated crossing form presented in [18]. Second, a
key step in the proof is proving a so-called monotonicity
result. The path €(x;1) = E%(x;A) is a path around the
entire boundary of the square, if one considers either x
or A to be the path parameter on the appropriate sides,
and hence a loop. After compactifying the domain so
that x € R becomes ¥ € [-1,1], since the boundary
of [-1,1] X [0,4,] C R? is contractible, its image in the
Lagrangian-Grassmannian is also contractible, and hence
the Maslov index of the loop #(x; A) must be zero. Show-
ing there can be no intersections on the right side, where
A = A, sufficiently large, or on the bottom, where ¥ = —1,
is not too difficult. One can then show that all crossings
on the top (eigenvalues) must contribute in a negative way
to the index, while on the left (conjugate points) they must
contribute in a positive way; this is the monotonicity. An-
other way to view this monotonicity is in terms of the ma-
trix W, defined in (4). In this setting, W = W(x, 1), and
this monotonicty result means that eigenvalues of W must
always pass through —1 in the same direction as 4 is varied
and always in the opposite direction as x is varied. Hence,
the number of eigenvalues must equal the number of con-
jugate points. The fact that there must be at least one con-
jugate point when linearizing about a pulse comes from a
symmetry argument that uses the reversibility of (1) (the
fact that it is invariant under the transformation x — —Xx).

Not only does this result allow for the extension to
the system case of the “pulses must be unstable” result
from Sturm-Liouville theory but it also provides a more
efficient way, in general, for detecting instabilities, pro-
vided one has the required symplectic structure, for ex-
ample, if f = VG. To explain this, note that the Evans
function, mentioned above, can be defined by &(4) :=
E%(0;4) AES(0;1) : C — C. (The choice to look for in-
tersections of the subspaces of decaying solutions at x = 0
is arbitrary; any point x, € R could be chosen here.) Ze-
ros of the Evans function correspond, with multiplicity, to
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eigenvalues. In general, to detect instabilities using the
Evans function, one must prove that any unstable eigen-
values must lie in some compact ball and then compute
the winding number of & around the boundary of this
ball. On the other hand, to count conjugate points, one
must only do analysis for a single value A = 0. Thus, if
one were to use validated numerics to produce a proof of
(in)stability via such a detection procedure, the computa-
tion would be much faster using conjugate points than us-
ing the Evans function. This is the subject of current work.

It is interesting to note that this connection between the
Maslov index and stability, including the above demon-
stration of pulse instability, is not the only connection be-
tween topology and dynamic stability. It is also known
that in some systems that support traveling waves, the wave
can be constructed as the intersection of appropriate stable
and unstable manifolds. This intersection typically occurs
for a unique wavespeed, and the direction in which those
manifolds cross as the wavespeed parameter is varied can
be connected with £'(0) and hence the parity of the num-
ber of unstable eigenvalues. If this number is odd, there
must be at least one, and the wave is unstable [13].

So far, everything that has been discussed for (1) has
been restricted to the case of one spatial dimension, d = 1.
It turns out, however, that these ideas can also be expanded
to cover the multidimensional case [9, 10]. In this case, the
eigenvalue problem takes the form

Av = Av + V2G(p(x))v,
U|aQ =0.

x € QCRY,

To create the above theory in this setting, we need a no-
tion of a conjugate point. This can be defined using a
one-parameter family of domains, {Qg : s € [0,1],Q; =
Q, Qg = {x,}}, that shrinks the original domain down to a
point [20]. One can then construct the path of subspaces

ou . 1
{(u,%> |6(2s T u € H'(Qy),

Au+V(xX)u=2u, x¢€ Qs}

f(s;1) =

determined by weak solutions on Q; but with no reference
yet to the boundary data. By considering the Hilbert space

H = HV?(0Q) x H~12(6Q)

and the symplectic form w((f;,81), (5.82)) = (g2, fi) —
(g1, /), where (-, -) denotes the dual pairing, one can show
that both the path ¢ and the Dirichlet subspace

-5 o2

lie in the associated Fredholm-Lagrangian-Grassman-
nian, a generalization of the Lagrangian-Grassmannian
A(n) to the infinite-dimensional setting. This Dirichlet
subspace is now the fixed reference space, and a conjugate
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point is a value of s such that €(s; A)ND # {0}. Note that the
term “Dirichlet subspace” in this context references the fact
that this subspace corresponds to the zero Dirichlet bound-
ary condition in the above eigenvalue problem. This per-
spective was pioneered in [10] and allows for much of the
above theory to work for the multidimensional eigenvalue
problem, including the system case v € R" and a variety
of boundary conditions other than Dirichlet.

These multidimensional results are particularly exciting,
because most of the results related to nonlinear waves and
coherent structures, not just their stability, apply only in
one dimension. This is largely because many of the tech-
niques rely on the perspective of spatial dynamics, which,
for the most part, applies only to systems in one space
dimension, or on cylindrical domains with a single dis-
tinguished spatial variable. Interestingly, the above proce-
dure of using a shrinking family of domains, {Qg}, suggests
a way to develop spatial dynamics in higher dimensions.

Spatial Dynamics

In order to more precisely characterize what is meant by
the term “spatial dynamics,” let’s recall the most basic set-
ting in which spatial dynamics has been used: second-
order ordinary differential equations (ODEs) of the form
Uy, + F(u) = 0. By writing this as the first-order system

Uy =0, Uy = _F(u)’

one can study the behavior of solutions using techniques
from dynamical systems, such as phase plane analysis and
exponential dichotomies. Here the spatial domain is Q =
R, and the phase space of the spatial dynamical system
is R? (or R?" if u € R™). The above system is a spatial
dynamical system, or, equivalently, it is the second-order
ODE viewed from the perspective of spatial dynamics, be-
cause in it the spatial variable x is viewed as a timelike
evolution variable, and techniques from the theory of dy-
namical systems can be used to study an equation that was
not originally formulated as an evolutionary equation.

On a cylindrical domain, Q = R x Q' with Q' ¢ R4-!
compact, the PDE Au + F(u) = 0 can be written

U, =0, v, = —AqV — F(u), (5)

where Ag, is the Laplacian on the cross section Q. The
phase space is now infinite-dimensional, for example,
(u,v)(x) € HY(Q') x I?>(Q’) for each x € R, and so one
must be more careful in analyzing the dynamics. This can
be seen explicitly if Q' = [0, 27] with periodic boundary
conditions, in which case the linear part of (5) coming
from the Laplacian,
0 1
(5 o)

has spectrum equal to the integers. This can be seen by
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using the Fourier expansion u(x,y) = Y, dk(x)el*?,
v(x,y) = X, Ok(x)el??, in which case —82 — k? and the
eigenvalues can be explicitly computed. The fact that there
are arbitrary large positive and negative eigenvalues means
that, in general, solutions to (5) will grow arbitrarily fast
both forwards and backwards in time. In other words, the
system (5) is ill-posed. Nevertheless, applying techniques
from dynamical systems to analyze the behavior of solu-
tions is extremely useful.

For example, in many cases one can construct an expo-
nential dichotomy associated with the linear part of (5)
and also construct stable and unstable (or possibly center-
stable and center-unstable) manifolds associated with the
nonlinear system. This allows for the analysis of subspaces,
in the case of the dichotomy, or, more generally, mani-
folds of solutions that exist in forwards or backwards time,
respectively. As a result, one can study bifurcations by
looking at intersections of the relevant manifolds as system
parameters are varied. One can also study stability, both at
the spectral level using a generalization of the Evans func-
tion, at the linear level using pointwise Green's function
estimates, and at the nonlinear level by combining these
estimates with a representation of solutions to the full non-
linear equation, for example, via Duhamel’s formula. This
infinite-dimensional spatial dynamics perspective began
with the work of Kirchgassner [14], and subsequent con-
tributions include [15, 17].

The perspective of spatial dynamics has proven to be
quite useful, and it has allowed for an extensive variety of
interesting and beautiful results to be obtained for PDEs
on either one-dimensional or cylindrical domains. It has
not, however, been utilized in multidimensional domains
that do not have this cylindrical structure, and this is ar-
guably the main reason why there are many fewer results
available in higher space dimensions. The hope is that re-
cent results, motivated by the above stability theory and
which I will now describe, will change this.

Consider the PDE

Au+F(x,u)=0 (6)

with x € Q C RY, and recall Smale’s idea of shrinking the
domain Q via a one-parameter family {Q}se(0,17- Suppose
that this family is parameterized by a family of diffeomor-
phisms g : Q — Q. This allows for a nice definition of
the boundary data on 0Qy:

ou
f&y)=ul@s®), gy =5 @sG)),
for s € [0,1] and y € 9Q. This is convenient because even
though (f, g) can be interpreted as the boundary data on
Q, the independent variable y lives in the s-independent
domain Q. One can then, at least formally, compute an
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evolution equation of the form

LG9=709, (7)

where the possibly nonlinear function ¥ is defined in
terms of the function F appearing in (6) and the tangen-
tial parts of the gradient and divergence operators on 9.
One can also, again at least formally, relate a solution (f, g)
of (7) to the solution u of (6) by noting that (f, g) is just
the function u and its normal derivative evaluated on the
boundary on the domain Qg; in other words, (f, g) is just
the trace of (u,du/dn) evaluated on 0Q;. This has been
made rigorous in [4], where it was shown that, in an ap-
propriate sense, a weak solution u of the elliptic PDE (6)
leads to a solution (f, g) of the spatial dynamical system
(7), and vice versa.

The function ¥ is indeed quite complicated, and the re-
lation between u and (f, g) is rather technical. However,
for at least some domains Q, the result seems to be suffi-
ciently concrete so as to be readily applicable. For exam-
ple, if the domain is radial or all of R%, one can choose
to shrink the domain using spheres: Q; = {x € R4
|x] < s}. This greatly simplifies the function ¥, and us-
ing the fact that in terms of generalized polar coordinates
A = 32+ (n—1)r716, + r2Aga-1, one ends up with the
spatial dynamical system

%(g ) = (_S_zOASd_I _(d—1 1)S‘1> @

0
+ (—F(@, s, f)) :

It has been shown, after a suitable rescaling of time s = e”
and for d > 3, that the linear part of this system admits
an exponential dichotomy [5]. (The case d = 2 is slightly
more complicated, due to the existence of the harmonic
function logr, but it could be similarly interpreted by al-
lowing the dichotomy to contain center directions.) More-
over, when d = 3 the dichotomy can be written explic-
itly in terms of the spherical harmonics. This allows one
to potentially study solutions to the original elliptic PDE
that are not necessarily radially symmetric, thus provid-
ing the removal of a restriction that has been imposed
on most results (at least in the spatial dynamics context)
to date. Thus, the perspective of spatial dynamics seems
quite promising as a method for studying multidimen-
sional nonlinear waves and coherent structures.

Future Directions

The theory discussed above has the potential to have a
great impact, particularly for problems in multiple spatial
dimensions. Many of the existing results are valid only for
one-dimensional domains or for cylindrical domains. The
above results represent new techniques that are not bound
by this restriction and thus allow for the analysis not only
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of stability but also of a variety of aspects of the behavior
of solutions to PDEs in multidimensional spatial domains,
such as their existence and bifurcation.

In the last ten years or so there have been many results
regarding the theory discussed above. Arguably the only
downside so far is the relative lack of applications: exam-
ples of solutions, in any space dimension, whose stability
is determined using the conjugate point method described
above and instances of using the spatial dynamical system
(7) to analyze multidimensional nonlinear waves.

Regarding the former, there are three existing examples,
at least where the Evans function cannot also be used to
determine stability. The most broadly applicable is the
pulse instability result in reaction-diffusion systems with
gradient nonlinearity described above. The other two ex-
amples pertain to specific PDEs, with the first being the
instability result of [12] for a standing wave in a nonlinear
Schrodinger-type equation, which really began this whole
program, and the second being the instability result of [8]
for a standing pulse in the FitzHugh-Nagumo equation,
with diffusion in both variables. The development of the
spatial dynamical system (7) and its relation to the elliptic
PDE (6) is extremely new, and so some time is needed for
its utility to be fully explored. Now that a solid founda-
tional theory is in place, the hope is that many more ap-
plications will emerge. This is an area of active, ongoing
work.
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