Faster Dynamic-Consistency Checking for Conditional Simple Temporal Networks

Luke Hunsberger*
Computer Science Department
Vassar College — Poughkeepsie, NY USA
hunsberger @vassar.edu

Abstract

A Conditional Simple Temporal Network (CSTN) is a struc-
ture for representing and reasoning about time in domains
where temporal constraints may be conditioned on outcomes
of observations made in real time. A CSTN is dynamically
consistent (DC) if there is a strategy for executing its time-
points such that all relevant constraints will necessarily be sat-
isfied no matter which outcomes happen to be observed. The
literature on CSTNs contains only one sound-and-complete
DC-checking algorithm that has been implemented and empir-
ically evaluated. It is a graph-based algorithm that propagates
labeled constraints/edges. A second algorithm has been pro-
posed, but not evaluated. It aims to speed up DC checking by
more efficiently dealing with so-called negative g-loops.

This paper presents a new two-phase approach to DC-checking
for CSTNSs. The first phase focuses on identifying negative
g-loops and labeling key time-points within them. The second
phase focuses on computing (labeled) distances from each
time-point to a single sink node. The new algorithm, which is
also sound and complete for DC-checking, is then empirically
evaluated against both pre-existing algorithms and shown to be
much faster across not only previously published benchmark
problems, but also a new set of benchmark problems. The
results show that, on DC instances, the new algorithm tends to
be an order of magnitude faster than both existing algorithms.
On all other benchmark cases, the new algorithm performs
better than or equivalently to the existing algorithms.

Introduction

A Conditional Simple Temporal Network (CSTN) is a data
structure for reasoning about time in domains where some
constraints may apply only in certain scenarios. For example,
a patient who tests positive for a certain disease may need to
receive care more urgently than someone who tests negative.
Conditions in a CSTN are represented by propositional letters
whose truth values are not controlled, but instead observed
in real time. Just as doing a blood test generates a positive
or negative result that is only learned in real time, the ex-
ecution of an observation time-point in a CSTN generates

*This work was supported in part by grants from the Lucy May-
nard Salmon Research Fund (Vassar College), the National Science
Foundation (Grant Number 1909739), and the University of Verona
(Programma COOPERINT 2018).

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Roberto Posenato
Dipartimento di Informatica
Universita degli Studi di Verona, Italy
roberto.posenato @univr.it

a truth value for its corresponding propositional letter. An
execution strategy for a CSTN specifies when its time-points
will be executed. A strategy can be dynamic in that its de-
cisions can react to information from past observations. A
CSTN is said to be dynamically consistent (DC) if it admits
a dynamic strategy that guarantees the satisfaction of all rel-
evant constraints no matter which outcomes are observed
during execution. Cairo and Rizzi (2016) showed that the
DC-checking problem for CSTNs is PSPACE-complete.

Different varieties of the DC property have been defined
that differ in how reactive a strategy can be. Tsamardinos
et al. (2003) stipulated that a strategy can react to an obser-
vation after any arbitrarily small, positive delay. Comin et
al. (2015) defined e-DC, which assumes that a strategy’s reac-
tion times are bounded below by a fixed € > 0. Finally, Cairo
et al. (2016; 2017a) defined 7-DC, which allows a dynamic
strategy to react instantaneously (i.e., after zero delay).

This paper focuses exclusively on the 7-DC property.
Cairo et al. (2016) presented the first sound-and-complete
m-DC-checking algorithm. However, that algorithm, which
is (pseudo) singly-exponential in the number of observation
time-points, has never been implemented or empirically eval-
uated. Hunsberger and Posenato (2018) presented an alterna-
tive algorithm (which we shall call HP4g), based on the prop-
agation of labeled constraints. They empirically evaluated the
algorithm, demonstrating its practicality. Later, noting that
the HP;g algorithm can get bogged down, repeatedly cycling
through graphical structures called negative g-loops, Huns-
berger and Posenato (2019) presented (what we shall call)
the HP g algorithm, which included a rule that can generate
edges labeled by expressions such as (—oo, «), and general-
ized existing rules to accommodate such edges. They did not
empirically evaluate the HP ¢ algorithm, but conjectured that
it would deal more effectively with negative g-loops.

This paper presents a new approach to m-DC-checking for
CSTNs that involves two phases. The first phase focuses on
identifying negative g-loops and properly labeling key time-
points—not edges—within such loops. The second phase fo-
cuses on computing (labeled) distances from each time-point
to a single sink node. The new algorithm, which is also sound
and complete for DC-checking, is then empirically evaluated
against both pre-existing algorithms and shown to be much
faster across not only previously published benchmark prob-
lems, but also a new set of benchmark problems. The results



W?j'—soo
(1, qw) 500 500 (2, pw)

X V= = Vs Y
(1,q) 500 500 (2,p)
> - > ‘?A
X‘<*37_“1> P —13 -2 —13 @ <*5ﬁp>'Y

Figure 1: Two sample CSTN graphs

show that, on DC instances, the new algorithm tends to be an
order of magnitude faster than both existing algorithms. On
all other benchmark cases, the new algorithm performs better
than or equivalently to the existing algorithms.

Preliminaries

Dechter et al. (1991) introduced Simple Temporal Networks
(STNi) to facilitate reasoning about time. An STN has real-
valued variables, called time-points, and binary difference
constraints on those variables. Most STNs have a time-point
7 whose value is fixed at zero. A consistent STN is one that
has a solution as a constraint satisfaction problem.

Tsamardinos et al. (2003) presented CSTNs, which aug-
ment STNs to include observation time-points and their as-
sociated propositional letters. In a CSTN, the execution of
an observation time-point P? generates a truth value for its
associated letter p. In addition, each time-point can be la-
beled by a conjunction of literals specifying the scenarios in
which that time-point must be executed. Finally, they noted
that for any reasonable CSTN, the propositional labels on its
time-points must satisfy certain properties.

Hunsberger et al. (2012) generalized CSTNs to include
labels on constraints, and formalized the properties held by
well-defined CSTNs. Then Cairo et al. (2017b) showed that
for well-defined CSTNs, no loss of generality results from
removing the labels from its time-points. Therefore, this pa-
per restricts attention to CSTNs whose time-points have no
labels—the so-called streamlined CSTNs—and henceforth
uses the term CSTN to refer to streamlined CSTNS.

Fig. 1 shows two sample CSTNs in their graphical forms,
where nodes represent time-points, and labeled, directed
edges represent conditional binary difference constraints. For
example, in the top figure, Z = 0; and P?, Q7 and W ? are ob-
servation time-points whose execution generates truth values
for p, ¢ and w, respectively. The edge from Y to Q7 being
labeled by (2, pw) indicates that the constraint, Q7 — Y < 2
applies only in scenarios where p and w are both true.

The Dynamic Consistency of CSTNs

Since the execution of an observation time-point P? gener-
ates a truth value for its associated letter p, a dynamic execu-
tion strategy can react to observations, in real time, possibly
making different execution decisions in different scenarios.
A dynamically consistent CSTN is one that has an execution
strategy that guarantees that all relevant constraints will be
satisfied no matter which values are observed in real time.
This paper focuses on w-dynamic strategies, which can react

instantaneously to observations (Cairo, Comin, and Rizzi
2016). The full set of definitions is given in the Appendix.

Existing 7-DC-Checking Algorithms

This paper restricts attention to the m-DC-checking problem
for CSTNs (i.e., execution strategies can react instantaneously
to observations). For convenience, we use the term DC to
mean 7-DC. The 7-DC-checking algorithms discussed in this
paper are all based on the propagation of labeled constraints.
In graphical terms, each algorithm employs a set of rules for
generating new edges from existing edges in the CSTN graph.
Whereas the characteristic feature of an inconsistent STN is
the existence of a negative-length loop, the characteristic fea-
ture of a non-DC CSTN is the existence of a negative-length
loop whose edges have mutually consistent propositional
labels. For example, a CSTN with the loop shown below

(10, pq)
<7157 qr>

must be non-DC since in any scenario consistent with pqr,
both constraints along the negative loop must be satisfied,
which is impossible. (In other networks, such a loop might
only be revealed after extensive constraint propagation.) How-
ever, a DC CSTN may contain negative-length loops whose
edges have mutually inconsistent propositional labels; they
are called negative g-loops. For example, the CSTN at the
top of Fig. 1 is DC, despite having two negative g-loops:
one from X to P? to X, and one from Y to 7 to Y. (Note,
for example, that the label pw on the edge from Y to Q7 is
inconsistent with the label —p—w on the edge from Q7 to Y.)
In this network, propagations involving the negative g-loops
cannot lead to a negative loop with a consistent label; hence,
the network is non-DC. However, negative g-loops are not al-
ways benign. For example, propagating the negative g-loops
in the CSTN at the bottom of Fig. 1 will eventually generate
a negative loop with a consistent label, implying that that
network is not DC. For these reasons, negative q-loops pose
difficult challenges for any 7-DC-checking algorithm.

Each algorithm in this paper generates new edges in the
CSTN graph until: (1) a negative-length self-loop (i.e., a
negative-length edge from a node to itself) with a consistent
label is generated, or (2) no new edges can be generated. In
case (1), the network is not DC; in case (2), it is DC.

The HP 5 Algorithm

The only sound-and-complete m-DC-checking algorithm that
has been implemented and empirically evaluated in the litera-
ture is the m-DC-Check algorithm of Hunsberger and Posen-
ato (2018), hereinafter called HPg. To deal with constraints
having inconsistent labels, the algorithm sometimes generates
a new kind of propositional label, called a g-label.

Definition 1 (Q-literals, g-labels). A g-literal has the form
?p, where p is a propositional letter. A g-literal represents that
a proposition’s value is unknown. A g-label is a conjunction
of literals and/or g-literals. Q* denotes the set of all g-labels.

For example, p(?q)—r and (?p)(?q)(?r) are both g-labels.
The % operator extends conjunction to accommodate
g-labels. Intuitively, if the constraint C; is labeled by p, and



Edge Generation

| Conditions

Re ¥ (u, o) W (v, B) 7
[ (utv,aB) 4

u+v <0andaf € P*

<w’ aﬁ>

Rli P?Wz w<0,£p¢a€Q*
RS P?<w’a> (v 57) Yiw<0 fpgaxpfeQF

(max{v,w}, ax B3)

W, X,Y €T;Z=0,P?c OT;and u,v,w € R.

Table 1: Edge-generation rules used by the HP g algorithm

(5 is labeled by —p, then both C; and C'; must hold as long
as the value of p is unknown, represented by p x =p = 7p.

Definition 2 (x). The operator, x: Q* x Q* — Q*, is defined
thusly. First, for any p € P, pxp = p and —p x =p = —p. For
all other combinations of p1,ps € {p, —p, 7p}, p1 * p2 =7p.
Finally, for any g-labels ¢1,¢; € Q*, {1 x {5 € Q* denotes
the conjunction obtained by applying * in pairwise fashion
to matching literals from ¢; and /5, and conjoining any un-
matched literals.

For example: (p—q(?r)t) *x (¢gr—s) = p(?q)(?r)-st.

The HP g algorithm uses the constraint-propagation/edge-
generation rules shown in Table 1.' Note that each rule only
generates edges terminating at the zero time-point Z. For the
RY and RS rules, p € {p, —p, ?p}, and £p ¢ « represents
that none of p, —p and 7p appear in a.

The R rule extends ordinary constraint-propagation in
STNs to accommodate propositional labels. The label on the
generated edge (shaded) is the conjunction of the labels on the
pre-existing edges. The R? rule applies when an observation
time-point P7 has a lower bound that is conditioned by some
propositional label. This rule stipulates that the condition on
that lower bound cannot depend on the as-yet-unobserved
value of the corresponding letter p. Thus, the Rl{ rule removes
any occurrence of p from the propositional label. The R rule
similarly removes occurrences of p, but from a propositional
label on a different edge. This rule can generate g-labeled
edges: for example, if « = g and 8 = —q, then a x 5 = 7q.

Although the HP ;g algorithm is sound and complete for
7-DC checking, it can get bogged down cycling through neg-
ative g-loops. For example, recall the CSTN from the bottom
of Fig. 1, a portion of which is shown in Fig. 2. It shows
ten applications of the R¢, RY and RS rules, generating the
dashed edges in the order indicated by the parenthesized
numbers, the end result of which is that the weights on the
edges from P7 to Z, and Q7 to Z have changed from —13 to
—15. After cycling through these interacting negative g-loops

'In Hunsberger and Posenato (2018), the R, RY and RS rules
were called LPz, qRo and qR3, respectively. We use the R, RE RS
notation throughout the paper to highlight the similarities among
groups of rules, while keeping the notation manageable. For Ta-
bles 1-3, the subscript specifies the number of the table in which
the rule first appears; the superscript specifies the general class to
which the rule belongs: a for generalized constraint propagation, b
for basic label modification, and ¢ for complex label modification.

Rule] Edge Generation | Conditions
(u, )
@ /- u < 0,u+v <0,and
RY| (saxB X< —rw | <)M A0S
“ (u, o) @, 8) o
R3 X——W——Y u+v < 0and [(a*x B =
L @+3ax8) ¢ aB € P*)or (@ < 0)]
(w, ap) _ - .
RS P?—m > X w<0,fpdacQ
Ry PP T x . Oyl g1 o
2| P fnaximut,axp)) | <OFpgaxbe

W, X,Y € T,u,v € R;u,v,w € [—00,00); and P? € OT.

Table 2: Edge-generation rules used by the HP ¢ algorithm

several hundred more times, the resulting edges will combine
with the upper-bound edges from Z to P? and Z to Q7 (not
shown in Fig. 2) to generate negative loops with consistent
labels, at which point the algorithm will correctly conclude
that the network is not DC. However, although the CSTN
at the rop of Fig. 1 has a similar structure, the presence of
W7 and constraints labeled by w and —w combine to ensure
that it is DC, which the HP ;g algorithm will discover after
cycling through the negative g-loops hundreds of times.

The HP 19 Algorithm

Aiming to speed up m-DC checking by dealing more effec-
tively with negative g-loops, Hunsberger and Posenato (2019)
introduced a new set of sound-and-complete edge-generation
rules which, in this paper, we call the HP g algorithm.? It be-
gins with the R%D rule shown in Table 2, that covers a special
case of labeled propagation in which the two edges (from X
to W to X) form a negative g-loop. (If a x 8 = a8 € P*,
then the CSTN can be immediately rejected as not DC.) They
showed that instead of setting the weight on the generated
loop to u + v < 0, it is sound to set it to —oo. Intuitively,
such a loop can be understood as saying that X cannot be
executed as long as the label o x § is (or might yet be) true.
For example, a loop from X to X labeled by (—oo, (?p)q)
represents that X cannot be executed as long as p is unknown
and ¢ is (or might yet be) true. They showed that the R%D
rule can greatly speed up m-DC checking because instead
of repeatedly cycling through negative q-loops many times,
the HP 9 algorithm may cycle through them only once, using
the rest of the rules from Table 2, which are straightforward
extensions of the corresponding rules from Table 1 to accom-
modate —oo, and to generate edges pointing at any node—not
just Z. In addition, the R§ rule can generate g-labeled edges,

and the RY rule can be incorporated into the R§ rule as a
post-process. Note, too, that a —oo value generated by the

In Hunsberger and Posenato (2019), the RO, R¢, RS and RS
rules were called qInf, qLP}", qRg and qR} ™, respectively. Here, the
circled superscript is used for rules involving loops labeled by —oo.
Because its edge-generation rules are more general than those used
by the (complete) HP 15 algorithm, the HP 19 algorithm is necessarily
complete. Hunsberger and Posenato (2019) proved that the Rga) and
R5 rules are sound, but left the soundness proofs of the RS and RS
rules as exercises for the reader.



(6) RY: (=15, —q), (9) RE: (—15, =p), (10) RE: —15

(3) RE: (—16, -p), () RS: (—15, -q), ) RY: —15

7777777777777777777777777777777

Figure 2: The HP g algorithm cycling through a pair of interacting negative g-loops

4) RS: (—o0,?7q), (6) R5: (—o0, ?p), (8) Rg: —o0

(2) RE: (=00, 7p), (5) RS: (—o0, 2q), (1) RE: —oc0

3 Q7 - Y+——=

Figure 3: The HP g algorithm more effectively handling the interacting negative q-loops from Fig. 2

Rgb rule can be propagated by RS, since X or Y may be
identical to W

Fig. 3 shows that the rules from Table 2 only pass through
the negative g-loops from Fig. 2 once to generate uncondi-
tional lower bounds of oo for Q7 and P?, at Steps (7) and
(8), respectively. Since P? and )7 have upper bounds of 500
(cf. the bottom of Fig. 1), the network must be non-DC. The
network from the top of Fig. 1 can be similarly analyzed, ex-
cept that the infinite lower bounds generated for Q7 and P?
end up being conditioned on ?w. The R rule, using the edge
from W7 to Z, then generates unconditional lower bounds
of 300 for Q7 and P?, enabling the network to be DC.

Although expected to outperform the HPig algorithm
on networks with negative g-loops, Hunsberger and Pose-
nato (2019) did not empirically evaluate the HP 19 algorithm.
(Their only intent was to show its usefulness in a context
where weights on edges could be piecewise-linear functions.)

HP9o: A Faster 7-DC-Checking Algorithm

This section introduces a new m-DC-checking algorithm for
CSTNs, called HP g, that builds on the algorithms seen above.
The primary insight is that the semantics of satisfying an edge
labeled by (—o0, o), for some o € Q*\P* does not depend
on the target node of the edge, but only on its source node. As
a result, much of the propagation of such labeled values by
the HP 19 algorithm is redundant. The HP 5 algorithm avoids
this problem by associating such labeled values only with
nodes, not edges.®> The HPy algorithm also separates the job
of finding negative g-loops, which it does in a pre-processing
phase, from the main algorithm.

The Semantics of Constraints on Nodes

Hunsberger and Posenato (2018) defined the semantics of
it

satisfying a (lower-bound) g-labeled constraint X M»Z for
any § < 0 and a € Q*. Applying this definition to cases
where § = —o0, and letting the target node be any Y € T,
yields the following (Hunsberger and Posenato 2019).

Definition 3. The execution strategy o satisfies the g-labeled

—00, (¢ . .
(z00,) Y if for each scenario s:

constraint X

3Whereas the propositional labels, o € P*, that Tsamardinos
et al. (2003) applied to nodes in (unstreamlined) CSTNs specified
the scenarios in which nodes must be executed, our application
of (—oo,a), with @ € Q*\P*, to a node specifies a dynamic
constraint on when that node can be executed. Completely different.

Algorithm 1: NQLFinder (G)

Input: CSTN G = (T, E).
Output: G modified by NQLF rule.
Q:=FE, newQ :={}, n:=|T| -1
while Q # 0 and n > 0 do
while Q) # () do
(X,Y) := extract an edge from Q
foreach (Y, W) € E do
if (X,W) e Eandn # |T| — 1 then
continue // Update (X, W) only once
eXWfilled := NQLF ((X,Y), (Y, W))
if eXWrilled is new or modified then
| newQ = newQ U {eXWfilled}

n:=n-—1

| Q= new@Q

(1) [o(8)]x > [o(s)]y + oo; or
(2) some a € {a,—a,?a} appears in « such that o(s) ob-
serves a m-before Y and s £ a.*

Since clause (1) cannot be satisfed, it follows that o can
only satisfy such a constraint if o(s) does not execute X
until it first executes some observation time-point A7 that
generates a value for a that ensures that s |~ «. The critical
point is that such a constraint only applies to the source node
X; it does not involve Y at all. For this reason, it makes
sense to associate such a constraint to the node X (e.g., as
in X(_ o a)), not to the edge from X to Y. Furthermore, it
would be pointless to forward-propagate such constraints,
because the resulting edge would have the same source node,
and hence would be redundant.

Finding Negative Q-Loops

The NQLFinder algorithm, shown in Algorithm 1, is a pre-
process that uses the rules listed in Table 3 to find all negative
g-loops having at most n = |7 time-points.> The R rule
propagates forward from each source node X, generating

“The 7-before relation (in this case) stipulates that in scenario
s, o executes A? before Y, or simultaneous with Y, but ordered
before Y. (See the definitions in the Appendix.) For convenience,
this definition assumes the convention that s =7p for any p € P~.

5 A negative g-loop with more than n time-points must have a
sub-loop that is a negative g-loop with at most n time-points.



Rule] Edge Generation

RS XM'WM’Y (u < Oandu+ v < 0)
L (u+ v, a*B) J‘ or (% B € P*)

(u, o) u < 0,u+v < 0, and

| Conditions

RY 5 W adds X(—co,0x8) | % B € Q*
b 2 (w, ap) - *
R3 P.Wx w<0,tpZacQ

Rgb P?<,oo,5a) adds P?(foo,a) :T:p Zac Q"

W, X, Y € T; P?€OT;u,v,w € R;Inl,ifaxf € P*,
then the network must be non-DC.

Table 3: Edge-generation rules for NOLF inder

negative-length edges, but note that v (i.e., the length of the
second edge in the rule) may be non-negative. The Ré@ rule is
similar to the Rgb rule from Table 2, except that it generates a
labeled value associated with the node X, not the edge from

X to X. The R} and Rgb rules are used as post-processes

for R§ and R%’D, respectively, to remove instances of any
p € {p,—p, ?p} when X is the corresponding observation
time-point P?. In the implementation, the four rules from
Table 3 are folded into a single composite rule, called NQLF.
The overall aim of the NQLFinder algorithm is to find
all nodes that can be labeled by (—oo, a) for some a. (A
single node may have a set of such labels, each with a dif-
ferent o..) Often, not every node in a negative g-loop can be
so labeled (e.g., source nodes of non-negative-length edges).
When done, any edges discovered by the NQLF inder algo-
rithm are discarded; only the node-constraints are kept.
When NQLFinder is run on the CSTN at the bottom of
Fig. 1, single applications of the Rg@ rule generate labels of
(—00, ?p) for Q?, and (—oo, 7q) for P?. Afterward, the main

algorithm, discussed below, can use rules R%? and RgD from
Table 4 to generate the unconditional lower bounds of co on
P? and Q7 which, given their finite upper bounds, implies
that the network must be non-DC.

Propagating Constraints

The main part of the HPy( algorithm uses the rules shown
in Table 4.° Like the HPg rules from Table 1, all edges
generated by the HPy rules have Z as their target, and have
finite numerical weights. Like the HP g rules from Table 2,
the HPog rules generate labels such as (—oo, a); however,
such labels are applied to nodes, not edges. The R rule is
identical to the R{ rule used by the HPg algorithm, except
that the R§ rule accommodates g-labels. Each instance of

the Ri@ rule propagates a (—oo, 3) label on a node backward

across an edge to generate a new node label. The RgD rule is
the same as the one used by NQLFinder (cf. Table 3). The
RS, RS and RE rules extend the R rule to accommodate

8Since these rules are more general than their counterparts in
the (complete) HP 15 algorithm, the HP g algorithm is necessarily
complete. The soundness of the new rules in Tables 3 and 4 can be
proven by straightforward generalizations of the soundness proofs
for the corresponding rules from Tables 1 and 2.

Rule] Edge Generation | Conditions
a (u, @) (v, B) .
R4 XWZ (ax B =af € P*)or
(u + v, @ % B) (u<0and u+ v < 0).
(u, o)

RO| X —— Wi p) adds X(,a4p) |u < 0, % € Q*\ P*

(w, ap)

Rll) P?Wz w<0,:T:p€Oé€Q*
ROl P?lwpa) adds Pliway |EP &
¢ (w, a) (v, Bp)

RE| P17+ Y < 0,5pdaxBcQ*

(max{v,w}, a * 3)

(u, o)
RY| PP Z gy Yiop8) |u <0
(u, BP)
© ? -«
RE| Pliwa)y Z taax B) Y |u<0

RE| P?(x,a) Yioo,58) adds Yio,axp)

W,X,Y € T:Z=0; P? € OT; u,v,w € R. In RY, if
a* 8 € P*, then network must be non-DC.

Table 4: Edge-generation rules for the HPy( algorithm

(—00, o) labels on nodes in different positions.

Since all edges manipulated by the HP 5 algorithm have Z
as their target, and the only other labeled values are associ-
ated with nodes, our implementation of the HP5( algorithm,
shown as Algorithm 2, makes the following unifying simplifi-
cation. If an edge from X to Z has a labeled value (J, «),then
the implementation treats that labeled value as a labeled po-
tential that it stores with the node X. Because labeled values
on edges from X to Z only have finite weights, such labeled
potentials are easily distinguished from the labeled values
(—00, ) that the NQLFinder algorithm assigns to nodes.
Our implementation also treats these labeled values as labeled
potentials associated with nodes. As a result, our implemen-
tation only generates labeled potentials of nodes; it does not
generate edge constraints at all. Thus, the R and RY rules

can be combined into one rule, to which the R’{ and Rg’)
rules can be appended as post-processes, resulting in a single
composite rule called pot®® in Algorithm 2. Similarly, the

¢, RS, RS, and RE rules can be combined into a single
composite rule called pot® in Algorithm 2.

In summary, unlike all previous algorithms, Algorithm 2
does not add any edges to the network and checks the dy-
namic consistency by determining the minimal distance to Z
for each node in relevant scenarios. This approach avoids a
large amount of redundant propagation of labeled values on
edges that is done by earlier algorithms.

Experimental Evaluation

This section compares the performance of our new HPog al-
gorithm against the pre-existing HP 15 and HP g algorithms.
HP 9 refers the implementation of Algorithm 2; HP g is the
freely available implementation of the w-DC-checking al-
gorithm (Hunsberger and Posenato 2018); HP1g is our im-
plementation of the alternative m-DC-checking algorithm
proposed by Hunsberger and Posenato (2019). All algorithms
and procedures were implemented in Java and executed on a



Algorithm 2: HP5q (G)

Input: CSIN G = (T, E)
Output: Consistency status: YES/NO

Z.d:= {(0,00)} /I Z = first node; v.d is v’s potential
NQLFinder (G) /I Generate (—oo0, o) values
Q:= {7}
while Q # 0 do

QObs := {}

while Q # 0 do // Update node distances
X := extract a node from @)
foreacheY X := (Y, X) € E do
foreach (u,a) € X.d do

foreach (v, 3) € eY X do

L pot® ((u, @), (v, B))

if Y.d potential was updated then

Insert Y in Q

if Y is an observation time point then
L Insert Y in QObs

/I Apply pot® among obs. time-points ONLY
QObsl = QObs
while QObs1 # () do
A? := extract a node from QObs1
foreach observation time-point X? € V do

/I Apply pot©to X7 w.rt A?

foreach (u,ay) € X.d do

if v € P* andu= —oc then return NO
L X.d(y):=u

if X.d potential was updated then
| Insert X in Q, QObs and in QObs1

/I Apply pot® to other time-points

foreach observation time point A? € QObs do

foreach X € V do

if X is an obs. time-point then continue

// Apply pot©to X w.rt A?

foreach (u,ay) € X.d do
if v € P* andu= —oc then return NO
X.d(y)=u

if X.d potential was updated then
| Insert X in Q

r(:turn YES

JVM 8 in a Linux box with two AMD Opteron 4334 CPUs
and 64GB of RAM. The implementation of all algorithms
and procedures is freely available as Java Package (Posenato
2019).

All implementations were tested on instances of the four
benchmarks from Hunsberger and Posenato (2016). Each
benchmark has at least 250 DC and 250 non-DC CSTNs,
obtained from random workflow schemata generated by the
ATAPIS toolset. The numbers of activities (V) of random
workflows and choice connectors (corresponding to CSTN
observations (|P|)) were varied, as shown in Fig. 4.

We fixed a time-out of 10 minutes (m) for the execution
of each algorithm on each instance. For the DC instances,
HP19 timed out on 32 of the 250 instances, while HP g timed

T T T T T T T T 17 T T T 17
L —4—HP13g -
Sm —o—HP1g
—»—HPgq %
Imf- y
30s|- Benchmark 2 I |
2 NZ20. [PI=5 /\
g 3s f }Yf -
g Benchmark 1 lﬂ [530)
.2 N=10, |P|=3 *
503 o Hyg .
toe®D
§<’ (XX =]
& W
Forey Frgx
% A — N B ——
Benchmark 3 Benchmark 4
&’X‘K N=30, |P|=7 N=40, |P|=9
[ L1 |1 L1
91 107 123 139 155 n
(a) Benchmarks with DC Instances
Smf— il T
—o—HP1g
1m7 —»—HP2q |
30s|- 5
g
g 3s|- Benchmark 1 §§i |
g N=10, |73| 3
Q
2035 farTee .
m
R B —
Benchmark 4
Benchmark 2 j\ljen;grr‘lz;T 37 N=40, |P|=9
\\\\\ N‘T2 ‘P‘ | |

91 107 123 139 155 n»

(b) Benchmarks with non-DC Instances.

Figure 4: Execution times vs number of nodes

out on only 3. Most of time-outs occurred in benchmark 4.
For the non-DC instances, HP 19 timed out on 2 of the 250
instances, while HPg timed out on 18. The HP4, algorithm
never timed out.

Fig. 4 displays the average execution times of the three
algorithms across all eight benchmarks (4 for DC instances,
4 for non-DC instances), each point representing the average
execution time for instances of the given size. The size of
the benchmarks allows the determination of 95% confidence
intervals for the results. The results demonstrate that the HP g
and HP 9 algorithms perform differently for different kinds
of networks: HP g is better than HP 19 when instances are DC,
while HP g is better when instances are not DC. The reason
is that HPg generates labeled values only on edges pointing
at Z, while HP 9 can generate labeled values for any edge.
Therefore, when instances are DC (i.e., no negative cycle with
a consistent label), the propagations are exhausted earlier by
the HP;g algorithm. In contrast, when an instance is non-DC,
HP1g tends to detect the negative loop with a consistent label
much more quickly, due to its more efficient processing of
negative q-loops. (The HP ;g algorithm can cycle repeatedly
through negative g-loops until some upper bound is violated,
which can take a long time if the upper bound is relatively



Execution time

3s|-

2 4 6  #qLoops

(a) Benchmarks with DC Instances

I
10m|- L — R

—4—HPig
Sm{|—o—nrig

—x—HP2o

Execution time

Imp | —
2 4 6  #qLloops

(b) Benchmarks with non-DC Instances.

Figure 5: Results of 100n7pQL6nQL1pQL benchmark

large.)

The HPyy algorithm can be viewed as combining the
strengths of the HPg and HP g algorithms. First, it identifies
negative q-loops more efficiently as a pre-process. Second it
uniformly treats all constraints as labeled potentials on nodes,
avoiding the redundant propagations of (—oo, ) values on
edges by HPg. Since it updates only the potentials of nodes,
when an instance is DC, it updates such potentials similarly
to how the HP g algorithm updates edges pointing at Z, with-
out any other useless computations. When an instance is
non-DC, the NQLFinder pre-process can detect negative
g-loops efficiently, and the main HPy( algorithm can manage
the node potentials more efficiently than HP19. Therefore, its
performance is better than both of the other algorithms when
instances are positive, while it is more or less equivalent to
the HP g9 algorithm when instances are negative.

To study the behavior of the three algorithms with respect
to the structure of possible CSTN instances, we set up a
new random generator of CSTN instances by which it is
possible to generate random instances having a variety of
specific features. Some features can be given as input to the
random generator: number of nodes, number of propositions,
probability of an edge for each pair of nodes, minimal number
of negative g-loops, number of propositions appearing in
negative g-loops, number of edges in negative g-loops, the
circuit weight of negative g-loops, minimal and maximal
edge weights, number of observation time-points in g-loops,
minimal distance from observation time-points to Z, etc.

Then, we built two new benchmarks. The first,
100n7pQL6nQL1pQL, contains 300 random instances (150
DC, 150 non-DC) each having 100 nodes, 7 propositions,

and some negative g-loops with 6 edges, cycle weight -1,
and each containing just 1 proposition. The benchmark is
divided into 3 sub-benchmarks of 50 instances each: the first
contains instances in which at least 2 negative q-loops are
present, the second contains instances having at least 4 nega-
tive g-loops, and the third contains instances having at least 6
negative g-loops. In each instance, the weight of an edge is a
random value in [—150, 150]. Figure 5 depicts the execution
times of the three algorithms on the 100n7pQL6nQL1pQL
benchmark. The time-out was fixed to 15 m.

For DC instances, HP 19 timed out on approx. 43% of the
instances, while HPg and HP5g never timed out. For non-
DC instances, HP19 timed out on approx. 6% of the 150
instances, HP g for approx. 51%, and HPy for approx. 1%.
These results confirm that instances having negative g-loops
are harder to solve than those without negative g-loops. Over-
all, the HPy( algorithm performs best across both DC and
non-DC instances. The results also suggest that the difference
among having 2, 4, and 6 negative g-loops does not signifi-
cantly affect the execution times for any of the algorithms.

The second benchmark, 100n7pQL6nQL1pQLFarObs,
contains the same instances as the first benchmark, but with
the distances of observation time-points from Z modified.
Each observation time-point has an edge to Z with a random
value (distance) in the range [-450, -300]. In this way, we
wanted to study how the algorithms work for solving negative
g-loops. Figure 6 depicts the execution times of the three algo-
rithms on the 100n7pQL6nQL1pQLFarObs benchmark.
The time-out was fixed to 15 m. For the DC instances, HP g
timed out for approx. 36% of the 150 instances, while HP g
and HPog never timed out. For the non-DC instances, HP g
timed out for approx. 8% of the 150 instances, while HP1g
for approx. 59%, and HPoq for approx. 4%. Although we
had expected the HP g algorithm to perform much worse on
the non-DC instances in this benchmark, the results did not
confirm this. We will explore different benchmarks to further
understand the different behaviors of the three algorithms.

The main takeaway from our evaluation is that the HPy
algorithm performs significantly better than the existing al-
gorithms across many types of benchmarks, and always per-
forms at least as well as those algorithms on all benchmarks.

Conclusions

This paper presented a new approach to DC checking for
CSTNs that results in a sound-and-complete algorithm, called
HP9, that is empirically demonstrated to be significantly
faster than pre-existing DC-checking algorithms across not
only existing benchmarks, but also across a new set of bench-
marks. The HP o algorithm more efficiently identifies impor-
tant graphical structures called negative g-loops and more effi-
ciently manages the propagation of labeled values of the form
(—00, ). In addition, unlike previous algorithms, the main
phase of the new algorithm only updates labeled values—
whether finite or infinite—on nodes, not edges.

Looking forward, we plan to evaluate the HPo( algorithm
across a wider variety of benchmark problems to determine
which graphical features most significantly impact its perfor-
mance.



10m[- a
Smf- =
—+4—HP1g

Imp

o B —

2 4 6  #qLoops

Execution time

(a) Benchmarks with DC Instances

5
2

&4
=

Execution time

ImEe— L —
2 4 6  #qLloops

(b) Benchmarks with non-DC Instances.

Figure 6: Results of 100n7pQL6nQL1pQLFarObs benchmark where all observation nodes have a big distance from Z.

Appendix: Definition of 7-DC for CSTNs

The definitions give below are expressed in the form used by Huns-
berger and Posenato (2018).

Definition 4 (Labels). Let P be a set of propositional letters. A
label is a conjunction of (positive or negative) literals from P. The
empty label is notated [J; and P* denotes the set of all satisfiable
labels with literals from P.

Definition 5 (CSTN). A Conditional Simple Temporal Network
(CSTN) is a tuple, (T, P,C,OT,O), where:

e 7 is a finite set of real-valued time-points (i.e., variables);

e P is afinite set of propositional letters (or propositions);

e (isasetof labeled constraints, each having the form, (Y — X <
0, £),where X, Y € T,§ € R,and £ € P~

e OT C T is aset of observation time-points (OTPs); and

e O: P — OT is abijection that associates a unique observation
time-point to each propositional letter.

In a CSTN graph, the observation time-point for p (i.e., O(p)) is usu-
ally denoted by P7; and each labeled constraint, (Y — X < §,4),
is represented by an arrow from X to Y, annotated by the labeled

value (6,€): X AULSS (If £ is empty, then the arrow is labeled by

0, as in an STN graph.) Since X and Y may participate in multiple
constraints of the form, (Y — X < §;,¢;), the edge from X to Y’
may have multiple labeled values of the form, (d;, ¢;).

Definition 6 (Schedule). A schedule for a set of time-points 7 is a
mapping, ©: T — R. The set of all schedules for any subset of T
is denoted by V.

Definition 7 (Scenario). A function, s: P — {T, L}, that assigns
a truth value to each p € P is called a scenario. For any label
£ € 'P*, the truth value of ¢ determined by s is denoted by s(¢). Z
denotes the set of all scenarios over P.

The projection of a CSTN onto a scenario, s, is the STN obtained
by including only the constraints whose labels are true under s (i.e.,
that must be satisfied in that scenario).

Definition 8 (Projection). Let S = (7,P,C,OT,0O) be any
CSTN, and s any scenario over P. The projection of S onto s—
notated S(s)—is the STN, (7, CZ), where:

CH={(Y —X<8)|3,(Y —X<84) cCAs({)=T}

The truth values of propositions in a CSTN are not known in ad-
vance, but a w-dynamic execution strategy can react instantaneously
to observations. To make instantaneous reactivity plausible, a 7-
execution strategy must specify an order of dependence among
simultaneous observations.

Definition 9 (Order of dependence). For any scenario s, and order-
ing (P1?,..., Px?) of observation time-points, where k = |OT],
an order of dependence is a permutation 7 over (1,2, ..., k); and
for each P? € OT, n(P?) € {1, 2, ..., k} denotes the integer po-
sition of P? in that order. For any non-observation time-point X,
we set m(X) = oo . Finally, I, denotes the set of all permutations
over (1,2,...,k).

Definition 10 (7-Execution Strategy). Given any CSTN S =
(T,P,C,OT,0), let k = |OT]|. A w-execution strategy for S
is a mapping, o: Z — (¥ x IIx), such that for each scenario s,
o(s) is a pair (¢, m) where ¢p: T — R is a schedule and 7w € IIj
is an order of dependence. For any X € 7T, [o(s)]x denotes
the execution time of X (i.e., ¥(X)); and for any P? € OT,
[o(s)] P~ denotes the position of P? in the order of dependence (i.e.,
w(P7?)). Finally, a m-dynamic strategy must be coherent: for any
scenario s, and any P?,Q? € OT, [o(s)]p? < [0(s)]q? implies
[o0(8)]B7 < [0(3)]G2 (e, if o(s) schedules P? before Q?, then it
orders P? before Q7).

Definition 11 (Viability). The m-execution strategy o is called
viable for the CSTN S if for each scenario s, the schedule 1 is a
solution to the projection S(s), where o(s) = (¢, 7).

Definition 12 (7w-History). Let o be any m-execution strategy for
some CSTN § = (7,P,C,OT,0), s any scenario, t any real
number, and d € {1,2,...,]|OT|} U {oo} any integer position
(or infinity). The 7-history of (t, d) for the scenario s and strategy
o—denoted by 7 Hist(t, d, s, o)—is the set

{(p,s(p)) | P? € OT, [o(s)]lpz < t,7(P?) < d}.

The m-history of (¢, d) specifies the truth value of each p € P that is
observed before t, or at t if the corresponding P? is ordered before
position d by the permutation 7.

Definition 13 (7-Dynamic Strategy). A w-execution strategy, o,
for a CSTN is called w-dynamic if for every pair of scenarios, s;
and sz, and every time-point X € 7:

let: t =[o(s1)]x, and d = [o(s1)]%-

if: wHist(t,d, s1,0) = wHist(t,d, s2,0)

then: [o(s2)]x =t and [o(s2)]% =
Thus, if o executes X at time ¢ and position d in scenario s1, and the
histories, 7 Hist(t,d, s1,0) and wHist(t, d, s2,0), are the same,

then o must also execute X at time ¢ and in position d in s2. (X
may be an observation time-point.)

Definition 14 (7-Dynamic Consistency). A CSTN, S, is -
dynamically consistent (m-DC) if there exists a w-execution strategy
for S that is both viable and 7-dynamic.



References

Cairo, M., and Rizzi, R. 2016. Dynamic Controllabil-
ity of Conditional Simple Temporal Networks is PSPACE-
complete. In 23rd Int. Symp. on Temporal Representation
and Reasoning (TIME-2016), 90-99.

Cairo, M.; Combi, C.; Comin, C.; Hunsberger, L.; Posenato,
R.; Rizzi, R.; and Zavatteri, M. 2017a. Incorporating Deci-
sion Nodes into Conditional Simple Temporal Networks. In
24th Int. Symp. on Temporal Representation and Reasoning
(TIME-2017).

Cairo, M.; Hunsberger, L.; Posenato, R.; and Rizzi, R. 2017b.
A Streamlined Model of Conditional Simple Temporal Net-
works - Semantics and Equivalence Results. In 24th Int. Symp.
on Temporal Representation and Reasoning (TIME-2017),
volume 90 of LIPIcs, 10:1-10:19.

Cairo, M.; Comin, C.; and Rizzi, R. 2016. Instantaneous
Reaction-Time in Dynamic-Consistency Checking of Con-
ditional Simple Temporal Networks. In 23rd Int. Symp. on
Temporal Representation and Reasoning (TIME-2016), 80—
89.

Comin, C., and Rizzi, R. 2015. Dynamic consistency of
conditional simple temporal networks via mean payoff games:
a singly-exponential time dc-checking. In 22st Int. Symp. on
Temporal Representation and Reasoning (TIME 2015), 19—
28.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence 49(1-3):61-95.

Hunsberger, L., and Posenato, R. 2016. Checking the dy-
namic consistency of conditional temporal networks with
bounded reaction times. In Coles, A. J.; Coles, A.; Edelkamp,
S.; Magazzeni, D.; and Sanner, S., eds., 26th Int. Conf. on
Automated Planning and Scheduling, ICAPS 2016, 175-183.

Hunsberger, L., and Posenato, R. 2018. Simpler and Faster
Algorithm for Checking the Dynamic Consistency of Con-
ditional Simple Temporal Networks. In 26th Int. Joint Conf.
on Artificial Intelligence, (IJCAI-2018), 1324—-1330.

Hunsberger, L., and Posenato, R. 2019. Propagating
Piecewise-Linear Weights in Temporal Networks. In 29¢h In-
ternational Conference on Automated Planning and Schedul-
ing, ICAPS 2019, volume 29, 223-231. AAAI Press.

Hunsberger, L.; Posenato, R.; and Combi, C. 2012. The Dy-
namic Controllability of Conditional STNs with Uncertainty.
In Work. on Planning and Plan Execution for Real-World
Systems (PlanEx) at ICAPS-2012, 1-8.

Posenato, R. 2019. The CSTNU toolset. version 2.10.
http://profs.scienze.univr.it/~posenato/software/cstnu.

Tsamardinos, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8:365-388.



