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Nonparametric model-assisted estimators have been proposed to im-
prove estimates of finite population parameters. Flexible nonparametric
models provide more reliable estimators when a parametric model is
misspecified. In this article, we propose an information criterion to select
appropriate auxiliary variables to use in an additive model-assisted
method. We approximate the additive nonparametric components using
polynomial splines and extend the Bayesian Information Criterion (BIC)
for finite populations. By removing irrelevant auxiliary variables, our
method reduces model complexity and decreases estimator variance. We
establish that the proposed BIC is asymptotically consistent in selecting
the important explanatory variables when the true model is additive
without interactions, a result supported by our numerical study. Our
proposed method is easier to implement and better justified theoretically
than the existing method proposed in the literature.
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1. INTRODUCTION

Nonparametric modeling has gained popularity in survey statistics because of
its flexibility in modeling nonlinear relationships. These models are applied to
model-assisted estimation, which uses auxiliary variables observed on the
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entire population to augment estimates of finite population quantities. Such
auxiliary information is often available in natural resources and business sur-
veys where business register or economic census provides access to extensive
auxiliary information such as sales and employment on the entire population.
However, model-assisted estimation is often impractical for personal, house-
hold or social science surveys where auxiliary information is not observed for
every element of the population of interest. Dorfman (1992) first incorporated
nonparametric regression with model-assisted estimation to improve the finite
population estimates. Breidt and Opsomer (2000) extended univariate local
polynomial regression to model-assisted estimators and proved that the
estimate of the total is asymptotically design-unbiased and consistent. Breidt,
Claeskens, and Opsomer (2005) proposed a class of univariate estimators
based on penalized polynomial splines using a data-driven penalty parameter.

However, there are challenges in estimating nonparametric functions with a
large number of predictor variables due to the “curse of dimensionality.” Stone
(1985) and Hastie and Tibshirani (1986) partially alleviate this by assuming
the contribution of each covariate to be additive, but the form of each contribu-
tion is an unspecified univariate function. Opsomer, Breidt, Moisen, and
Kauermann (2007) applied this additive model to model-assisted estimation
using forest survey data.

In practice, a large number of auxiliary variables are available in many sur-
veys, such as environmental surveys augmented by satellite data or health sur-
veys with access to population registers. Model complexity can be reduced and
the precision of the total estimate improved by using variable selection tools to
select only important variables.

Even with a moderate number of variables, the large number of candidate
models is a challenge for variable selection. An alternative to an exhaustive
search is stepwise deletion or subset selection using criteria such as
Mallows’s Cp (Mallows 1973), Akaike Information Criterion (AIC, Akaike
1974), or Bayesian Information Criterion (BIC, Schwarz 1978). These crite-
ria have previously been applied to data sampled independently from an infinite
population.

Assuming a linear model, forms of the AIC and BIC have been derived for
data obtained from complex sampling designs. Hens, Aerts, and Molenberghs
(2006) proposed a form of AIC when there are missing observations for a
single-stage design. An approximation to the BIC for complex sample designs
was proposed by Fabrizi and Lahiri (2007). Xu, Chen, and Mantel (2013) gave
an alternative BIC for survey data with a non-Bayesian justification. Lumley
and Scott (2015) derived versions of AIC and BIC for complex designs.

Outside the survey sampling framework, variable selection approaches have
been adapted to nonparametric models for data sampled from infinite popula-
tions. Chen and Tsay (1993) extended the idea of best subset regression to ad-
ditive models for selecting lagged variables in time series models. Huang and
Yang (2004) generalized AIC and BIC to nonparametric models estimated
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with splines. Xue (2009) introduced consistent variable selection for the addi-
tive model using penalized polynomial splines. Huang, Horowitz, and Wei
(2010) applied the adaptive LASSO to additive models and proved that it is a
consistent method of variable selection. Wang and Wang (2011) proposed a
BIC for variable selection in additive models with design-based samples.
However, the asymptotic theory of variable selection to samples using unequal
selection probabilities has not been examined.

In this article, we extend the information criterion of Huang and Yang
(2004) to samples from finite populations. We propose a BIC for consistent
variable selection in additive model-assisted estimation. Our proposed method
is applicable for data generated from a broad range of survey designs.
However, it is challenging to establish the consistency of the proposed variable
selection method under the design-based survey framework. One difficulty
arises from the fact that the nonparametric model is approximated using a finite
set of parameters that increase in number as a function of sample size. Another
difficulty is the need to account for two sources of variation: the probability
sampling design and the data generating process from the superpopulation
model. The variable selection method proposed by Wang and Wang (2011),
like ours, assumes an additive model and is applicable to data sampled from
finite populations. However, it differs from our method in that ours is based
on the likelihood function rather than the asymptotic mean squared error as in
Wang and Wang (2011). Furthermore, our method is consistent for complex
designs beyond simple random sampling (SRS). Our numerical studies suggest
that our method is better than that of Wang and Wang (2011) for small sample
sizes.

The article is organized as follows: In section 2, we introduce additive
model-assisted estimation using polynomial splines. Section 3 presents a deri-
vation of the BIC and its consistency theorem, which is proved in the appen-
dix. Simulation results under two sampling schemes and four superpopulation
models are discussed in section 4. In Section 5, we apply our method to the
California Academic Performance Index data set. Conclusions are given in
section 6.

2. ADDITIVE MODEL-ASSISTED ESTIMATION

Model-assisted estimation incorporates auxiliary information along with de-
sign weights at the estimation stage by considering the finite population as a re-
alization from a superpopulation (S€arndal, Swensson, and Wretman 1992). A
linear model is typically assumed. In this article, we assume the superpopula-
tion model has a nonparametric additive form to capture possible nonlinear
relationships between the auxiliary information and variable of interest. In this
section, we introduce the additive model for model-assisted estimation and
show how to estimate the model using polynomial splines.
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2.1 The Model

Let UN ¼ f1; . . .;Ng be a finite population. A sample, S, of fixed-size nN is
drawn from UN using a probability sampling design DN. Assume auxiliary in-
formation xi ¼ ðxi1; . . .; xidÞ0 is known for all i 2 UN . The variable of interest,
yi, is known only for the elements sampled from the population. Define Ii ¼ 1
if i 2 S and 0 otherwise. We denote the first order inclusion probability as pi;N
¼ PDN ði 2 SÞ ¼ PDN ðIi ¼ 1Þ and the second order inclusion probability as
pij;N ¼ PDN ði; j 2 SÞ ¼ PDN ðIiIj ¼ 1Þ. In the following, the second order inclu-
sion probability can be unknown, but it needs to satisfy assumption (A2) in
section 3 to guarantee desirable statistical proprieties of the proposed method.
The subscript N will be omitted to simplify the notation.

Our objective is to estimate the finite population total ty ¼
P

i2U yi.
Model-assisted estimation uses auxiliary information at the estimation stage
by considering fYi;XigNi¼1 as i.i.d. realizations from a superpopulation, n,
written as

Yi ¼ mðXiÞ þ �i; i ¼ 1; . . .;N;

where m is the true relationship between the variable of interest and the auxil-
iary variables, and the errors f�igNi¼1 are independent and identically distributed

with mean zero. In addition, f�igNi¼1 and fXigNi¼1 are independent. The model-
assisted estimator takes the form,

t̂MA ¼
X
i2U

m̂ðxiÞ þ
X
i2S

yi � m̂ðxiÞ
pi

; (1)

where m̂ is an estimate of m using the available sample. The model-assisted es-
timator in (1) takes advantage of the known auxiliary information to produce
more efficient estimates. S€arndal et al. (1992) contains a comprehensive over-
view of model-assisted estimators.

As in Hastie and Tibshirani (1986), we assume an additive nonlinear
relationship between the auxiliary information and the variable of interest.
That is,

mðXÞ ¼ a0 þ
Xd
l¼1

alðXlÞ; (2)

where a0 is an unknown constant and falgdl¼1 are unknown smooth univariate
functions. For identifiability purposes and without loss of generality, it will be
assumed that Xl 2 ½0; 1� and E½alðXlÞ� ¼ 0; for l ¼ 1; . . .; d. Compared with a
classic linear model, the additive model can improve the efficiency of the total
estimator because its nonparametric components can be more robust to model
misspecification.
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A major challenge in estimating nonparametric functions with more than
one variable is dealing with the “curse of dimensionality.” However, the addi-
tive structure in (2) allows the estimation of the additive model with the same
optimal rate of convergence as the univariate case (Stone 1985). This article
will develop methods and results for estimation from complex surveys only for
additive models without interaction terms.

2.2 Polynomial Splines

With an appropriate choice of knots, polynomial splines often provide accurate
approximations of smooth functions and have better convergence rates than regu-
lar polynomials without knots (see De Boor 2001, p. 149). To define them, let
Cpð½0; 1�Þ be the space of p-times continuously differentiable functions, for some
integer p> 0. For each auxiliary variable l ¼ 1; . . .; d, define a knot sequence
jln ¼ f0 ¼ kl0 < kl1 < � � � < klJn < klJnþ1 ¼ 1g where Jn is the number of
interior knots. Denote /l ¼ /pð½0; 1�; jl;nÞ � Cp�1ð½0; 1�Þ as the space of poly-
nomial splines that are piece-wise polynomials of degree p or less on the intervals
½klði�1Þ; kli

�
; i ¼ 1; . . .; Jn and ½klJn ; klðJnþ1Þ�, and connect smoothly at the knots

such that they are ðp� 1Þ times continuously differentiable on ½0; 1�.
For a fixed p and Jn, let

C�
l ðXlÞ ¼ ðXl; . . .;X

p
l ; ðXl � kl1Þpþ; . . .; ðXl � klJnÞ

p
þÞ

0;

with ðxÞþ ¼ x if x> 0, else ðxÞþ ¼ 0. With the intercept term, this is the degree
p truncated power basis for the spline space /l with Jn knots. For
1 � j � Jn þ p, let C�

ljðXlÞ be the jth element of the vector C�
l ðXlÞ. Define the

centered basis ClðXlÞ ¼ ðCl1ðXlÞ; . . .;ClðJnþpÞðXlÞÞ0, where CljðXlÞ ¼ C�
ljðXlÞ

�N̂
�1P

i2S p
�1
i C�

ljðXliÞ with N̂ ¼
P

i2S p
�1
i . The basis is centered by the sur-

vey weighted means to consistently estimate the additive function al in (2).
The centered basis for all d variables X ¼ ðX1; . . .;XdÞ is then,

CðXÞ ¼ ð1;C1ðX1Þ0; . . .;CdðXdÞ0Þ0:

Suppose each additive component can be approximated by

alðXlÞ � glðXlÞ ¼
XJnþp

j¼1

hljCljðXlÞ:

Define gðxÞ ¼ h0 þ
Pd

l¼1 glðxlÞ as the spline approximation of m. Let
hl ¼ ðhl1; . . .; hlðJnþpÞÞ0 be the Jn þ p parameter vector for gl. The unknown
coefficients

h ¼ ðh0; h01; . . .; h0dÞ
0

can then be estimated simultaneously by least squares.
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For known y ¼ ðy1; . . .yNÞ0, the population estimate of h is

~h ¼ argminh
XN
i¼1

�
yi � h0 �

Xd
l¼1

XJnþp

j¼1

hljCljðxliÞ
�2
;

and

~h ¼ ½C0C��1Cy;

where C ¼
�
Cðx1Þ; . . .;CðxNÞ

�0
is the design matrix for the truncated power

basis using the entire population. The basis in C is centered by survey-
weighted sample means, instead of population means, so that the same basis
can be used in both population and sample estimates defined in (3) and (4), re-
spectively. The spline basis is centered to ensure consistent estimation of the
additive functions in (2), which are of zero means. However this centering step
only affects the constant term ascribed to each additive function and does not
affect the variable selection. Therefore the spline can be estimated without the
centering step if one is only interested in selecting relevant auxiliary variables.
For a fixed x, the population based estimate of m is given as

~mðxÞ ¼ ~h0 þ
Xd
l¼1

XJnþp

j¼1

~hljCljðxlÞ: (3)

In practice, since only the sampled values of the variable of interest are ob-
served, yS ¼ fyi; i 2 Sg, an appropriate sample estimate of h is

ĥ ¼ argminhN
�1
X
i2S

p�1
i

�
yi � h0 �

Xd
l¼1

XJnþp

j¼1

hljCljðxliÞ
�2
;

and

ĥ ¼ ½C0
SP

�1
S CS��1C0

SP
�1
S yS;

where P�1
S ¼ diagðfp�1

i gi2SÞ and CS ¼ ðCðxiÞ0; i 2 SÞ0 is the design matrix
for the truncated power basis using only the sample data. For given x, the
resulting sample estimate of m is

m̂ðxÞ ¼ ĥ0 þ
Xd
l¼1

XJnþp

j¼1

ĥljCljðxlÞ: (4)

In practice, the estimate ~m is not available since we do not observe every ele-
ment of the population, but it serves as the population expected value of m̂.
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These expressions are useful for understanding the asymptotic properties of the
estimator, as discussed in the appendix.

In addition, the estimated model m̂ and the performance of the correspond-
ing model-assisted estimator depend on the set of auxiliary variables included
in the model and the knot sequence used in the spline approximation. In this ar-
ticle, we focus on the selection of auxiliary variables. For simplicity, we used
the same sequence of knots for each covariate. The number of knots was cho-
sen as the integer part of n�

1
2pþ3, the optimal rate of the knot number. More flex-

ible approaches apply different knot sequences for each variable to provide
different degrees of smoothness or can vary in both location and number of
knots, depending on the data.

Wang and Wang (2011) suggested a similar method for estimating the total
using the spline-backfitted local linear (SBLL) estimate of the additive model
in (1). The SBLL estimator has two stages. The first stage applies polynomial
spline regression to generate a pilot estimate, which is then used to construct
pseudo-response values for each auxiliary variable. At the second stage, uni-
variate local polynomial smoothing is applied to each pseudo-response and
auxiliary variable pair. The resulting model-assisted estimator is asymptoti-
cally design unbiased, consistent, can be written as a weighted sum of cali-
brated weights (see S€arndal et al. 1992), and asymptotically attains the
Godambe-Joshi lower bound (Godambe and Joshi 1965). The authors pro-
posed a “BIC-based method” of variable selection based on the asymptotic
mean squared error (AMSE) and stated without proof that it is consistent
under SRS.

The two-stage SBLL method has superior properties for estimating the addi-
tive components, but is computationally intensive since local polynomial
smoothing is conducted on each variable in every model. Our goal focuses on
variable selection, rather than estimation. We use only a single step of polyno-
mial spline estimates and reduce the computation for each model.

3. PROPOSED INFORMATION CRITERION

Consider a set of candidate models fMkg. For example, in an exhaustive
search, the set includes all possible subsets of d candidate auxiliary variables.
Suppose Mk contains dk auxiliary variables, and the splines for fMkg involve a
vector of parameters hk with length qk;n ¼ dkðJn þ pÞ, where Jn is the number
of interior knots in the spline approximation. Let LSðhkÞ be the pseudo-log-
likelihood function defined as LSðhkÞ ¼ n

N

P
i2S p

�1
i liðhkÞ; where liðhkÞ is the

contribution to the log-likelihood function from the i-th element in the sample.
It is the design-weighted version of the census log-likelihood function, which
is available only when every element in the population is observed and is de-
fined as LNðhkÞ ¼

P
i2U liðhkÞ: The scaling constant n

N ensures that n�1LSðhkÞ
is design-unbiased to N�1LNðhkÞ. We propose the following nonparametric
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BIC criterion for the selection of auxiliary variables in model-assisted
estimation

BICðMkÞ ¼ �2LSðĥkÞ þ qk;n log n: (5)

The pseudo-log-likelihood LSðĥkÞ in our proposed BIC incorporates sam-
pling weights. A similar idea is also used in Xu et al. (2013) for linear mod-
els. For SRS, this formula reduces to the standard nonparametric BIC in
Huang and Yang (2004), which is developed for data independently sampled
from an infinite population. It is desirable because the simple random sample
from the finite population can also be regarded as a random sample from the
superpopulation.

Although we have focused on the pseudo-log-likelihood in (5), there are
other approaches. For example, a similar BIC criterion can be constructed us-
ing the exact log-likelihood for the sample (Krieger and Pfeffermann 1992).
Unlike the pseudo-likelihood, the calculation of the sample likelihood is often
complicated, and it requires not only the sampling weights but also the full
specification of the sampling mechanism. In addition, instead of the rescaled
pseudo-log-likelihood in (5), one can also use the census log-likelihood esti-
mated as

P
i2S p

�1
i liðhkÞ and adjust the penalty term to be qk;n logN in (5). The

resulting BIC is asymptotically equivalent to (5) when n/N is bounded away
from 0, and imposes a less stringent penalty on the model complexity when
n=N ! 0. An in-depth comparison of the proposed BIC in (5) with the two
possible BICs mentioned here is worth further investigation.

For normal model errors with equal variances, (5) becomes

BICðMkÞ ¼
n

N

X
i2S

p�1
i

 !
logðWMSEM̂k

Þ þ qk;n log n; (6)

where the weighted mean squared error (WMSE) for candidate modelMk is de-
fined as

WMSEM̂k
¼

P
i2S

p�1
i ðyi � m̂Mk ðxiÞÞ

2

P
i2S

p�1
i

: (7)

Equation (6) is similar to the definition of the AIC in Hens et al. (2006).
To develop the theoretical properties of the proposed BIC, we introduce the

following assumptions:

(A1) There exists a constant B > 0 such that

P
�
limsup

N!1
1
N

P
i2U

�i
pi

� �4
� B

�
¼ 1.

(A2) lim sup
N!1

max
i2U

nX
j2U

ðpij�pipjÞ�
o
< 1, where x� ¼maxð0;�xÞ:
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(A3) For all i 2 U; ei are independent and identically distributed. In
addition, ei is independent of Xi with E½ei� ¼ 0;VarðeiÞ ¼
r2;E½e4i � ¼ l4 < 1.

(A4) For i 2 U, the auxiliary variables Xi are independent and follow
the same distribution as X. Without loss of generality, we assume
the support of X is ½0; 1�d. Furthermore, the probability density
function of X is bounded away from 0 and infinity on the support,
written as 0 < fXðxÞ < 1; 8x 2 ½0; 1�d.

(A5) The number of knots is asymptotically related to the sample size
such that Jn 	 n1=ð2pþ3Þ and the spacing of the knots, k1; . . .; kJn , is
such that minj2f1;...;Jn�1gjkjþ1 � kjj=maxj2f1;...;Jn�1gjkjþ1 � kjj > c
for some constant c > 0.

(A6) Let M0 be the indices of the auxiliary variables in the true model.
We assume al 2 C

pþ1½0; 1� for l 2 M0, where C
pþ1½0; 1� denotes

the space of ðpþ 1Þ-times continuously differentiable functions.

Assumptions (A1) and (A2) ensure the consistency of the Horvitz-
Thompson estimators under a fixed-size sampling design. When pi is lower
bounded with kp � liminf

N!1
min
i2U

pi for a constant kp > 0, then (A1) is satisfied

under (A3). For SRS and many other types of sampling design, (A1) requires
the sampling fraction n

N to be bounded away from zero. Assumptions (A3) and
(A4) make general assumptions about the superpopulation model errors and
auxiliary variables. The most important feature of (A4) is assuming a compact
support. Without loss of generality, data on any bounded interval can be
rescaled to unit length. Assumption (A5) ensures the number of knots increase
at an appropriate rate. Assumptions (A3)–(A6) are common in nonparametric
estimation literature.

Theorem 1: Let M0 be the indices of the auxiliary variables in the true
model. Under assumptions (A1)–(A6), for any 1> �>0 with superpopulation-
model probability approaching 1 as both N and n approach infinity,

PD

�
BICðM0Þ � BICðMÞ; for all M 6¼ M0;M � f1; . . .; dg

�

 1� �;

where PD denotes the design based probability measure.

Theorem one states that under regularity conditions, the true model has the
lowest BIC among all candidate models with high design probability given the
superpopulation when the population (and sample) size go to infinity.
Searching the model space by calculating the BIC values for all models is often
impractical due to the size of the space. A common approach is to use either
forward or backward stepwise selection procedure instead of an exhaustive
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search. Although there is no theoretical guarantee, these procedures have
promising finite sample performance as shown in our simulation studies.

4. SIMULATION RESULTS

This section summarizes results from a simulation study that evaluates the perfor-
mance of our proposed model selection criterion under different scenarios. We
consider different regression models with various shapes of the additive compo-
nents and different noise levels, and use polynomial splines with different degrees
of smoothness. We are also interested in comparing the accuracy of variable se-
lection of our method with the method proposed in Wang and Wang (2011) and
investigating the effect of variable selection on the estimation of population totals.
Our simulation results suggest the proposed method performs better than the
method in Wang and Wang (2011) in selecting the correct set of auxiliary varia-
bles. The data is generated using SRS. An example using stratified sampling is in-
cluded in the supplementary data online.

The setup of the simulation is identical to that used by Wang and Wang
(2011). Observations are generated from four superpopulation models.

1. Y ¼ �1þ 2X3 þ 4X6 þ r0e;

2. Y ¼ 5:5� 6X2 þ 8ðX2 � :5Þ2 � 3X10 þ 32ðX10 � :5Þ3 þ r0e;

3. Y ¼ 8ðX2 � :5Þ2 þ expð2X5 � 1Þ þ 2 sin f2pðX8 � :5Þg þ r0e;

4. Y ¼
P5
a¼1

sin f2pðXa � :5Þg þ r0
2 ð
P5
a¼1

XaÞ1=2e:

In all four models, feigNi¼1 are independently standard normal, and auxiliary

variables Xi ¼ ðXi;1;Xi;2; . . .;Xi;10ÞT are independently generated from the
[Uniform(0, 1)]10 distribution for i ¼ 1; . . . ;N ¼ 1000. The scale parameter,
r0, takes value 0.1 or 0.4. Simple random samples of size n¼ 50, 100, and 200
are drawn without replacement from the finite population. In this example, the
auxiliary variables are generated independently of each other, which usually
gives favorable variable selection results compared with the case when auxil-
iary variables are correlated.

For each sample, the proposed variable selection method was applied. The
model with the lowest BIC score is called the selected model. The selected
model is then used to estimate the finite population total of interest, ty, using
(1). For comparison, we also estimate ty using the Horvitz-Thompson estimator
t̂y;HT ¼

P
i2s yi=pi, where pi is the first order inclusion probability of element i

(see section 2.1).
The additive model is estimated using both linear and quadratic splines with

knots spaced evenly between zero and one. The number of interior knots is
two for linear splines and one for quadratic splines. To illustrate the effect of
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variable selection on the total estimate, figure 1 plots the bias, log of variance,
and log of mean squared error (MSE) of the total estimates from each candi-
date model during the backward selection processes. The backward selection
process should have terminated in a model with five variables; however, the
entire subset of models for the backward selection method is plotted. The data
is generated from superpopulation four with r0 ¼ 0:4 for sample size n¼ 200.
Figure 1c clearly shows that the backward selection yields a model with the
smallest MSE of the total estimate. Therefore, by selecting the correct set of
auxiliary variables, the proposed variable selection procedure not only results
in a parsimonious model for auxiliary variables but also improves the accuracy
of the total estimates. Furthermore, figure 1a and b show that the selection of
auxiliary variables primarily affects the variances of the total estimates more
than the bias.

For each combination of noise level and sample size, 100 replicated
SRS samples were drawn from the same population. The results of the
number of correct fitting models in 100 replications for both forward and
backward approaches in the linear and quadratic models are summarized
and compared to the simulation results from Wang and Wang (2011) in
table 1. A correct fitting model is defined as selecting all of the correct
auxiliary variables and none of the incorrect ones, as defined in the super-
population model.

For all four superpopulation models and two noise levels, the percent-
age of correct fitting models increases to 100 percent as the sample size
increases, as predicted by theorem one. Our method identifies the correct
variables more often than the SBLL method, especially at smaller sample
sizes (table 1). This can be seen for both the linear and quadratic splines,
indicating the linear and quadratic choices for p do not influence the
results.

The bias and standard error of the total estimate for each model are com-
pared to the oracle model and the full model using linear splines in table 2.
Here, the oracle model contains only relevant auxiliary variables, while the
full model contains all ten auxiliary variables. The Horvitz-Thompson esti-
mator, equivalent to using the null model, is also presented in table 2. The
number of replications was increased to one thousand in order to obtain sta-
ble bias and variance estimates with minimal Monte Carlo error.

Table 2 shows that the bias and standard error of the total estimate for each
model decrease as the sample size increases. The bias and standard error using
the selected model are almost identical to using the oracle model and smaller
than the full model for most comparisons. When the sample size is small
(n¼ 50), the selected model can reduce the standard error by more than 30 per-
cent compared with the full model. The selected model, except for superpopu-
lation four, achieves a much lower variance than the Horvitz-Thompson
estimator. For example, for sample size n¼ 200, the selected model reduced
the standard error of the estimate by 71 percent compared with the
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Horvitz-Thompson estimator. We also calculated the bias and standard error of
the total estimate using quadratic splines. The results are not presented here
since they are similar to the results with linear splines. Here, we focused on
comparing the total estimates using the proposed method with those using the
full and oracle additive models and the Horvitz-Thompson estimator. Note that
the Horvitz-Thompson estimator can be viewed as the null model with no addi-
tive component. It is also of interest to compare the proposed method with the
generalized regression (GREG) estimator, which is another choice for survey
practitioners. The proposed method with an additive model is expected to do
better when the relationship between the auxiliary variables and the response
are nonlinear. However, the improvement using our method is expected to be
less dramatic as compared with the improvement over the Horvitz-Thompson
approach.

5. APPLICATION

To illustrate our procedure, we consider the 1999 to 2000 Academic
Performance Index (API) growth data set available in the R survey package
(Lumley 2014), which tracks changes in academic performance and growth of

Figure 1. The Bias, Log of Variance, and Log of Mean Squared Error of the
Total, Shown for Each Candidate Model During the Backward Selection
Processes Under Superpopulation Four with r050:4 for Sample Size n5 200. The
pattern is similar for the other models. A) Bias. B) Log of variance. C) Log of mean
squared error.
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California schools with at least one hundred students (see API 2000).
Information on the proportion of subsidized school lunches and English lan-
guage learners, parent education level, and enrollment are included for these
schools.

The data set contains a population of 6,194 California schools. In order to il-
lustrate our method and create a complete data set, we eliminated variables
with missing data. After running a correlation analysis, variables that were
highly collinear were also eliminated. Categorical variables were excluded
from this analysis to focus our attention on the relationships that could be esti-
mated using splines. Alternatively, one can include these categorical variables
as linear terms and focus on variable selection of nonlinear terms using the
BIC in (5) without penalizing the number of parameters for the linear terms.
However, it requires further investigation to define an appropriate BIC to per-
form variable selection for both linear and nonlinear terms simultaneously.
After these considerations, nine auxiliary variables remained and are described
in table 3. Our goal is to estimate the average API in year 2000 (api00) for the
population based on a stratified sample and to select the significant predictors
for API using the auxiliary variables in the data set. The API is calculated by
the California Department of Education based on a standardized testing of stu-
dents. The population average is estimated using additive model-assisted esti-
mation based on the forward and backward selection methods. The Horvitz-
Thompson estimate and the additive model-assisted estimate based on the full
model are calculated for comparison. Note that the proposed model-assisted
approach is not feasible for surveys when auxiliary variables cannot be
completely observed for unsampled schools.

As in the simulations, one thousand replication samples of size n ¼ 50,
100, and 200 were drawn from the population using stratified random sam-
pling. For this illustration, the sample size of each strata was selected by non-
proportional allocation: 50 percent to elementary schools, 30 percent to
middle schools, and 20 percent to high schools, resulting in unequal selection
probabilities. The percentages were chosen to select more schools from the
larger strata.

Figure 2 summarizes results for our variable selection methods. At sample
size n¼ 200, the variables most often selected were the number of students en-
rolled (enroll), the percentage of students eligible for subsidized meals (meals),
and the percentage of parents with graduate school level education (grd.sch).
The known noise variables included in the analysis, the school identifier (cds),
and the district number (dnum) and were not selected for most models. The
percentage of students who were in their first year (mobil) was excluded from
most models, as well. Using both forward and backward selection, about
10–25 percent of models at n¼ 200 included the percentage of parents that are
high school graduates or have some college (hsg.col), the percentage of parents
that are college graduates (col.grd), and the percentage of English language
learners (eng.ll). The average model size and its standard error can be found
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in table 4 for both forward and backward selection methods. The forward
selection models had less variables selected than the backward selection at
sample size n¼ 50. At sample size n¼ 200, the average model size was about
three for both the forward and backward selection methods. The standard error
of the model size decreases as sample size increases.

The bias and standard error from estimating the mean API for the population
using the forward and backward selection process is presented in table 5.
Models selected from both forward and backward selection have lower stan-
dard errors than using either the full model or the Horvitz-Thompson estimator.
The bias for the backward, forward, and full models (n¼ 100 and n¼ 200)
have bias values nearly identical to the bias values for the Horvitz-Thompson
estimator, which we know are unbiased estimators. However, for n¼ 50, there
was a negative bias for all models.

Models resulting from both the forward and backward methods reduced
the standard error of the total estimate compared to the Horvitz-Thompson
estimator and the full model with negligible bias. It successfully ruled out
known noise variables from the final model for more than 95 percent of simu-
lations with larger sample sizes, demonstrating the effectiveness of our
approach.

To explore possible interactions among these variables, we considered inter-
action terms of three variables (enroll, meals, and grd.sch) that were most rele-
vant, as shown in figure 2. We conducted both forward and backward selection
procedures with these three variables in the model and added (or deleted) the
interaction terms one at a time. Figure 3 plots the percentage of times that any
interaction term is selected in the models. Less than 10 percent of the simula-
tions included any interactions in the models, a finding that supports the addi-
tive models we used in this analysis.

Figure 2. The Percentage of Selected Models Containing Each Auxiliary
Variable in the API Data Set. A) Forward selection, linear splines. B) Forward
selection, quadratic splines. C) Backward selection, linear splines. D) Backward selec-
tion, quadratic splines.
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6. CONCLUSION

The extension of the BIC to additive model-assisted estimation provides a new
tool to improve estimates of finite population quantities. The additive model
captures the unknown nonlinear relationship, while the BIC reduces the chance
of spurious results. The proposed BIC provides a consistent method of variable
selection for the purposes of model building.

The size of the parameter space when using spline estimates with the
superpopulation model and complex sampling design creates a challeng-
ing theoretical problem. The consistency proof of the proposed BIC pro-
vides the understanding of its large sample properties. The simulations
provide confirmation that the BIC is effective in variable selection at
smaller sample sizes. Our method applied to the API data set demonstrates
its usefulness for an applied problem. The validity of the proposed BIC
method relies on the additive model assumption. The performance of the
proposed method is completely unknown when the additive model is
misspecified.

Similar to the assumptions adopted in the polynomial spline literature, we
have studied the asymptotic properties of the proposed spline estimator when
the choice of knots are nonstochastic. In practice, however, the knot sequence
is often selected by data driven methods. Therefore, it is of interest to investi-
gate the effect of data-driven knots on the asymptotic results. We leave this to
future research.

Future research may improve this method by incorporating a theoretically
justified penalty to the likelihood based on the effective sample size resulting
from the sampling design. Lumley and Scott (2015) suggest an adjustment
based on a design effect for linear models that could be investigated to deter-
mine how to adapt their method to nonparametric models. Additional models
that vary across strata or clusters can be examined to determine how to account
for these in a variable selection method.

Figure 3. The Percentage of Selected Models Containing Each Interaction Terms
in the API Data Set. A) Forward selection, linear splines. B) Backward selection, lin-
ear splines.
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Supplementary Materials

Supplementary materials are available online at academic.oup.com/jssam.
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APPENDICES

A. SKETCH OF PROOF

The notation of E½�jU� and Pð�jUÞ is adopted to denote the sampling design
expectation and probability, respectively, by conditioning on the population
U. Without conditioning, E½�� and Pð�Þ denote the expectation and probability,
respectively, with respect to the joint distribution of the superpopulation
model and the sampling design.

For any M � f1; . . .; dg, let HM be the space of all square integrable addi-
tive functions for variables xl, l 2 M. Let GM be the space of additive spline
functions with the form

gðxÞ ¼ g0 þ
X
l2M

glðxlÞ;

where g0 is a constant and gl is a spline function with degree p with Jn interior
knots. The resulting dimension of GM is qM ¼ 1þ rðpþ JnÞ, where r is the
number of auxiliary variables in M. For the purpose of identifiability, assumeÐ
Cl
glðxÞdx ¼ 0, for l 2 f1; . . .; dg, where Cl is the support of Xl. Without loss

of generality, it is assumed that Cl is the unit interval. Similar to Huang
(1998), we introduce inner products on HM as

h f ; gi ¼ E½f ðXÞgðXÞ�;

hf ; giN ¼ 1
N

X
i2U

f ðXiÞgðXiÞ;

hf ; gin ¼
1
N

X
i2s

p�1
i f ðXiÞgðXiÞ:

The first and second equations are the theoretical and empirical inner products
respectively. The last one, hf ; gin, can be interpreted as the Horvitz-
Thompson estimator of hf ; giN . The corresponding norms are jjf jj2 ¼ hf ; f i; jj
f jj2N ¼ hf ; f iN and jjf jj2n ¼ hf ; f in. The theoretical inner product is used to
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define the orthogonal projection onto GM and HM as ProjM;n and ProjM , re-
spectively. Define

m�
M;n ¼ ProjM;nm and m�

M ¼ ProjMm: (8)

We first present some preliminary results in the following lemmas.
Detailed proofs of some results are presented in the supplementary data
online.

Lemma one. Under assumptions (A1)–(A6), one has

jN�1
X
i2S

p�1
i ðyi � mðxiÞÞ2 � r2j ¼ OPðN�1=2Þ:

Proof. It follows from standard arguments for consistency of the Horvitz-
Thompson estimator. Theorem 4.2 of Dol, Steerneman, and Wansbeek
(1996) is used to bound the variance of the Horvitz-Thompson estimator.
�

Lemma two. Under assumptions (A1)–(A6), one has

N�1
X
i2S

p�1
i ðmðxiÞ � m̂ðxiÞÞ2 ¼ OPðJ�2p�2

n þ Jn=NÞ:

Proof. It gives the L2 consistency of the polynomial spline estimator for fi-
nite populations. The detailed proof is given in the supplementary data
online.

Lemma three. Under assumptions (A1)–(A6), one has

N�1
X
i2S

p�1
i ðyi � mðxiÞÞðmðxiÞ � m̂ðxiÞÞ ¼ OPð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�2p�2
n þ Jn=N

q
Þ:

Proof. It follows directly from the Cauchy-Schwarz inequality and lemmas
one and two. �

Lemma four. Under assumptions (A1)–(A6), one has jN̂=N � 1j ¼ OPðN�1=2Þ;
where N̂ ¼

P
i2S �

�1
i .

Proof. It follows from standard arguments for consistency of the Horvitz-
Thompson estimator. Theorem 4.2 of Dol et al. (1996) is used to bound the
variance of the Horvitz-Thompson estimator. �

Lemma five. Let M0 be the true model. Under assumptions (A1)-(A6), one
has
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jWMSEM0 � r2j ¼ OPð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�2p�2
n þ Jn=N

q
Þ;

where WMSEM0 is defined similarly as (7), but with m̂Mk in place of
mM0 .

Proof. The numerator of WMSEM0 can be decomposed as,

N�1
X
i2S

p�1
i e2i ¼ N�1

X
i2S

p�1
i ðyi � m0ðxiÞÞ2

þ N�1
X
i2S

p�1
i ðm0ðxiÞ � m̂0ðxiÞÞ2

þ 2N�1
X
i2S

p�1
i ðyi � m0ðxiÞÞðm0ðxiÞ � m̂0ðxiÞÞ

¼ Iþ IIþ III:

From the results of lemmas one, two, and three, and Slutsky’s theorem,
we have that

jIþ IIþ III� r2j � jI� r2j þ jIIj þ jIIIj ¼ OPðJ�2p�2
n þ Jn=NÞ: (9)

Combining the results in (9) with lemma four using Slutsky’s theorem
yields

jN
�1P

i2S p
�1
i e2i

N�1
P

i2S p
�1
i

� r2j ¼ OPðJ�2p�2
n þ Jn=NÞ:

Therefore, WMSEM0 is a consistent estimator of �2. �

Lemma six. Let GGf1;...;dg be the spline space using all available auxiliary
variables, then under (A1)–(A6), one has supg2G j jjgjjNjjgjj � 1j ¼ oPð1Þ:

Proof. It follows similar as the proof of lemma A.3 in Xue and Yang
(2006). The detailed proof is given in the supplementary data online. �

Lemma seven. Under assumptions (A1)–(A6), supg2G j jjgjjnjjgjj � 1j ¼ oPð1Þ:

Proof. It is the sample analog of lemma six. It follows from lemma six and
consistency of the Horvitz-Thompson estimators. �

Consider a set of variables xl, l ¼ 1; . . .; d, which contain all relevant auxil-
iary variables and possibly other irrelevant information. Let M � f1; . . .; dg
represent a model containing xl, l 2 M. Then for m�

M;n and m�
M defined in (8),

we have the following results.

Lemma eight. Under assumptions (A1)–(A6), jjm̂M � m�
M;njj ¼

OP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�2p�2
n þ Jn=N

q� �
.
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Proof. It is obtained by applying lemma seven to the population version
given in Huang (1998). �

Lemma nine. Under assumptions (A1)–(A6), if M underfits then
cðM;mÞ ¼ jjm�

M � mjj > 0.

Proof. It is obtained by applying lemma seven to the population version
given in Huang (1998). �

Proof of theorem one. The proof closely follows the one given in Huang
and Yang (2004). The detailed proof is given in the supplementary data
online. �
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B. TABLES

Table 1. Percent of Correct Fitting Models Using Variable Selection in Four
Fixed Populations of Size N51000

Percent correct fits

Linear spline Quadratic spline SBLL

Model r0 n Forward Backward Forward Backward Forward Backward

1 0.1 50 98 98 98 98 72 73
100 99 99 99 99 97 97
200 100 100 100 100 99 99

0.4 50 90 89 94 92 76 77
100 98 98 97 97 98 98
200 100 100 99 99 100 100

2 0.1 50 97 93 99 97 87 87
100 100 100 99 99 96 96
200 100 100 100 100 100 100

0.4 50 95 91 95 92 79 80
100 100 100 99 99 98 98
200 100 100 99 99 100 100

3 0.1 50 97 92 97 95 87 86
100 97 97 99 99 91 91
200 98 98 100 100 100 100

0.4 50 89 82 86 82 83 83
100 99 99 98 98 99 99
200 99 99 100 100 100 100

4 0.1 50 81 91 90 95 68 69
100 97 97 100 100 88 88
200 99 99 100 100 100 100

0.4 50 84 91 84 90 69 69
100 98 98 97 97 97 97
200 99 99 100 100 100 100

NOTE.—The simulation drew one hundred simple random samples of size n and se-
lected the variables for both forward and backward approaches using the proposed
method. The SBLL column presents the results from Wang and Wang (2011) for
comparison.
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Table 3. Variable Definitions

Variable Role Definition

api00 Response API in 2000
stype Strata School type (elementary, middle, high school)
cds Auxiliary County/District/School code
dnum Auxiliary District number
meals Auxiliary Percentage of students in the free or reduced

price lunch program
eng.ll Auxiliary Percentage of students that are English language learners
mobil Auxiliary Percentage of students who first attended school

this present year
col.grd Auxiliary Percentage of parents with college degree
grd.sch Auxiliary Percentage of parents with postgraduate education
enroll Auxiliary Number of students enrolled
hsg.col Auxiliary Percentage of parents with high school degree

or some college

SOURCE.—API (2000).

Table 4. Average Model Size in the API Data from One Thousand Monte Carlo
Simulations Using Stratified Sampling

Direction p n Avg size Std dev

Forward 1 50 2.64 1.14
100 2.63 0.85
200 3.18 0.74

2 50 2.28 1.13
100 2.63 0.87
200 3.25 0.79

Backward 1 50 3.71 1.58
100 2.99 1.05
200 3.35 0.86

2 50 4.70 2.28
100 3.09 1.14
200 3.43 0.92
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Table 5. Bias and Standard Error of the Mean Estimate in the API Data from
One Thousand Monte Carlo Simulations Using Stratified Sampling

Forward Backward Full HT

p n Bias SE Bias SE Bias SE Bias SE

1 50 �1.44 10.93 �1.56 12.36 �2.03 13.67 �0.53 19.47
100 �0.87 6.83 �0.75 6.89 �1.01 7.86 �1 13.76
200 �0.36 4.77 �0.38 4.81 �0.48 4.83 �0.49 10.1

2 50 �2.45 14.23 �2.74 27.95 �4.09 37.32 �0.53 19.47
100 �1.04 7.37 �1 7.7 �1.08 10.63 �1 13.76
200 �0.33 4.86 �0.39 4.9 �0.46 5.33 �0.49 10.1
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