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Abstract. Human in-bed pose estimation has huge practical values in medical

and healthcare applications yet still mainly relies on expensive pressure mapping

(PM) solutions. In this paper, we introduce our novel physics inspired vision-

based approach that addresses the challenging issues associated with the in-bed

pose estimation problem including monitoring a fully covered person in complete

darkness. We reformulated this problem using our proposed Under the Cover

Imaging via Thermal Diffusion (UCITD) method to capture the high resolution

pose information of the body even when it is fully covered by using a long wave-

length IR technique. We proposed a physical hyperparameter concept through

which we achieved high quality groundtruth pose labels in different modalities. A

fully annotated in-bed pose dataset called Simultaneously-collected multimodal

Lying Pose (SLP) is also formed/released with the same order of magnitude as

most existing large-scale human pose datasets to support complex models’ train-

ing and evaluation. A network trained from scratch on it and tested on two di-

verse settings, one in a living room and the other in a hospital room showed

pose estimation performance of 98.0% and 96.0% in PCK0.2 standard, respec-

tively. Moreover, in a multi-factor comparison with a state-of-the art in-bed pose

monitoring solution based on PM, our solution showed significant superiority in

all practical aspects by being 60 times cheaper, 300 times smaller, while having

higher pose recognition granularity and accuracy.

1 Introduction

The poses that we take while sleeping carry important information about our physi-

cal and mental health evident in growing research in the sleep monitoring field. These

studies reveal that lying poses affect the symptoms of many complications such as sleep

apnea [5], pressure ulcers [12], and even carpal tunnel syndrome [9]. Moreover, patients

in hospitals are usually required to maintain specific poses after certain surgeries to get

a better recovery result. Therefor, long-term monitoring and automatically detecting

in-bed poses are of critical interest in healthcare [13].

Currently, besides self-reports obtained from the patients and/or visual inspection

by the caregivers, in-bed pose estimation methods mainly rely on the use of pressure
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mapping (PM) systems. Although PM-based methods are effective at localizing areas of

increased pressure and even automatically classifying overall postures [11], the pressure

sensing mats are expensive and require frequent maintenance, which have prevented PM

pose monitoring solutions from achieving large-scale popularity.

By contrast, camera-based methods for human pose estimation show great advan-

tages including their low cost and ease of maintenance, yet are hindered by the natural

sleeping conditions including being fully covered in full darkness. To employ computer

vision for in-bed activity monitoring, some groups exclusively focus on detection of

particularly sparse actions such as leaving or getting into a bed [3]. Depth modal is also

extensively employed for this application [8], yet is limited to simple activity recogni-

tion or recognizing very few body parts such as head and torso. A patient motion capture

(MoCap) system was proposed in [1] for 3D human pose estimation, however their ex-

perimental setup was never verified in a real setting for covered cases. Near infrared

(IR) modality has also been employed [7] for long-term monitoring in full darkness,

however it does not address the covered cases. Additionally, in the area of human in-

bed pose estimation, there is no publicly-available dataset to train complex recognition

models with acceptable generalizability, neither to fairly evaluate their performance.

In this paper, in contrast to the common RGB- or depth-based pose estimation meth-

ods, we propose a novel in-bed pose estimation technique based on a physics inspired

imaging approach, which can effectively preserve human pose information in the imag-

ing process, in complete darkness and even when the person is fully covered under a

blanket. Our contributions in this paper can be summarized as follows: (1) reformulating

the imaging process and proposing a passive thermal imaging method called Under the

Cover Imaging via Thermal Diffusion (UCITD) based on a long wavelength IR (LWIR)

technology; (2) proposing a physical hyperparameter concept that leads to quality mul-

timodal groundtruth pose label generation; (3) building/publicly releasing the first-ever

fully annotated in-bed human pose dataset, called Simultaneously-collected multimodal

Lying Pose (SLP) (reads as Sleep dataset) under different cover conditions, with the size

equivalent to the existing large-scale human pose datasets to facilitate complex mod-

els’ training and evaluation; (4) training a state-of-the-art pose estimation model from

scratch using our SLP dataset, which showed high estimation performance comparable

to the recent successful RGB-based human pose estimation models; and (5) comparing

with the existing methods with equivalent capabilities, our solution demonstrates higher

pose estimation accuracy and granularity, with only a fraction of cost and size.

2 In-bed Pose Estimation

2.1 Problem Formulation

The major challenges that hinder the use of computer vision techniques for the in-bed

pose estimation problem are monitoring in full darkness and potential cover conditions.

To discover a proper imaging process capable of addressing these challenges, we refor-

mulated the imaging process as follows. Let’s assume the majority of the physical enti-

ties in the world (e.g. human body) can be modeled as articulated rigid bodies by ignor-

ing their non-rigid deformation. The physical world composed of N rigid bodies then

can be described by a world state model [6], such that Ws = {αi,βi, φ(i, j)|i, j ∈ N},
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range of temperature, the corresponding radiation energy concentrates in long wave-

length infrared (LWIR) spectrum which is around 8-15µm. Although blanket are not

transparent to the LWIR radiation, in our specific context, the contact between cover

and body parts while lying in bed introduces another physical phenomenon called heat

transfer, which dramatically alters the temperature distribution around the contacted ar-

eas. This phenomenon can be described by the diffusion equation ∇2T = 1
a
∂T
∂t

, where

T = T (x, y, z, t) is the temperature as a function of coordinates (x, y, z) and time t, a

is the thermal diffusivity, and ∇2 is a Laplacian operator.

Exact modeling of covered human body is beyond the scope of this paper, so we

simulate such contact by simplifying each human limb as a cylinder with diameter

50mm which is covered by a thin physical layer with a thickness of 2mm in Solidworks

(see Fig. 1(b)). To set boundary conditions, we assume the contact point of the cover

will turn into a constant temperature similar to the human clothes temperature (≈ 28◦C)

after sufficient time. Heat will diffuse into environment which has constant tempera-

ture around 20◦C. Such simplified model reveals that the contact point of a cover has

the peak temperature. Furthermore, when a limb is covered with a sheet or a blanket,

the location of the contact point directly depends on the shape and the location of the

limb. In other words, the heat map will highly depend on the α and β of the covered

limbs, which satisfy the condition proposed in Lemma 1 and endorses the feasibility

of LWIR for under the cover human pose estimation: I = I(Ws→c, SLWIR|αt, βt) 6=
I(Ws→c, SLWIR). Admittedly, real case is much more complicated than our simplified

model. There could be multiple peaks in contacting area due to the wrinkles in the cover.

Nearby limbs will also result in more complex temperature profile due to the overlapped

heating effect. But the dependency of the heat map over the limb’s α and β will still

hold. As we can see, human like profiles in the Fig. 2 via thermal imaging (second

row) is well recognizable even when it is fully covered with a thick blanket. Fig. 1(a)

also shows the advantage of LWIR over depth as the heated area of L3 will depend on

its location as long as it is contacted by the cover. We call this imaging approach that

satisfies Lemma 1 under the cover imaging via thermal diffusion (UCITD).

3 UCITD Groundtruth Labeling

Although human profile under the cover is visible via UCITD, the pose details are not

always clearly recognizable by only looking at the LWIR images. Human annotators are

likely to assign wrong pose labels when labelling LWIR images, which introduces noisy

labels challenge to this problem. To address this issue, we cast the imaging process as

a function that maps the physical entity and its cover into the image plane as I =
I(αt, βt, αc, βc), where αt, βt, αc and βc stand for the target’s and cover’s appearance

and pose, respectively. In this formulation, I could be the result of any of the feasible

imaging modalities such as I ∈ {IRGB , IDepth, ILWIR, . . . }.

A labeling process then can be defined as a function L that maps the I back to the

target pose state βt, such that the estimation target pose is β̂t = L
(

I(αt, βt, αc, βc)
)

.

Error E(β̂t, βt;αt, αc, βc) depends on not only the pose terms but also the appearance

terms. As all these parameters (i.e. {αt, αc, βc}) can be decoupled from βt [6], they can

be deemed as the hyperparameters of function L and we can formulate the problems
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For each category, 15 poses are collected. For each pose, we altered the physical hyper-

parameters of the setting via manual intervention. We collected the images from both

RGB and LWIR camera simultaneously to alter the function I . Moreover, we changed

the cover condition from uncover, to cover one (a thin sheet with ≈1mm thickness),

and then to cover two (a thick blanket with ≈3mm thickness) to alter αc and βc. In each

cover condition, we waited around 10–20 seconds to mimic a stabilized pose during a

real-life monitoring scenario. We follow pose definition of LSP [4] with 14 joints. Data

collection in the living room and hospital room allowed us to form our Simultaneously-

collected multimodal Lying Pose (SLP) dataset which will be public released with the

paper. SLP dataset is collected under two different settings with 13,770 samples for

“Room” and 945 for “Hosp”, among which first 90 subjects with 12150 samples of

“Room” set are for training and rest 12 subjects with 1620 samples are for testing.

“Hosp” set is used for test purpose only to show its field performance under a simu-

lated real application scenario. It is worth to mention that our SLP in-bed pose dataset

has equivalent magnitude to most large-scale human pose dataset such as MPII [2] and

LSP [4], which allows complex models’ training from scratch.

4.2 In-bed Human Pose Estimation Performance

To evaluate the pose estimation performance of the proposed pipeline, we trained a

state-of-the-art 2D human pose estimation model from scratch, the stacked hourglass

(hg) network [10] which is one of top performance model for single human pose, using

the LWIR images from 90 subjects training set in “Room” dataset with 8000 iterations,

30 epochs, and learning rate of 2.5e-4 as original settings for RGB domain. To investi-

gate the effect of different cover conditions on model performance, we use probability

of correct keypoint (PCK) as our metric which is extensively employed for human pose

estimation [2, 4]. In PCK metric, the distance between the estimated joint position and

the ground-truth position is compared against a threshold defined as fraction of the per-

son’s torso length to form a joint level detection rate. Estimation results from each cover

condition is reported. Due to the lack of public benchmark in this specific application,

it is hard to provide a strict quantitative comparison. To launch a fair comparison, we

fed pre-trained hg model with RGB samples without cover which suppose to have not

only exact same uncover RGB domain as pre-trained model but also have similar “pose

hardness” as test samples on UCITD. According to the evaluation shown in Fig. 3(a),

our model demonstrated a 98.0% accuracy at PCK0.2 which is marginally higher than

pre-trained hg in RGB domain. Please note that this cross-domain comparison is be-

tween our UCITD under darkness and covered condition against a well-illuminated

RGB condition for the other models. Test result also shows that when subjects are cov-

ered tremendous impact is imposed on RGB hg but has only slight adverse effect on

UCITD. Failure cases usually come when limbs are cuddled together that limbs will be

misaligned to nearby body area due to the similar temperature of human profile or at

transient moment caused by heat residue on bed.
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be the work by [11] with comparable granularity. With close accuracy performance as

shown in Fig. 4(a), our method shows higher granularity recognition ability with more

joints being detected (14 vs. 8). Furthermore, authors in [11] evaluated accuracy via

visual inspection for overlapping area, while UCITD employs widely acknowledged

PCK0.2 metric for human pose estimation study.

Besides pose estimation performance, we further evaluated the cost-efficiency of

UCITD against PM-based methods. We used a FLIR camera with 120×160 resolution.

For equivalent resolution, we employed Tekscanr full body PM system with 192×84

sensor resolution. The price and space cost comparison is shown in Fig. 4(b). Our

UCITD approach achieves tremendous cost efficiency, by being 60 times cheaper (a

rough cost estimation is around $400) and 300 times smaller compared to the most ad-

vanced PM-based approach. Furthermore, by using unidentifiable heat map, UCITD is

both privacy-reserving and radiation-free. As a contact-less method it requires much

less maintenance compared to the PM-base approaches, which are prone to failure due

to pressure sensors drift over time. Due to the small form-factor of the UCITD technol-

ogy, it can be mounted unobtrusively in any indoor environment to be used in long-term

in-bed pose monitoring applications.

It is worth mentioning that for other modalities (e.g. RGB), according to the Lemma 1

if the covered image is conditioned on the underlying pose αc, it is possible to estimate

the pose accurately. This point is apparent in the images in the first row of the Fig. 2,

in which the covered poses can still be inferred from the RGB images that reveal the

human profiles. However, one can imagine such condition will no longer hold for RGB

modality in the full darkness and the need for another modality such as LWIR for in-bed

pose monitoring is inevitable.
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