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where data is scarce such as personalized medicine, robot reinforcement learning,
environmental/weather behavior prediction, and military applications, forming
a large scale dataset itself could be infeasible [25]. The million dollar question
here is if one can benefit from the flexibility and accuracy of DNNs in small data
domains or domains with expensive labeling process by virtually synthesizing
large scale labeled datasets. Hence, this paper presents a semi-supervised data
augmentation approach that expands the size of a small dataset by synthesizing
labeled samples in the physically-valid world contexts, while demonstrating that
the trained DNNs using this synthetic dataset are capable of performing a high
accuracy estimation task that they are trained for.

Classically, to address the data limitation issue, data augmentation tech-
niques are extensively used especially when it comes to DNN training. Existing
data augmentation methods can be seen as a mapping from one domain to it-
self by linear transformation with random variations, such as scale/orientation
augmentation [32], color augmentation, and random crop per-pixel mean sub-
traction [22,23], among others. These hand crafted augmentation methods indeed
improve the DNN performance in the designated tasks though not significantly
[40]. They simply ignore the fact that image generation is actually a mapping
from the 3D physical world into the 2D image domain, where the camera model
is already well defined. The consequence is that classical augmentation methods
can only capture superficial variations of the original dataset instead of capturing
the semantic meaning of objects in the real world.

Alternatively, 3D computer-aided design (CAD) models can emulate such
geometrical semantic variations in the real world. Majority of the works enabled
by the CAD-based data augmentation employ publicly available CAD models
[6,36]. Some of these models are also templates for specific categories [11,38].
The extent of data augmentation here is often limited by the existing CAD
models, which only provide rough categories or limited by the already existing
templates. Another practical issue is that publicly available CAD models are
usually created by human artists and could be in a conceptual ideal condition
and lack realistic variations. In contrast, generating (unlabeled) sample images
from a large variety of objects, movements, and contexts is fairly achievable in
our physical world, in which each sample manifests the physics laws behind our
real world.

In this paper, we merged the benefits of two approaches, (i.e., 3D modeling
and (semi)realistic data generation following the physical world laws) and present
a data augmentation pipeline for large scale labeled dataset forming that uses the
easily collected 3D scans of the target objects (e.g., humans) and move/articulate
them in a physically-valid fashion using a 3D graphical engine (e.g., moving hu-
man avatars in a virtual environment). Although our cost-efficient 3D scans have
lower resolution compared to the existing CAD templates and the movements
and contexts are virtually synthesized, after a straightforward domain adaption,
our approach allows the data augmentation for deep learning purposes in any
emerging target objects and can efficiently expand and adjust the movements
and contexts based on the application tasks.
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2 Related Work

When dealing with deep learning in small data domains, fine-tuning already
trained DNNs proves to be effective [25,7,8,10,40]. Fine-tuning is a form of trans-
fer learning, when fine-tuned DNNs applied on the new (but small in size) dataset
hugely benefit from knowledge learned from large amount of real world image
samples (even being from different domain). However, if the two datasets are very
different in nature, fine-tuning would fail since the network is already very fitted
to the first dataset and is unable to adopt to the new small dataset unless we
substantially increase the size of the second dataset and pay the labeling cost as-
sociated with that. These issues inspired us to simulate lots of plausible samples
in the context of interest (i.e. the context that only has small dataset available),
which allows for training DNNs from scratch rather than just fine-tuning them.

2.1 Classical Dataset Forming

A common way to form datasets in computer vision field is collecting real images
directly and manually label them. Most influential datasets are formed in this
way including ImageNet [22] for object classification, Cityscapes [12] for scene
segmentation, LSUN [41] for scene understanding, and MPII human pose [4] and
LSP [20] datasets for human pose estimation. These datasets preserve the real
world information authentically and are most effective to train DNN models
for practical applications [42,16,42]. Data augmentation usually comes during
training session, which usually include augmentation in scale, color, shift, or
mirror, which is limited to superficial variations of the image [32].

2.2 Synthetic Dataset Forming

Synthetic data has already been employed to form large datasets and provides
convenience to control the generation process with exact parameters [36]. In early
works, synthetic data was mainly employed to provide additional information to
facilitate the detection/estimation process. For example, in [24], the geometric
information from 3D CAD models is combined with the real image appearance
to improve object detection and pose estimation for bicycles and cars. Shape
models and also the probabilistic models are also learned from CAD models
[33,37]. Another benefit of synthesizing data is the possibility to automatically
generate enough labeled data for supervised learning purposes [34]. Authors in
[14] studied an optical flow estimation algorithm based on synthesized images
of a 3D moving chair. Virtual KITTI dataset with synthesized car videos is also
employed to train multi-object tracking algorithms [17].

More complicated articulated 3D models are also studied, among which the
human body draws most attention due to the extensive applications associated
with studying human pose, gestures, and activities. Synthesized human data
has been employed for 2D/3D pose estimation [29,30,31,11,15,18,28] and pedes-
trian detection [26,29]. No matter the synthesized human data is collected from
publicly available graphical 3D models or from generalized templates, they can
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(manifold) learning especially when DNNs are used. Due to the high cost of col-
lecting and labeling highly granular dataset, we present a pipeline to form a large
labeled dataset with controllable granularity. In particular, we synthesized large
scale datasets from a highly articulated object, “human body” and validated
the dataset quality by performing human pose estimation using DNN models
trained from scratch purely on these synthesized datasets, called ScanAva.

Let’s assume image I = f(G,θ, Ev) contains a human figure, where G is
the person’s geometry appearance, θ is the person’s pose information, and Ev

is the environment and background’s parameters. Our dataset ScanAva forming
pipeline then includes (see Fig. 1): (1) collecting the appearance model G by
an affordable 3D scanning process; (2) rigging and one-time limb labeling of the
3D scans (i.e., avatars) based on their articulation for valid human reposing;
(3) defining a low dimensional pose descriptor for physically-valid reposing; (4)
3D data augmentation by changing the pose information θ with controllable
granularity based on a given application; and (5) rendering 2D images from
the 3D data with different environment’s parameters Ev. These steps lead to
generation of our ScanAva datasets, in which each image has a human figure
with the person’s pose physically-valid and precisely labeled.

3.1 Geometry Appearance Acquisition via 3D Scanning

An object’s geometry appearance G is a major component that affects its image.
We employed the conventional 3D model formats such as 3DS models (*.3ds),
Wavefront OBJ (*.obj), and PLY (*.ply) to represent G. In articulated cases,
G contains skeleton with multiple entries to represent each moving part G(i),
where i stands for the part index. In a rigid body case, G simply reduce to one
component in our model. In an articulated human body, based on its biomechan-
ics and skeleton, we predefined 14 moving parts (i.e., limbs) as head (H), torso
(T), left upper arm (LUA), left lower arm (LLA), left palm (LP), right upper
arm (RUA), right lower arm (RLA), right palm (RP), left upper leg (LUL), left
lower leg (LLL), left foot (LF), right upper leg (RUL), right lower leg (RLL),
and right foot (RF), as shown in Fig. 2a. The limbs are articulated together
with joints. Each joint state is described by a rotation angle. We employed a
state vector θ = {θ1, θ2, ..., θn} to describe the pose information. Our model
can be described by a graph where limb geometry acts as node and state vector
describes the edges between limbs. This graph varies depending on the target
configuration.

To get the 3D geometry model, we employ a Microsoft Kinect v1 to perform
3D scanning of the human body using off-the-shelf components and software.
Subject stands on a automatic rotator in front of the Kinect sensor. We em-
ployed a commercially available software, Skanect to extract 3D information
from the scanning frames [3]. The scanning process is shown on the monitor to
give realtime feedback. Our 3D scanning setup is shown in Fig. 2b. When the
space is limited, the camera’s field of view cannot cover the whole body. In this
case, we will pitch the camera up and down to extend the sensing area. The
whole body scan can be achieved by stitching them together.
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3.3 Manifold Pose Generation via a Low Dimensional Pose

Descriptor

To give a specific example, we model the human pose as follows. Following hu-
manoid robot convention [21], we define shoulder, neck, and hip as spherical
joints, elbow and knee as revolute joints and wrist and ankle as universal joints.
Higher degree joints can be decomposed into multiple one-degree joints. Each
arm/leg has 6 degree of freedom (DOF) and with a 3 DOF neck, giving θ a
dimensionality of n = 27. Pose space is actually a constrained manifold: not all
27-dimensional vectors represent valid poses. We assume two ways to generate
valid descriptor. One way is following kinematic constrains to make generated
descriptor physically valid which is helpful when motion data is limited. The
other is direct sampling from data lies on such manifold such as motion capture
data [2]. In first method, the two constraints considered during the generation
phase are joint angle constraints and global orientation constraints. We will use
a constraint matrix to indicate the range of each state variable as [θis, θie] for
i ∈ [1 : n], where θis and θie stand for the low and high acceptable ranges of the
state θi. For example, for the human elbow joint, the possible rotation range is
around from 0◦ to 145◦. In addition, depending on the application, there might
be global orientation constraints. For example, for in-bed poses, the torso will
lie approximately parallel to the bed. The Euler description for the body orien-
tation as (α, β, γ) will show the relative orientation of the body with respect to
the world frame [13]. In the context of walking, we can simply limit the Euler
angles to a range to mimic the up straight poses, for example α, γ ∈ [−30◦, 30◦].
Therefore, both joint angle and global orientation constraint types can be mod-
eled using range bounds. Within these bounds, poses can be generated from
a uniform random distribution, or they can be generated procedurally using a
grid-based approach.

Since this is used for training a DNN, we use the random approach to take ad-
vantage of a common training optimization, Stochastic Gradient Decent (SGD)
[9]. In SGD, a fixed-size batch is randomly selected from fixed size dataset with
random variation such as crop and scaling. In our work, random generation is
equivalent to random selection from an infinite training set as we sample from
a virtually continuous pose manifold.

3.4 Rendering 2D Images with Different Environment’s Parameters

Besides the subject state, we also introduce environment’s parameters Ev to
render realistic images. The environment includes all items in the scene and also
the lighting and camera’s parameters which can be simply described. Since in
the human pose estimation problem, we mainly care about the person in the
scene, we have fixed the camera parameters to 35mm focal length and simplified
this description by camera view point under spherical coordinate. For the back-
ground, instead of parameterized description, we directly sample from a context
image dataset such as LSUN [41] to generate images with different backgrounds.
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One direct benefit of our approach is that we can describe the synthesized
dataset in a more compact way. In our running example of human body, we only
need a rigged model (with 300,000 face mesh with the size around 35MB) and a
low dimension descriptors including θ and Ev, in which for 2000 pose information
is under 1MB compared to a standard dataset which with this many 512×512
pose images can get to up to 2GB in size. Another benefit is that classical
augmentation methods like shift and crop operations can be simply simulated
by changing the relative position of the human with respect to the camera.
Therefore, our approach can also accommodate these augmentation methods
besides the physically-valid state variable augmentations.

4 Synthetic Dataset Quality Evaluation

We evaluated the quality of our synthesized datasets by testing the human
pose estimation network’s performance when trained on ScanAva datasets from
scratch. To generate different versions of the ScanAva datasets, we collected 3D
scans from 7 participants, in which 4 of them repeated the scanning procedure
with various clothes. We generated 2000 images for each 3D scan with random
pose selected from CMUMoCap dataset [2] and random background from indoor
environment of LSUN[41]. We formed totally 15 ScanAva datasets to evaluate
their quality for pose estimation DNN training when tested on: (1) a small group
of individuals and (2) one specific person in different clothes. From each partic-
ipant, 10 to 15 corresponding 2D images are also captured using an iPhone 7
camera to be used as the real world test dataset, in which individuals were asked
to give random poses as they wish. Several demo images are shown in Fig. 4.

4.1 Synthetic vs. Real Domain Adaptation

Even when data is collected from the exact same person, domain shift is a com-
mon issue between synthetic and real world/human images. It is also known even
real world images collected with different devices are affected by this issue [19].
To minimize domain shift effects in learning and estimation, people try to make
both domains as similar as possible, for example aligning the 2nd order statistics
of the training and test datasets [35]. Visually perceiving the synthetic and real
images of a given person revealed that although the profiles are quite similar
in both domains, the details are different. Therefore, since we aim at a quick
and efficient large scale dataset forming, we applied two direct modifications to
weaken such differences in details by applying (1) Gaussian filtering (ScanAva-
gauss) and (2) direct white noise (ScanAva-wn) on images in both domains to
make their appearances as similar as possible.

4.2 Pose Estimation Performance of Trained DNN Models

To evaluate the quality of the synthesized datasets, we employed a state-of-the-
art DNN-based 2D human pose estimation algorithm, a stacked hourglass model
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(a)

(b)

Fig. 4. (a) Real human pose images, (b) synthesized ScanAva images using our pro-
posed approach.

[27] and train it from scratch with our synthesized ScanAva datasets and com-
pared their pose estimation performance with stacked hourglass models trained
on real human pose image dataset, MPII [4] (HG-pretrained) and synthetic hu-
man pose dataset, SURREAL [38]. During the training procedure, we kept the
hyper-parameters of the stacked hourglass model the same between experiments
to have a fair comparison among different training datasets. The chosen hyper-
parameters were learning rate 2.5e-4, 30 epochs, 8000 iterations, and 8 stacked
netwroks. For the pose estimation performance evaluation, we employed the con-
ventional pose estimation metric, the probability of corrected keypoints (PCK)
standard [20,39] to test the estimated joint locations against the ground truth
locations on real human pose images.

In the first experiment, we synthesized the ScanAva datasets using 7 partici-
pant 3D scan data without (ScanAva-no) and with domain adaption (ScanAva-
gauss and ScanAva-wn). The pose estimation accuracy results comparing the
performance of the stacked hourglass models trained on these ScanAva datasets
as well as models trained on MPII (called HG-pretrained) and SURREAL datasets
and tested on our real human test dataset is shown in Fig. 5a. From the fig-
ure, it is clear that pose estimation DNN model trained directly on raw syn-
thetic dataset shows poor estimation performance and domain adaptation by
applying Gaussian filtering or even adding white noise improves the model per-
formance significantly. Surprisingly, in high standard criteria like PCK0.2, the
model trained on ScanAva-gauss even surpasses the one trained on SURREAL
dataset, which in fact includes thousands of appearance variations compared
to our limited subject dataset. Nonetheless, there is an obvious gap between
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Fig. 5. Accuracy comparison of a DNN-based pose estimation model trained on differ-
ent datasets and tested on real human images from: (a) a small group of individuals,
(b) a specific person.

the performance of the models trained on synthetic data vs. real data, as one
expects.

In the second experiment, to test the capability of our dataset for individual-
ized pose estimation training, we synthesized 11 datasets of one participant with
varying clothes and also collected corresponding real images as a test dataset.
To fairly evaluate the generalization ability of the pose estimation model based
on these datasets, we trained the stacked hourglass DNN with scans from only 9
clothes and left the rest of scans out of model training. According to the results of
the domain adaptation from Fig. 5a, we used Gaussian filter as optimal domain
adapter in this experiment. The pose estimation results are shown in Fig. 5b,
where although models trained on our datasets falls behind the HG-pretrained
model, but when domain adapted surpass the model trained on SURREAL
dataset with a big margin. We believe performance drop of the DNN trained
on SURREAL mainly comes from the incompleteness of its templates, which
only contains the bare human body shapes instead of clothed ones, while in the
real world pose detection problems, people are rarely naked and come in the
variety of clothes. These outcomes emphasize that for person-specific pose esti-
mation/tracking in applications such as gaming, human-computer interaction,
and daily activity monitoring our approach can quickly and efficiently build a
large scale labeled dataset to be used for training of robust and accurate DNN
models.

5 Discussion on Future Work

In this paper, we presented a fast and cost-efficient pipeline to form large scale
labeled datasets from a small numbers of available samples via a semi-supervised
synthetic data generation approach. In an exploration for a time-efficient domain
adaptation method, without even having access to the target domain data, we
achieved significant performance improvement using Gaussian filtering which
made the synthetic and real data very similar in their appearance. Though our
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