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Abstract: In many biomedical and social science studies it is important to identify and predict the dynamic changes of as-

sociations among network data over time. We propose a varying-coefficient model to incorporate time-varying network

data, and impose a piecewise-penalty function to capture local features of the network associations. The advantages of

the proposed approach are that it is semi-parametric and therefore flexible in modeling dynamic changes of association

for network data problems, and capable of identifying the time regions when dynamic changes of associations occur.

To achieve sparsity of network estimation at local time intervals, we implement a group penalization strategy involving

overlapping parameters among different groups. However, this imposes great challenges in the optimization process

for handling large-dimensional network data observed at many time points. We develop a fast algorithm, based on

the smoothing proximal gradient method, which is computationally efficient and accurate. We illustrate the proposed

method through simulation studies and children’s attention deficit hyperactivity disorder fMRI data, and show that the

proposed method and algorithm efficiently recover dynamic network changes over time.

Key words and phrases: B-spline; Dynamic network; Model selection consistency; Proximal gradient method; Varying-

coefficient model.

1. Introduction

In social science, genomic, environmental and biomedical studies, it is scientifically important to

identify and predict associations and interactions among genes, spatial locations or social structures

effectively. Network modeling (e.g., Kolaczyk 2009) can effectively quantify the associations among

variables. Our method is motivated by a children’s attention deficit hyperactivity disorder study, where

the data can be obtained from the ADHD-200 sample initiative website http://fcon_1000.

projects.nitrc.org/indi/adhd200/. The test samples contain fMRI data from different

regions of interest of ADHD children’s brains, which are repeatedly measured at many time points.

We are interested in identifying associations and interactions among different regions of interest of

the brain over time so we can better understand how ADHD patients’ brains function.

Figure 1 illustrates the dynamic changes of associations among several regions of interest of a

brain over three time-points. We are interested in extracting the underlying signals of associations
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DYNAMIC MODEL SELECTION OF TIME-VARYING NETWORK

through modeling responses of brain activities over time. This can be formulated as a time-varying

network problem, where the regions of interest are variables or nodes in the network, and the associ-

ations among regions of interest represent edges connecting nodes of the network.

Recent development on network modeling includes high-dimensional graphical models by Mein-

shausen and Bühlmann (2006); Friedman et al. (2007); and Peng et al. (2009). The central idea of

these approaches is to estimate the precision matrix or the inverse of the covariance matrix which

provides a conditional correlation interpretation among variables in the graph, where zero partial

correlation implies pairwise conditional independence. In addition, Shen et al. (2012) and Zhu et

al. (2013) develop simultaneous grouping pursuit and feature selection for high-dimensional graphs.

For multiple graphs, Guo et al. (2011) jointly estimate graphical models to capture the dependence

among multiple graphs and their common structure, and Zhu et al. (2014) propose the maximum

penalized likelihood approach to model structural changes over multiple graphs to incorporate depen-

dency among interacting units.

Most of the existing literature targets the network data problem observed at one-time-point only.

However, networks can be observed at multiple time-points where the dynamic changes of asso-

ciations is of scientific interest and requires quantification. For example, in gene expression data,

functional magnetic resonance imaging (fMRI), and social network data, it is common that associa-

tions can change over time, and therefore it is important to model and estimate the dynamic changes

of the network structure.

Modeling time-varying network data could be statistically and computationally challenging as

the network structures over time could be quite complex, involve large-dimensional parameter esti-

mation, and be computationally highly intensive with high-dimensional matrix operations. Existing

approaches for time-course network data include linear mixed-effect modeling to incorporate tem-

poral correlation (Shojaie and Michailidis 2010), the kernel-reweighted logistic regression method

for time-evolving network structure (Song et al. 2009, Kolar et al. 2010), and time-varying Markov

random fields (Kolar and Xing 2009). However, these approaches are mainly for the estimation of

time-varying networks, and are not designed for model selection to capture the changes of associa-

tions in local time regions.

We propose a dynamic network model to capture the changes of associations through a varying-

coefficient model (Hastie and Tibshirani 1993, Huang et al. 2002, Cheng et al. 2016). The modeling

for dynamics of partial correlations is semi-parametric and therefore flexible in modeling the nonlin-

ear changes of coefficients. In addition, we propose a one-step penalized polynomial spline method to
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detect zero regions in the varying coefficients. Therefore, we are able to locate the time regions when

dynamic changes of associations occur. This is applicable to identifying the changes of associations

among different regions of interest over time as in the example of fMRI data for ADHD patients,

which could be potentially useful for detecting dynamic changes in brain functions.

The one-step penalized polynomial spline method proposed in this paper is very different from

the penalization methods (Xue 2009, Wei, Huang and Li 2011, Xue and Qu 2012) recently developed

for variable selection in semi-parametric models. Those variable selection approaches are developed

to determine if a non-parametric function is zero in the entire region. Therefore a L2 norm of the

spline coefficients is penalized to shrink a function to zero on the entire region. However, the one-

step penalized polynomial spline method in this paper aims to detect local zero regions in the varying

coefficients, therefore to locate the time regions when dynamic changes of associations occur. We

utilizes the local property of the polynomial splines that the spline functions on a given local interval

only depend on the neighboring B-spline bases. Therefore, we propose to penalize only those coeffi-

cients relevant to a given local interval in a group-wise fashion. This new form of penalization raises

challenges in both computation and theory development, that we will discuss in details in Sections 3

and 4.

In order to achieve sparsity for network data at local time intervals, we propose a piecewise

penalized loss function incorporating the local features of the varying-coefficient models in dynamic

modeling. The piecewise penalization strategy involves overlapping spline-coefficient parameters

among different penalty groups. However, the popular coordinate-wise descent algorithm cannot be

applied in our optimization. We propose an alternative algorithm which is computationally efficient

and accurate based on the proximal gradient method. The advantage of this approach is that it does

not involve large-dimensional matrix inversion, and is capable of handling large-dimensional network

data.

One computational challenge we face for time-varying network data is that the volume of this

type of data is extremely large, as it includes observations for many nodes over many time points.

For example, when the network size is about 100 and observed over 50 time points, the dimension of

the matrix operation could reach 105 in iteration process. Existing methods for handling time-varying

networks mainly target relatively small network sizes with limited time points. Therefore there is a

great demand to develop computationally efficient and fast algorithms to solve the large-dimensional

time-varying network problem. The proposed group penalization strategy effectively ensures sparsity

at local time intervals; however, it brings additional computational cost in the optimization process,
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as it requires a high degree of memory storage and matrix operations for solving the dynamic network

problem. In theory, it is also more challenging to establish local-feature model selection consistency

than global-feature model selection consistency. We show that the proposed method identifies zero

estimators in the non-signal time regions, and estimates the partial correlation functions uniformly

consistently in the signal regions.

Recent work on dynamic modeling for network change includes Lebre et al.’s (2010) reversible

jump MCMC, Zhou et al.’s (2010) time-series model for covariance matrix, Kolar et al. (2009),

Kolar and Xing (2011) and Kolar and Xing’s (2012) piecewise constant varying-coefficient varying-

structure (VCVS) models, and Chen and Leng’s (2016) nonparametric model for the dynamic covari-

ance matrix. Our approach is very different from these approaches as we use the penalized polynomial

spline function for modeling network change which is able to accommodate many time points with

scalable computing cost. This is in contrast to the reversible jump MCMC approach, which is mainly

applicable for a limited number of time points, and is also very different from the piecewise constant

VCVS approach which models abrupt change instead of smooth change for network structure. Zhou

et al.’s (2010) method is based on the penalized maximum likelihood approach where the covariance

matrix is estimated through a kernel smoother. However, they have not established the sparsistency

property by which all zero parameters are estimated as zero with probability approaching one. In

contrast, we establish the sparsistency property for the proposed method, which is quite important for

detecting dynamic network structure change. Chen and Leng’s (2016) approach is nonparametric in

that no assumption is assumed on the covariance matrix, while our method is semi-parametric in that

we model each partial correlation function as a semi-parametric varying-coefficient function.

In addition, the development of dynamic brain network models is also quite active. To study

neural connectivity disruptions caused by disease pathology, it is important to develop dynamic brain

network models which capture the temporal connectivity of brain networks. Current dynamic brain

network models include dynamic causal models (DCM) (Friston et al., 2003) and a nonlinear ex-

tension of the DCM (Stephan et al., 2008) which builds on the causal neuronal model with dynamic

specified input, state, and output variables corresponding to stimulus functions, the neuronal activities

or biophysical variables, and the outcomes measured from the brain regions of interest. In addition,

Wang et al. (2015) investigate the important role of the dynamic temporal-topological structure of the

ADHD brain network using sliding time-window correlation coefficients. Wee et al. (2016) proposed

the fused sparse learning algorithm to jointly estimate temporal networks, while encouraging tem-

porally correlated networks to form similar network structures through the fused Lasso (Tibshirani
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et al., 2005). Furthermore, Lee et. al. (2011) recover the sparse brain network derived from partial

correlations when the sample size is relatively small while the dimension of parameters is high. Wee

et al. (2012) also consider a constrained sparse linear regression model using the LASSO penalty

when there is a relatively small number of connections among brain networks. However, the sparse

network models do not incorporate dynamic changes of the brain network.

Furthermore, the diffusion wavelet has been proposed to analyze time-varying brain networks. It

provides a framework to study properties and structures of a graph in the spectral domain and pro-

vides multi-resolution and interpretable basis representations for network data. Chung (1997) gave a

comprehensive overview of spectral graph theory. Leonardi and Van De Ville (2011) applied spec-

tral graph wavelet transform (SGWT) to brain functional connectivity data. They decomposed fMRI

data using the SGWT and used wavelet coefficients to understand the connectivity of the network.

However, this connectivity can only be interpreted in a specific frequency band. Kim et al. (2013)

applied the diffusion wavelet to conduct multi-resolution analysis on brain networks and compared

connectivity differences between healthy and bipolar patients. All these works focused on represent-

ing information contained in a graph via a few interpretable wavelet bases, which capture structure

differences in brain networks. In general, the use of the diffusion wavelet is to reduce dimensionality

while appropriately incorporating the topology information in the network. In contrast, our work aims

to model pairwise connectivity of the network. For future research, one may first use our method to

estimate network connectivities, followed by a multi-resolution analysis using the diffusion wavelet

to understand the differences in such networks.

The paper is organized as follows. Section 2 proposes the penalized polynomial spline method for

time-varying network data. Section 3 provides the smoothing proximal gradient algorithm to capture

dynamic changes of network data over time. Section 4 presents asymptotic theory of model selection

local consistency. In Section 5, we compare the numerical performance of the proposed smoothing

proximal gradient algorithm with other existing approaches. Section 6 illustrates the proposed method

for the fMRI data of ADHD patients. The final section provides concluding remarks and a brief

discussion.

2. Time-varying networks

In this paper, we focus on time-varying network data and are interested in modeling dynamic

changes in its partial correlations or structural changes of the network over time. Both the corre-

lation function and the partial correlation function can be used to characterize associations among

variables of interest. We focus on the partial correlation function mainly due to the fact that we are

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



DYNAMIC MODEL SELECTION OF TIME-VARYING NETWORK

interested in conditional dependence/independence among variables in a network. It measures the

direct relationship between two variables while removing the influence of other variables.

Let y(t) =
(
y1(t), · · · , yp(t)

)′ be a set of time-varying variables observed at time t, and {y(t), t ∈

I} be the corresponding continuous stochastic process defined on a compact interval I. Without

loss of generality, let I = [0, 1]. Suppose the data consists of n subjects with measurements taken

at m discrete time-points 0 ≤ tk1 < · · · < tkm ≤ 1 for each subject k = 1, . . . , n. For each

subject, the observation yk(tk) =
(
yk(tk1), · · · ,yk(tkm)

)′ is a discrete realization of the continuous

stochastic process {y(t), t ∈ I} at m subject-specific time points tk = (tk1, . . . , tkm). Here yk(tku) =(
yk1(tku), · · · , ykp(tku)

)′ for u = 1, . . . ,m are p variables observed at time tku for the kth subject.

Let ρ(t) = {ρ12(t), · · · , ρ(p−1)p(t)}′ be the partial correlation function of y(t). Suppose each par-

tial coefficient function ρij(t) varies in time smoothly. We can apply the polynomial spline to approx-

imate the time-varying coefficients since it provides a good approximation of any smooth function,

even with a small number of knots. Let {νh}Nn
h=1 beNn interior knots within the interval [0, 1] and Υ be

a partition of the interval [0, 1] withNn knots. That is Υn = {0 = ν0 < ν1 < · · · < νNn < νNn+1 = 1}.

The polynomial splines of order q + 1 are functions with q-degree of polynomials on intervals

[νh−1, νh), h = 1, . . . , Nn and [νNn , νNn+1], and q − 1 continuous derivatives globally. We denote

the space of such spline functions by Gn. Let {Bh (·)}Jnh=1 be a set of B-spline bases of Gn, where

Jn = Nn + q + 1 and the function ρij(t) for any 1 ≤ i < j ≤ p can be approximated by

ρij(t) ≈ gij(t) =
Jn∑
h=1

βijh Bh(t) = (βij)′B(t),

where βij =
(
βij1 , . . . , β

ij
Jn

)′
is a set of coefficients, and B(t) = (B1(t), . . . , BJn(t))′ are B-spline

bases. In practice, different B-spline bases can be used to approximate different ρij(t). For simplicity,

the same set of B-spline bases is used for different partial correlation functions in this paper.

In addition to polynomial splines, other basis functions can also be used to approximate unknown

functions including wavelet and trigonometric polynomials. Sections 2.5 and 2.6 of Fan and Gijbels

(1996) provide a review of the basis choices. The reason we choose the polynomial spline is due to its

sound numerical properties as well as excellent approximation powers. Given a sufficient number of

knots, any continuous function can be approximated arbitrarily well by polynomial splines under the

assumption that it is reasonably smooth. However, in general, polynomial splines cannot approximate

functions with discontinuities and rapid variations sufficiently well. For discontinuous or rapidly
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varying functions, other basis functions such as the wavelet might be more suitable.

Suppose y(t) has mean 0 and covariance Σ(t). Denote the concentration matrix Σ−1(t) by

(σij(t))p×p. Then one can express yi(t) by a varying coefficient model as

yi(t) =
∑
j 6=i

βij(t)yj(t) + εi(t), (2.1)

with βij(t) = ρij(t)
√
σjj(t)/σii(t), and V ar(εi(t)) = 1/σii(t). The errors εi(t) can be correlated

over time. However, in the following, the longitudinal correlation is not incorporated, and instead we

assume that εi(t) is independent over time. We focus on the development of methods to identify the

local sparsity of the coefficient functions {βij(t)} over time. In the traditional polynomial spline esti-

mation, one replaces ρij(t) with gij(t), and estimates the spline coefficients β = {βij, 1 ≤ i < j ≤ p}

by minimizing the weighted sum of squares in (2.2). The advantages of spline approximation for the

time-varying coefficient model are that it is computationally fast and efficient.

In this paper we are interested in locally sparse estimators of the partial correlations that can

characterize dynamic changes of network associations over time. The B-spline basis function has a

desirable local property. For any interval constructed by two consecutive knots, denote as (νh−1, νh)

for 1 ≤ h ≤ Nn + 1. If t ∈ (νh−1, νh), the spline function gij(t) is only affected by basis functions

Bh, . . . , Bh+q. Therefore, the spline function gij(t) is locally zero within the interval (νh−1, νh), if and

only if the spline coefficients γijh = (βijh , . . . , β
ij
(h+q))

′ are all zero. In addition, the whole region [0, 1]

can be divided into Nn + 1 intervals by the spline knots. Therefore, we penalize the group of spline

coefficients associated with each local interval [νh−1, νh] in a group-wise fashion. Consequently, this

provides locally sparse spline estimators ρ̃ij(t) which can be completely zero on certain time intervals

spanned by the knot sequence.

We propose the following piecewise penalized loss function to achieve sparsity for the network

data:

PL(β,σ, t,y) =
1

2nm

n∑
k=1

p∑
i=1

m∑
u=1

wiku

(
yki (tku)−

p∑
j 6=i

Jn∑
h=1

βijh Bh(tku)

√
σjj(tku)

σii(tku)
ykj (tku)

)2

+

p∑
i<j

Nn+1∑
h=1

Pλn(‖γijh ‖), (2.2)

where y =
{
yk(tk)

}n
k=1

, β = (β1,2
1 , . . . , β1,2

Jn
, . . . , βp−1,p1 , . . . , βp−1,pJn

)′ is a p(p− 1)Jn/2-dimensional
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spline coefficient, σ = {σii(t)}pi=1 with t = (t1, . . . , tn)′, and wiku are nonnegative weights and

typically can be chosen as σii(tku). In addition, ‖ · ‖ is the vector L2-norm. Note that in contrast to

Peng et al.’s (2009) loss function, both the weights and the components in the concentration matrix

are varying over time.

The first term of (2.2) is the weighted sum of squares, and the second term Pλn of (2.2) is the

penalty function which can be chosen from LASSO, SCAD or the adaptive LASSO described in

subsection 3.1. The performance of the penalty function crucially depends on the tuning parameter

λn, whose selection will be discussed in subsection 3.2. Intuitively, if ‖γijh ‖ is shrunk towards zero,

then all elements of γijh are zero and the spline function gij(t) is locally zero on the corresponding

interval. The penalty term in (2.2) is different from the typical penalty for global model selection in

semi-parametric models, such as those proposed in Xue (2009), and Xue and Qu (2012). Here we

incorporate the local features of varying-coefficient models and ensure local sparsity of the dynamic

modeling. Zhou et al. (2013) incorporated similar idea to detect zero sub-regions for functional

coefficients in functional linear regression model through a two-step procedure.

Both β and σ are unknown parameters but β is the main parameter of our interest. To estimate β

in the penalized loss (2.2), σ needs to be specified and a two-step iterative procedure will be proposed

in the algorithm in the next section.

Let yiu = (y1i (t1u), . . . , y
n
i (tnu))

′, ỹiu =
√

wiu

nm
yiu, ỹi = (ỹ′i1, . . . , ỹ

′
im)′, and Yn = (ỹ′1, . . . , ỹ

′
p)
′

be a nmp-dimensional vector. Let Xn = (x̃′(1,2), . . . , x̃
′
(p−1,p)) be a (nmp) × {p(p − 1)Jn/2}-

dimensional matrix, with x̃(i,j) = (01, . . . ,0i−1, z
j
(i,j),0i+1, . . . ,0j−1, z

i
(i,j), . . . ,0p)

′, where 0k =

{0}Jn×nm, and zj(i,j) =
(
zj(i,j),1, . . . , z

j
(i,j),m

)′
, with

zj(i,j),u =

(
B(t1u)

√
σ̃jj(t1u)

σ̃ii(t1u)
y1j (t1u), . . . ,B(tnu)

√
σ̃jj(tnu)

σ̃ii(tnu)
ynj (tnu)

)
,

for u = 1, . . . ,m, and σ̃ii(tu) = σii(tu)/wiu. Then the corresponding loss function (2.2) is equivalent

to

L(β,σ,Yn) =
1

2
‖Yn −Xnβ‖2 +

p∑
i<j

Nn+1∑
h=1

Pλn(‖γijh ‖). (2.3)

Let β̂ be the minimizer of object function (2.2) or (2.3). Then the resulting estimator for the partial

correlation function ρij(t) is defined as ρ̂ij(t) =
(
β̂ij
)T

B (t).

3. Implementations
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3.1 Algorithms

In this section, we propose an algorithm to obtain an optimal solution for the objective function

(2.3). Let the penalty function Pλn(‖γijh ‖) in (2.3) follow the adaptive Lasso penalty (Tibshirani

1996, Zou 2006), that is, Pλ(‖γijh ‖) = λnτ
ij
h ‖γ

ij
h ‖, where τ ijh = 1/‖γ̃ijh ‖r with r > 0 and γ̃ijh is a

consistent estimator of γijh . So the penalty term can be considered as an adaptive group LASSO with

overlapping groups. When the groups overlap, if one group is shrunk to zero, all the coefficients in

this group shrink to zero, even though some coefficients in this group also belong to other nonzero-

coefficient groups. The solution space and theoretical properties of the group LASSO with overlaps

are discussed in Jenatton et al. (2011) and Obozinski et al. (2011), which indicate that traditional

algorithms for LASSO cannot be directly applied to the penalized loss function in (2.2).

However, since the dual norm of the L2-norm is still the L2-norm, the L2-norm γijh can be for-

mulated as max‖αij
h ‖≤1

(αijh )′γijh , where αijh ∈ R(q+1) is an auxiliary vector associated with γijh . A

similar transformation and its properties have been discussed in Chen et al. (2012), Jacob et al. (2009)

and Obozinski et al. (2011). Let Q = {α|‖αijh ‖ ≤ 1, 1 ≤ i < j ≤ p, h = 1, · · · , Nn + 1}. We can

rewrite the group adaptive LASSO penalty for the overlapping parameters in (2.2) as follows:

g0(β) = λn

p∑
i<j

Nn+1∑
h=1

τ ijh ‖γ
ij
h ‖ = max

α∈Q

p∑
i<j

Nn+1∑
h=1

λnτ
ij
h (αijh )′γijh = max

α∈Q
α′Cβ, (3.1)

where C ∈ R[(q+1)(Nn+1)p(p−1)/2]×[p(p−1)Jn/2] is an indicator matrix with the element defined as

C(k,l) =

 λnτ
ij
h k = (r − 1)(Nn + 1)(q + 1) + (h− 1)(q + 1) + v, l = (r − 1)Jn + (h− 1) + v

0 otherwise
,

where r = (i− 1)(p− i+ 2) + (j− i− 1) and v = 1, · · · , (q+ 1). Note that C is a very sparse matrix

with only one non-zero element in each row, and therefore only requires a relatively small amount of

memory storage in the optimization procedure. Through the transformation, the group penalization

terms no longer present overlapping parameters.

However, this introduces a new problem, in that the penalty function g0(β) in (3.1) is a non-

smooth function of β. To circumvent this problem, we need to build a smooth function to approximate
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g0(β). Let D = maxα∈Q ‖α‖2/2 and

gµ(β) = max
α∈Q

(
α′Cβ − µ

2
‖α‖2

)
, (3.2)

where µ is the tolerance parameter. Then gµ(β) is a quadratic approximation for g0(β) with the

maximum difference of µD. That is,

g0(β)− µD ≤ gµ(β) ≤ g0(β).

In order to control the maximum difference, we choose the tolerance level ε = µD, or equivalently

µ = ε/D. Consequently, the loss function in (2.3) can be approximated by

P̃L(µ,β,σ) =
1

2
‖Yn −Xnβ‖2 + gµ(β).

To minimize the loss function P̃L(µ,β), we need to calculate the gradient of P̃L(µ,β). For

any µ > 0, gµ(β) is convex and continuously differentiable and the corresponding gradient function

∇gµ(β) is C ′α∗, whereα∗ is the optimal solution in (3.2). Let uijh = λnτ
ij
h γ

ij
h /µ and the closed form

of α∗ can be expressed as

(αijh )∗ =


uij

h

‖uij
h ‖
, if

∥∥uijh ∥∥ > 1

uijh , if
∥∥uijh ∥∥ ≤ 1

. (3.3)

Therefore the partial derivative∇P̃L(µ,β,σ) with respect toβ can be calculated asX ′n (Xnβ − Yn)+

C ′α∗. Moreover, ∇P̃L(µ,β,σ) is Lipschitz-continuous with the Lipschitz constant

M = λmax (X ′nXn) +
‖C‖2

µ
,

where λmax is the largest eigenvalue of (Xn)′Xn and ‖C‖ = max‖α‖≤1 ‖Cα‖. The proximal operator

can be defined as

QL(β,β′,σ) =

{
P̃L(µ,β′,σ) +∇PL(µ,β′,σ)(β − β′) +

M

2
‖β − β′‖2

}
,
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and β can be updated at the (l + 1)th iteration by applying the proximal gradient algorithm through

β(l+1) = argmin
β

QL(β,β(l),σ)

= argmin
β

{
P̃L(µ,β(l),σ(l)) +∇PL(µ,β(l),σ(l))(β − β(l)) +

M

2
‖β − β(l)‖2

}
.(3.4)

Convergence is guaranteed since the inequality P̃L(µ,β(l+1),σ(l)) ≤ QL(β,β(l),σ(l)) holds for

each iteration. It is not difficult to check if the inequality holds, and details are discussed in Chen

et al. (2012). The above penalization strategy is able to achieve sparsity corresponding to the group

parameters γh; however, it does not guarantee the sparsity of each element in β̂ obtained from (3.4).

Alternatively, we can set βijh = 0 if the ‖βijh ‖ < ε∗ for a small tolerance level ε∗. For σ, if each subject

is observed at the same time over m time points, i.e. tku = tu for any k = 1, . . . , n and u = 1, . . . ,m,

then each component of σ(l+1) =
{(

(σ11)(l+1)(tu), · · · , (σpp)(l+1)(tu)
)}m

u=1
at the l + 1-th iteration

can be updated by

1

(σii)(l+1)(tu)
=

1

n

n∑
k=1

(
yki (tu)−

p∑
j 6=i

Jn∑
h=1

(βijh )(l)Bij
h (tu)

√
(σjj)(l)(tu)

(σii)(l)(tu)
ykj (tu)

)2

, (3.5)

and the weight component for the ith subject is w(l+1)
iu = (σii)(l+1). If each subject is observed at the

different m time points, one can update (σii)
(l+1)

(t) using a polynomial spline estimation method.

Let ε̂2i (tku) =
(
yki (tku)−

∑p
j 6=i
∑Jm

h=1(β
ij
h )(l)Bij

h (tku)
√

(σjj)(l)(tku)

(σii)(l)(tku)
ykj (tku)

)2
. For each i = 1, . . . , p,

one can estimate σii(t) by a polynomial spline regression using {1/ε̂2i (tku)}n,mk=1,u=1 as the response

variables, and the spline basis generated on time points {(tku)}n,mk=1,u=1 as explanatory variables. We

summarize the algorithm as follows.

Algorithm 1 Proximal gradient algorithm for estimating partial correlation networks

Input: Set desired tolerance levels ε and ε∗ (set to be 10−3), obtain µ = ε/D and matrix C, and calculate the
step size M ; initialize the parameters β,σ as β(0) and σ(0).

Output: β̂ and σ̂.
1: Compute α∗ according to (3.3) and calculate ∇P̃L(β(l), µ) = X ′n(Xnβ(l) − Yn) + C ′α∗;
2: Obtain β(l+1) by minimizing (3.4), i.e., β(l+1) = argminβ QL(β

(l),β), and set the elements in β(l+1)

less than ε∗ as zero;
3: Update σ(l+1) and w(l+1) by calculating (3.5);
4: Return to Step 1 if

∥∥∥QL(β(l+1),β(l),σ(l+1))−QL(β(l),β(l−1),σ(l))
∥∥∥ > ε.

We can also apply the alternating direction method of multipliers (ADMM) (Boyd et al. 2011)
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to approximate g0(β) by gµ(β) in (3.2) as follows. The adaptive LASSO with overlapping group

penalty can be solved by a constrained optimization:

min
β,β∗

1

2
‖Y − Xβ‖2 + gµ(β∗), (3.6)

s.t. β = β∗.

This can be further formulated as a scaled augmented Lagrangian problem:

Lρ =
1

2
‖Y − Xβ‖2 + gµ(β∗) +

κ

2
‖β − β∗ + η‖22, (3.7)

where η are dual variables and κ is a scalar and can be preset. Therefore, the ADMM algorithm

solving (3.7) leads to three iteration steps for β,β∗,η. That is, at the (l + 1)-th iteration,

β(l+1) = argmin
β

1

2
‖Y − Xβ‖2 +

κ

2
‖β − β∗(l) + η(l)‖22, (3.8)

β∗(l+1) = argmin
β

gµ(β∗) +
κ

2
‖β(l+1) − β∗ + η(l)‖22,

η(l+1) = η(l) +
(
β(l+1) − β∗(l+1)

)
.

The first minimization problem in (3.8) is easy to solve since the objective function is quadratic. The

function gµ(β∗) in the second minimization is a smoothing function and thus can be approximated by

the Taylor expansion at β∗(l), i.e. gµ(β∗) ≈ gµ(β∗(l)) + 1/2∇gµ(β∗(l))(β∗−β∗(l)). Thus∇gµ(β∗) ≈

∇gµ(β∗(l))/2 = C ′α∗(l)/2, where α∗(l) can be calculated by (3.3) corresponding to β∗(l). So the

solution β∗(l+1) = β(l+1) + η(l) − λC ′α∗(l)/(2κ). The algorithm is summarized as in Algorithm 2:

Algorithm 2 Alternating direction method of multipliers for estimating partial correlation networks

Input: Set desired tolerance levels ε, ε∗ and scalar κ, obtain µ = ε/D and matrix C; initialize the parameters
β,σ as β(0) and σ(0).

Output: β̂ and σ̂.
1: Compute α∗(l) according to (3.3);
2: Obtain β(l+1),β∗(l+1),η(l+1) according to (3.8), and set the elements in β(l+1) less than ε∗ as zero;
3: Update σ(l+1) and w(l+1) by calculating (3.5);
4: Return to Step 1 if

∥∥∥β(l+1) − β∗(l+1)
∥∥∥ > ε.

Both SPG and ADMM provide approximations of (3.1), however, they use different approxi-

mation methods and therefore the final solutions from SPG and ADMM are different. The proximal

gradient method has the following advantages: (1) we can construct a smoothing approximation to the
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objective function, which makes the convergence fast; (2) it does not require large matrix inversion

and only involves sparse matrix operations. These could reduce algorithm complexity and improve

computational speed significantly. On the other hand, the ADMM requires inverting a matrix, which

could lead to infeasible computing when the network size is large. More details are provided in

Section 5.

3.2 Tuning parameters selection

The choice of tuning parameters is critical as this determines the performance of the proposed method.

Tuning parameter selection for the varying-coefficient model involves two parts. One is the selection

of the sequence of knots for the polynomial spline, and the other is the selection of the tuning pa-

rameter in the penalty function. For simplicity, we set the number of knots to be the same order

of n1/(2q+3), where n is the sample size and q is the order of the polynomial spline. This choice of

the number of knots balances between the variance and the squared bias of the polynomial spline

estimators (Huang, 1998; Xue and Yang 2006; Huang et al., 2007). One can also use a data-driven

knot number which can be selected via a BIC procedure similarly as below. More detailed discussion

on knot selection can be found in Huang et al. (2004), Xue et al. (2010) and Xue and Qu (2012).

Although, for convenience, we select equally-spaced knots in our numerical studies, our theory is

developed under a more general setup which allows for more flexible choices of knot sequence.

In the process of selecting the tuning parameters associated with the penalty function, we use

the Bayesian Information Criteria (BIC) procedure, which can be found in the model selection lit-

erature (e.g., Qu and Li 2006; Wang, Li and Tsai 2007). Specifically, given the tuning parameters

λn, denote the estimator β̂λn , and calculate the estimators σ̂λn and ŵλn through the formula (3.5).

Let κn be the total number of nonzero elements in β̂λn . Then the BIC is given as BIC(λn) =

nm log {MSE (λn)}+ κn log(nm), with

MSE (λn) =
1

nm

n∑
k=1

p∑
i=1

m∑
u=1

ŵiu,λn

yki (tku)−
p∑
j 6=i

Jn∑
h=1

β̂ijh,λnB
ij
h (tku)

√
σ̂jjλn(tku)

σ̂iiλn(tku)
ykj (tku)

2

.

The optimal turning parameter λ̂n is selected by minimizing BIC(λn).

4. Asymptotic theory

In this section we investigate the asymptotic properties of the varying-coefficient estimator ρ̂(t)

based on the polynomial spline approximation. Since one distinct feature of our approach is the
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estimation and selection of local features in dynamic network modeling, we will focus on establishing

the local-feature model selection consistency of ρ̂(t). That is, if true ρ(t) is 0 for any given region,

the estimator of ρ(t) is 0 with probability approaching 1.

Before presenting the asymptotic properties of the proposed model, we first introduce the follow-

ing regularity conditions that are required to establish the asymptotic properties.

C1: The weights {wit}pi=1 are uniformly finite for t ∈ I . That is, there exist positive constants w0

and w∞ such that 0 < w0 ≤ mini{wit} ≤ maxi{wit} ≤ w∞ <∞ for any t ∈ I .

C2: There exists a constant c such that max1≤i≤p supt∈I |σ̂
ii(t)− σii(t)| ≤ c

√
log(nm)Nn

nm
holds with

probability approaching to 1 as sample size n→∞.

C3: We assume that for any t ∈ I, y(t) has mean 0 and covariance matrix Σ(t) whose eigen-

values are assumed to be uniformly bounded for t ∈ I . That is, 0 < inft∈I λmin(Σ(t)) ≤

supt∈I λmax(Σ(t)) < ∞ where λmin and λmax are the minimum and maximum eigenvalues of

Σ(t) respectively. Furthermore, for some sufficiently large l > 0, supt∈IE |Yi (t)|l< +∞, for

i = 1, . . . , p.

C4: The observation times {tku}n,mk=1,u=1 are independent and follow a distribution fT (t) on I , and

fT (t) is absolutely continuous and the bounded away from zero and infinity.

C5: For 1 ≤ i 6= j ≤ p, the partial correlation function ρij(·) has q continuous derivatives with

q ≥ 1.

C6: For 1 ≤ i 6= j ≤ p, let Eij ⊂ I be the null region such that ρij(t) = 0 if t ∈ Eij and ρij(t) 6= 0

if t ∈ (Eij)c. If Eij 6= ∅, we assume that Eij = [eij1 , e
ij
2 ] is a closed interval. Let ρ̇ij(t) be the

first order derivative of ρij(t). We assume there exists a constant C > 0 such that |ρ̇ij(t)| ≥ C

for any t ∈ [eij1 − ε, e
ij
1 ] ∪ [eij2 , e

ij
2 + ε] and a small constant ε > 0.

C7: The set of knots denoted as Υn = {0 = ν0 < ν1 < · · · < νNn < νNn+1 = 1} is quasi-uniform,

i.e., there exists b > 0 such that

max(νh+1 − νh, h = 0, · · · , Nn)

min(νh+1 − νh, h = 0, · · · , Nn)
≤ b.

C8: The number of interior knots Nn and tuning parameters λn satisfies

λnNn/αn → 0, λnN
2
n/αn →∞, λn

√
Nnnm/ log (nm)/αn →∞,
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where αn =
√
Nn/nm+N−1n .

Condition C1 indicates that the weights are bounded away from 0 and infinity. Condition C2

assumes that there exists a consistent estimator for σii(t), for each i = 1, . . . , p. Similar conditions

of C1 and C2 can also be found in Peng et al. (2009). In the supplementary material, we propose

an estimator that meets this condition by kernel smoothing of the residuals of least-square fitting as

discussed in the algorithm. Conditions C3, C4, C5 and C7 are standard conditions in the polynomial

spline framework, and are required to ensure consistency for spline estimation of the varying coeffi-

cient model. Similar conditions can be found in Huang et al. (2002), Xue and Qu (2012), and Wang

et al. (2014). Condition C6 is used to separate time regions between zero correlation and nonzero

correlation, and thus leads to consistency of the partial correlation estimators.

To present our theoretical results, we first introduce an oracle estimator, which estimates each

ρij (t) under the assumption that the null regions of each ρij (t) are known. It is constructed only

for the proof of the asymptotic results, and is not useful for analyzing real data. One notes that, for

each end point of the null region Eij = [eij1 , e
ij
2 ] in condition (C6), there exist knots νlij1 and νlij2 in

the knot sequence Υ = {0 = ν0 < ν1 < · · · < νNn < νNn+1 = 1} such that eij1 ∈ [νlij1
, νlij1 +1) and

eij2 ∈ [νlij2 −1
, νlij2

). Let Jij =
{

1, . . . , νlij1
− 2, νlij2

+ q + 2, . . . , Jn

}
. An oracle estimator β̃(o) ={

β̃
ij(o)
h , 1 ≤ h ≤ Jn, 1 ≤ i < j ≤ p

}
is constructed by taking all coefficients β̃ij(o)h = 0 for h =

νlij1 −1
, . . . , νlij2

+q+1 and estimating the rest of the coefficients by minimizing the sum of the squares

1

2nm

p∑
i=1

n∑
k=1

m∑
u=1

wiu

yki (tku)−
p∑
j 6=i

∑
h∈Jij

βijh Bh(tku)

√
σ̂jj(tku)

σ̂ii(tku)
ykj (tku)

2

. (4.1)

Denote the resulting oracle estimator of the partial coefficient functions by ρ̃ij (t) , 1 ≤ i < j ≤ p.

Then the oracle estimators enjoy both estimation consistency and null region selection consistency as

indicated in the following Theorem.

Theorem 1. Under conditions (C1)-(C8), for any 1 ≤ i < j ≤ p, the oracle estimators satisfy

∥∥ρ̃ij(o) − ρij∥∥
2

= Op

(√
Nn

nm
+N−1n

)
,

sup
t∈I

∣∣ρ̃ij(o)(t)− ρij(t)∣∣ = Op

(
N

3/2
n√
nm

+N−1n

)
. (4.2)

In addition, let Ẽij = {t ∈ I, ρ̃ij (t) = 0} be the corresponding null region of ρ̃ij(o) (t) . Then Eij ⊂
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Ẽij, and the set Ẽij\Eij converges to the empty set with probability approaching to 1 as n→∞.

Theorem 2. Under conditions (C1)-(C8), when n is sufficiently large, the minimizer {ρ̂ij}1≤i<j≤p of

the penalized likelihood function in (2.2) satisfies ‖ρ̂ij − ρij‖2 = Op

(√
Nn

nm
+N−1n

)
for any 1 ≤ i <

j ≤ p.

Theorem 3. Under conditions (C1)-(C8), for any 1 ≤ i < j ≤ p, let Êij = {t ∈ I, ρ̂ij (t) = 0}be the

corresponding null region of ρ̂ij (t) . Then Eij ⊂Êij, and the set Êij\Eij converges to the empty set

with probability approaching to 1 as n→∞.

Theorem 2 shows that the estimator by minimizing the penalized loss function (2.2) is L2 consis-

tent in estimating the partial correlation functions, and Theorem 3 further shows that, with probability

approaching to one, it can correctly identify zero estimators in the non-signal time regions. There-

fore, the proposed method can correctly produce a locally sparse network and efficiently model the

dynamic changes of network data for sufficiently large data. The proof of the Theorem is provided

in the supplementary material.

Note that Theorems 2 and 3 are established under the assumption that the structure of networks

changes smoothly over time (e.g, Condition C5). Therefore, the proposed spline method is developed

for networks with smooth changes.

5. Simulation

In this section, we conduct simulation studies to illustrate the performance of the proposed

method based on the proximal gradient method (SPG) described in Section 3. We first compare the

performance of the SPG using different degrees of polynomial spline. Then the proposed approach

with the best order of B-spline approximation is selected to compare with other existing approaches

such as SPACE (Peng et al. 2009), the kernel-based method (Kolar et al. 2010) and the ADMM. Note

that the ADMM does not apply directly in our dynamic partial correlation networks since the origi-

nal ADMM is not formulated for overlapping parameters from penalty terms. Therefore we provide

an adaptation of the ADMM approach to accommodate our setting. We also compare the proposed

method with the time varying undirected graph (TVUG) model proposed by Zhou et al. (2010), and

the varying coefficient and varying structure graphic model (VCVS) proposed by Kolar and Xing

(2012). Specifically, Zhou et al. (2010) develop a kernel-based nonparametric method for estimating

time-varying covariance matrices for multivariate Gaussian distributions using an l1-regularization,

and show that the TVUG model is able to obtain l1-penalized maximum likelihood estimators at each

time point as long as the covariances change smoothly over time. The VCVS model is based on the
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neighborhood selection procedure (Meinshausen and Bühlmann 2006), allowing the coefficients of

the precision matrix to change in a piece-wise constant fashion. That is, their model assumes that

the network structures change abruptly rather than changing smoothly through incorporating both the

modified fused Lasso penalty and the Lasso penalty.

We generate dynamic networks assuming that the network structures have disjointed blocks. Net-

works with disjointed blocks are quite common in many applications where networks are only con-

nected within blocks, but are not associated with each other between blocks. See examples from

Girvan and Newman (2002) and Valencia et al. (2009) on brain and biological functions, gene ex-

pressions, social, sports and computer network associations. In the following simulations, the number

of disjointed blocks is 3. To generate the concentration matrix at time t, we first create an initial matrix

(At)p×p with three blocks as 
A1
t

A2
t

A3
t

 ,

where the diagonal entries for each block Akt (k = 1, 2, 3) are all set to be one, and each off-diagonal

entry of Ak is set to be fk(t)U , where U follows the Bernoulli distribution with Pr(U = 1) = ω. The

blocks Akt are exchangeable since the partial correlations among nodes in networks are undirected

and interchangeable. We use ω to control the number of non-zero elements in Akt and thus control

the sparsity within each block such that the networks are sparse if ω is small. We consider moderate

strengths of associations among nodes in the network, and therefore choose ω = 0.8 in our settings.

The functions fk(t), k = 1, 2, 3 are defined as follows:

f1(t) =


5(t− 0.5)2 − 0.125, if 1 ≤ t ≤ 0.342

0, if 0.342 < t ≤ 0.658

−5(t− 0.5)2 + 0.125, if 0.658 < t ≤ 1

,

f2(t) =


−3t+ 0.9, if 0 ≤ t ≤ 0.3

0, if 0.3 < t ≤ 0.7

3t− 2.1, if 0.7 < t ≤ 1

,
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and

f3(t) =

−22.5(t− 0.5)2 + 0.9, if 0.3 ≤ t ≤ 0.7

0, if o.w.
.

The plots of fk(t) are provided in Figure 2. Once we construct a concentration matrix, we follow

a similar strategy as in Peng et al. (2009) to ensure that the simulated covariance matrix is positive

definite.

We first compare the performances of local signal selection using the linear, quadratic and cubic

spline approximations in the simulation studies. Various network sizes of p = 18, 54 and 108, and

time length T = 50 are considered here. The sample size is chosen as n = 200.

Table 1 provides the comparisons of model selection performance of the smoothing proximal

gradient method (SPG) in detecting the true time-varying signals under different orders of spline

approximations. Here correct-fitting (C), over-fitting (O) and under-fitting (U) are calculated as the

percentages of time-points out of T equally-spaced time-points at interval [0, 1] where both true-signal

and non-signal points are identified correctly; true non-signal points are misclassified as signal ones;

and true signal points are not selected, respectively. In addition, we also calculate sensitivity and

specificity as defined by Peng et al. (2009), where sensitivity is the ratio of the number of correctly

detected signals to the number of true signals; and specificity is the ratio of the number of correctly

detected signals to the number of detected signals.

Table 1 indicates that the SPG with linear spline tends to select correct edges with the highest

frequency, compared to the quadratic and cubic splines. When the network size increases from 18

to 108, the percentage of selecting correct associations decreases about 9.8% in the linear spline

approach. When the network size is 108, the percentage of selecting correct edges based on the SPG

is about 83.0% for the linear spline approach. In addition, overall sensitivity and specificity rates are

best using the linear spline approach. This simulation indicates that the SPG with linear spline has the

best performance in detecting the local changes of network associations, compared to the quadratic

and cubic splines.

We further compare the performance of the proposed model with SPACE, the kernel-based method

(KEN), the ADMM approach, the TVUG model, and the VCVS method. We compare the perfor-

mance of these methods under the network sizes of 18, 54 and 108 with sample size n = 200 and

time length T = 50 based on 100 simulations. Since Table 1 indicates that SPG with the linear spline

outperforms the quadratic and cubic splines, we use the linear spline for the SPG in the following
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comparison.

Table 2 provides the model selection performance of the SPG, ADMM, SPACE, KEN, TVUG,

and VCVS under various network sizes. The SPG and ADMM have similar performance and are

the best in the sense of selecting the true model with the highest frequency when the network size

is 18 or 54. When the network size increases to 108, the rates of selecting the correct model for

SPACE and VCVS decrease to 51.2% and 66.7%, respectively. This is probably due to the over-

fitting problem. For the TVUG, the correct-fitting rate is down to 75.4%. In comparison, the SPG still

has a correct-fitting rate of 83.0%. However, neither ADMM nor KEN is feasible due to the problem

of high-dimensional matrix inversion for the ADMM approach and a highly intensive computing

procedure for the kernel method. The ADMM requires inverting large-dimensional matrices if p is

large. We tried the SparseM package in R, the Eigen package and SparseLib++ in C++ which are

designed for large-dimensional matrix operations. However, when the dimension of matrices is out

of the scale the package can handle, the ADMM approach becomes infeasible.

For the ADMM, the required number of iterations is O(1/ε) (Wang and Banerjee 2014), given a

desired accuracy ε. For the SPG, the convergence rate is also O(1/ε) (Chen et al., 2012). The SPACE

and the TVUG are basically a LASSO approach; the computational complexity is the same as for the

quadratic programming algorithm, which is O(n3) as the worst case, where n is the sample size. For

Kolar and Xing’s (2012) approach, the accelerated gradient method also has a convergence rate of

O(1/ε). For the kernel-based method, the computation complexity is due to the number of iterations,

since the method only updates one parameter for each iteration. That is, if we have p nodes and m

time points, the model has p(p− 1)/2 ∗m-dimensional parameters, where the number of parameters

increases as the number of time points increases. This leads to very intensive calculation as each

iteration requires p(p− 1)/2 ∗m updates.

Table 2 also provides the average computing time per simulation run for each method. We run

simulations on a cluster server running a Linux system equipped with 2.67GHz CPU and 48GB

memory. The computing time increases significantly as the dimension of matrix operations increases

exponentially from 102 to 105 when the network size increases from 18 to 108. The SPACE and

TVUG are the fastest among all the methods. This is because the SPACE does not utilize neighboring

information of the time-points observed from the same subject; and for the TVUG, the kernel-based

sample covariance matrices could be pre-processed before minimization, and the covariance matrix

is penalized through its determinant rather than for each element. KEN is the slowest of all since

it requires updating neighborhood information for each nonparametric coefficient estimation at each
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iteration. The computing time ranges from 27.46 seconds to 1.04 hours per run for the SPG algorithm,

and 25.49 seconds to 15.8 minutes per run for the VCVS method. We were not able to record the time

for KEN and ADMM when p = 108 due to infeasibility issues for these two approaches. In summary,

SPG is the best among all methods above if we consider computational feasibility and correct-fitting

performance.

We also compare the number of edges correctly identified by SPG, KEN, SPACE and ADMM

with a moving tuning parameter. The TVUG and VCVS are not provided here since it requires

two tuning parameters and makes comparison unsuitable. Figure 3 shows that the BIC reaches the

minimum if the tuning parameter is selected as λ = 0.145 when the network size is 18, the sample

size is 200 and the number of time-points is 50. In addition, Figure 4 indicates that both SPG and

ADMM have the highest ratio of correctly identified edges over total detected edges for any given

tuning parameter. For example, when the number of total detected edges equals the number of true

edges (1876), the SPG and ADMM are able to identify 1444 and 1441 correct edges, respectively,

whereas KEN detects 1345 correct edges, and SPACE detects only 1243 correct edges.

6. Application

In this section, we analyze a data obtained from an attention deficit hyperactivity disorder (ADHD)

study. ADHD is a mental disorder found in children and adolescents, and common symptoms include

being easily distracted, impulsiveness, and restlessness. To better understand how ADHD patients’

brains function and react to different stimulants, we focus on identifying associations and interactions

among different regions of interest (ROI) of the brain. One distinct feature of ADHD patients is to

have high variability of brain function over time; therefore, it is scientifically important to identify the

dynamic changes of association among different regions of interest of the brain to locate the ADHD

pathology.

The ADHD-200 samples contain fMRI data which are repeatedly measured over time. The

data are downloaded from http://www.nitrc.org/frs/?group_id=383|, which contains

resting-state fMRI (rs-fMRI) of 78 patients (mean age=9.0 and s.d.=1.12) from the Oregon Health

& Science University with 116 regions of interest measured over 74 time points. The software

for automated anatomical labeling was used to label macroscopic brain structures which catego-

rize the brain into 116 regions of interest (http://neuro.imm.dtu.dk/wiki/Automated_

Anatomical_Labeling|). The patients were instructed to stay still, keep their eyes open and

focus on a standard fixation cross in the center of the display. Participants were scanned after a min-

imum washout of short-acting stimulant medications. The temporal-resolution of fMRI data is 2500
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ms.

We apply only the SPG and SPACE methods to this data, since the ADMM and KEN approaches

are not able to handle the network size of 116. The number of connections among ROIs at each time

point is shown in Table 3. Note that SPACE identifies more than 2000 connections at most of the

time-points, in contrast to the SPG method which identifies at most 78 connections at each time point.

The over-identifying problem of SPACE makes it difficult to select any useful connections. In the

following, we provide data analysis and graphical illustration based on the SPG only.

Figure 5 illustrates the associations and connections of 116 regions of interest formulated as a

network at time points t = 1, 10, 20, 50, 60 and 74. Note that each region of interest in the brain is

represented as nodes or vertices with either green or pink color, and the associations among nodes

are connected with blue lines. The color pink of a node represents five or more associations with

other regions of interest, and the color green of a node indicates less than five associations with other

regions of interest.

We are able to identify the dynamic changes of associations among the 116 regions of interest

over time. Specifically, the ADHD patients experience three distinct periods of brain activities during

the test. The number of connections at each time point is shown in Table 3. At the beginning of

the test, the ADHD patients’ brains are active. However, when the test proceeds further, the ADHD

patients’ brains are mostly in a resting state, since there are only a few connections among the 116

regions of interest, with most of the regions of interest containing less than 36 connections. This is

possibly due to the fact that patients are less disturbed in the middle of the experiment, since there

is actually no stimulus imposed on their brains. In the later stage of the test when t > 57, patients’

brains again have more connections among regions of interest, as patients might anticipate something

happening by the end of the experiment. These phenomena are also indicated in Figure 5, showing

that there are more associations among regions of interest between t = 1 and t = 10, and t = 60 and

t = 74, but fewer brain activities between t = 20 and t = 50.

Table 4 confirms our findings and indicates that there are few associations between t = 20 and

t = 55, with only 2 vertices having three or more connections during this period. However, between

time points t = 1 and 19, there are 15 vertices containing three or more connections among regions

of interest, and between t = 56 and 74, there are 14 vertices having three or more connections. The

corresponding names of those ROIs with three or more connections and their gray levels are provided

in Table 5 (gray level is defined as the volume of gray matter in a ROI, and gray matter distinguished

from white matter consists of cell bodies, neuropil, glial cells and capillaries). These findings could
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be helpful in studying ADHD patients’ brain function over time, even without any stimulation.

Compared to task-based fMRI experiments, results from resting-state fMRI studies can be more

easily synthesized as they investigate the differences for the ADHD patients’ regions of interest con-

nected in the absence of task. Fox and Greicius (2010) and Greicius (2008) studied the connections

between any two regions of interest, and used two-sample t-tests to infer whether the average strength

of connection between two regions of interest is significantly different between ADHD and healthy

patients. Dickstein et al. (2006) also found that there were several regions of interest consistently

under-activated among patients with ADHD. These include portions of the frontal lobe: anterior cin-

gulate cortex (ACC) (regions 31 and 32 in AAL), dorsolateral prefrontal cortex (DLPFC), and inferior

prefrontal cortex (11-16, AAL), along with portions of the basal ganglia, thalamus, and parietal cor-

tices. Hart et al. (2013) discovered that portions of the frontal lobe (the inferior frontal cortex, ACC,

and supplemental motor area), basal ganglia and thalamus are under-activated in response to inhibi-

tion tasks among ADHD patients. Furthermore, patients with ADHD showed under-activation in the

DLPFC, parietal areas, basal ganglia and thalamus in response to attention tasks. In Figure 5, we

highlighted the nodes in our network graphs. Nodes 11-16 and 31, 32 are not active, except that node

32 becomes active at the end of the test (with 4 connections). So, in general, our analysis results are

consistent with the findings in the existing literature, as mentioned above.

Figure 6 describes the changes of associations among three ROIs (right middle frontal gyrus, right

gyrus rectus and right angular gyrus) at t = 1, 20, and 60. The regions of interest are highlighted as

green if they are associated with each other at certain time points. Figure 7(a) illustrates the locations

of certain ROIs in the brain using an automated anatomical labeling (AAL) software package. Here

different ROIs are marked as different colors. Note that most of the ROIs have counterparts located

on the opposite side of the brain, and are marked as the same color. For example, the cyan blue color

is used for both Temporal Mid L and Temporal Mid R in Figure 7(a). However, these counterpart

ROIs are not necessarily associated with each other. Figure 7(a) shows 50 out of the 116 ROIs, and

Figure 7(b) provides a partial network of the ROIs to illustrate the associations based on the selected

15 ROIs. The partial network is quite sparse. For better visualization of the associated network,

Figure 7(c) also provides the associated names of the 15 selected ROIs.

In addition, we also provide an animated video in the file “ADHD.mp4” to illustrate the dynamic

changes for 116 regions of interest of the brain over 74 time points. The colors of the nodes in the

video ranges from red to purple, blue and green, which reflects the level of connections with other ROI

over the entire time period. The red nodes are the most active ROIs with the number of connections
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ranging from 30 to 36; the purple nodes have a number of connections from 18 to 29; while the blue

and green nodes have moderate to few associations with other ROIs of the brain, ranging between 8

to 17 and 0 to 7, respectively.

7. Discussion

The time-varying network model is powerful for identifying time-evolving associations for brain

and biological functions, gene networks, social networks and environmental networks over time. In

this paper, we develop a local varying-coefficient model to effectively quantify and detect dynamic

changes in network associations and interactions. One distinctive feature of the proposed approach is

that we are able to incorporate local features of a varying-coefficient function, and provide local-signal

detection and estimation simultaneously for time-varying network data.

We propose a piecewise penalized loss function such that the coefficients associated with the

varying-coefficient model at the local region are shrunk to zero if the magnitude of the grouped co-

efficients is sufficiently small. This has significant advantages over the traditional varying-coefficient

model selection approach without incorporating local features, especially for time-varying network

data, since the network associations could be quite volatile over time, and local-region estimation

and signal detection are of more scientific interest than global-feature selection. Our simulation stud-

ies and data application to the ADHD study indicate that the proposed method is quite effective at

capturing the local features of the time-varying network data.

However, it is quite computationally challenging to develop highly computationally intensive al-

gorithms in order to achieve sparsity properties in estimation and signal detection at local time inter-

vals. The group penalization strategy involves overlapping parameters among different groups, which

makes the optimization process extremely challenging when the network size is large. To overcome

these difficulties, we develop a smoothing proximal gradient method, which does not require invert-

ing the large-dimensional matrix. The developed algorithm has significant computational advantages

in increasing computational speed and efficiency. Most importantly, the proposed smoothing proxi-

mal gradient algorithm is able to analyze a relatively large size of network data within a reasonable

time frame. We also compare out method to the ADMM and kernel-based algorithms which require

inverting a large-dimensional matrix, and therefore cannot feasibly estimate large size network data.

Theoretically, we show that the proposed method achieves model selection consistency in local

regions, and provides a uniform rate of convergence for local-signal coefficient estimators. Scientifi-

cally, it is important to detect dynamic changes in networks, as identifying the associations of biolog-

ical functionalities over time can help us to better understand the mechanisms of network change.
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The proposed method is developed for networks with a fixed dimension. For a high-dimensional

network, we suggest to first use some screen methods to bring the dimensionality down. For example,

one can use a global selection method similar to the ones in Xue (2009), Xue and Qu (2012) to delete

the pairs of variables that not associated/connected in the entire region. Then for the pairs that are

associated, one then can apply the proposed method to locate the time region where this association

might change.

In this paper, the longitudinal dependence structure over time is not taken into account for estima-

tion, although one can incorporate such dependent structure using either the generalized estimation

equation (Liang and Zeger 1986) or the quadratic inference function approach as in Xue et al. (2010)

and Wang et al. (2014). However, incorporating the dependence structure does not effect the con-

vergence rate as in Section 4, but will effect estimation efficiency. This might be worthy of future

research.

Supplementary Materials

The document includes detailed proofs of main Theorems and necessary Lemmas.
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Figure 1: Changes of associations among different sites of a brain over three time-points
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Figure 2: The function f(t) at time interval t ∈ [0, 1]
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Figure 3: The plot of moving tuning parameter versus the BIC for the SPG algorithm when n = 200, T = 50
and p = 18.
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Figure 4: Correctly detected edges versus total detected edges using the four methods.
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(a) t = 1 (b) t = 10

(c) t = 20 (d) t = 50

(e) t = 60 (f) t = 74

Figure 5: Estimation of brain networks of ADHD-200 data at time-points t = 1, 10, 20, 50, 60 and 74.
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Figure 6: Changes of associations among right middle frontal gyrus, right gyrus rectus, and right angular gyrus
over three time-points
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(a) AAL ROIs’ locations in brain (b) The partial network of ROIs

(c) ROIs’ names in the partial network

Figure 7: Illustration of AAL ROIs in the brain and its networks
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Table 1: Model selection performance of the smoothing proximal gradient method (SPG) for three-block dis-
jointed networks with the number of time-points T = 50 and sample size 200 based on 100 simulation runs.

Network size C O U Sensitivity Specificity Time
Linear p=18 0.920 0.056 0.024 0.802 0.967 27.46

p=54 0.859 0.071 0.070 0.679 0.910 467.71
p=108 0.830 0.023 0.147 0.772 0.836 3726.48

Quadratic p=18 0.887 0.063 0.050 0.760 0.932 41.87
p=54 0.838 0.073 0.089 0.642 0.888 670.89

p=108 0.799 0.088 0.113 0.560 0.859 7510.36
Cubic p=18 0.860 0.091 0.049 0.688 0.931 60.13

p=54 0.791 0.099 0.110 0.526 0.861 1192.30
p=108 0.764 0.113 0.123 0.474 0.843 14102.38

Table 2: Model selection performance of SPG, ADMM, SPACE, KEN and VCVS for three-block disjointed
networks with the number of time-points T = 50 and sample size 200 based on 100 simulation runs.

Network size Methods C O U Sensitivity Specificity Time per run (seconds)
p=18 SPG 0.920 0.056 0.024 0.802 0.967 27.46

ADMM 0.920 0.055 0.025 0.804 0.965 10.53
SPACE 0.907 0.082 0.011 0.745 0.984 1.33
KEN 0.909 0.065 0.026 0.775 0.963 109.35

TVUG 0.880 0.079 0.041 0.726 0.942 2.03
VCVS 0.901 0.052 0.047 0.796 0.937 25.49

p=54 SPG 0.859 0.071 0.070 0.679 0.910 467.71
ADMM 0.860 0.068 0.072 0.685 0.908 286.87
SPACE 0.691 0.220 0.089 0.373 0.863 36.39
KEN 0.786 0.123 0.091 0.512 0.878 14328.74

TVUG 0.820 0.096 0.084 0.586 0.891 26.79
VCVS 0.748 0.127 0.124 0.430 0.840 123.94

p=108 SPG 0.830 0.023 0.147 0.772 0.836 3726.48
ADMM NA NA NA NA NA NA
SPACE 0.512 0.418 0.070 0.271 0.836 349.98
KEN NA NA NA NA NA NA

TVUG 0.754 0.136 0.110 0.458 0.853 383.76
VCVS 0.667 0.220 0.113 0.337 0.831 944.03
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Table 3: Number of associations identified by SPG and SPACE from time-points 1 to 74.

Method Number of associations from 1 to74
SPG 70 77 77 77 76 77 77 76 77 77 77 77 77 77 78 77 77 77 77

35 36 35 35 35 35 35 35 35 35 35 35 35 35 36 35 35 35
34 34 34 34 34 34 34 34 34 34 34 34 34 35 34 34 34 34

76 76 76 75 76 76 76 76 76 77 76 76 76 76 76 76 76 76 66
SPACE 3024 3102 3257 2059 2691 2839 3278 2962 3111 3080 2926 2946 2833 3079 3171

3156 3067 2932 3129 2955 2934 3025 1998 3076 3130 3278 3230 2786 3176 2828
2979 2981 3057 3045 2695 3070 2665 3120 3090 2916 3054 2982 2670 3038 2836
2969 3006 3154 2756 3056 3179 3024 2975 2974 3067 3273 1956 3157 2707 3132

3115 2948 2799 2967 3028 3059 2969 3165 3089 3039 3109 2950 3103 2779

Table 4: ROIs with 5 or more associations identified by SPG from time-points 1 to 74.

Time(t) ROIs with 3 or more associations Total
1-19 24 38 51 53 54 59 70 75 82 85 89 100 106 113 115 15
20-55 83 112 2
58-74 5 25 32 52 63 71 76 81 82 90 95 100 110 116 14

Table 5: Name list of ROIs with 3 or more associations identified by SPG

Number Name Gray level
5 Frontal Sup Orb L 2111
24 Frontal Sup Medial R 2602
25 Frontal Mid Orb L 2611
32 Cingulum Ant R 4002
38 Hippocampus R 4102
51 Occipital Mid L 5201
52 Occipital Mid R 5202
54 Occipital Inf R 5302
59 Parietal Sup L 6101
63 SupraMarginal L 6211
70 Paracentral Lobule R 6402
71 Caudate L 7001
75 Pallidum L 7021
76 Pallidum R 7022
82 Temporal Sup R 8112
83 Temporal Pole Sup L 8121
85 Temporal Mid L 8201
89 Temporal Inf L 8301
90 Temporal Inf R 8302
95 Cerebelum 3 L 9021
100 Cerebelum 6 R 9042
106 Cerebelum 9 R 9072
110 Vermis 3 9110
112 Vermis 6 9130
113 Vermis 7 9140
115 Vermis 9 9160
116 Vermis 10 9170
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