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This study was conducted to gain understanding about potential influences that learning about 
quadratic functions has on high school algebra students’ action versus process views of linear 
functions. Pre/post linear functions tests were given to two classrooms of Algebra II students 
(N=57) immediately before and immediately after they participated in a multi-day unit on 
quadratic functions. The purpose was to identify ways that their views of linear functions had 
changed. Results showed that on some measures, students across both classes shifted their views 
of linear functions similarly. However, on other measures, the results were different across the 
classes. These findings suggest that learning about quadratic functions can influence students’ 
action or process views of linear. Furthermore, the instructional differences between classes 
provide insights into how to promote those influences that are productive for students’ views. 

Keywords: Algebra and Algebraic Thinking, High School Education, Learning Theory 

A well-established and widely-held idea in the mathematics education research community is 
the importance of the relationship between prior ways of reasoning and new learning (e.g., 
Bransford & Schwartz, 1999; Roschelle, 1995; Vosniadou & Brewer, 1987). However, most of 
this prior research focuses on the foundational role that prior knowledge plays in new learning. 
In other words, this research has primarily examined the influence that prior ways of reasoning 
can have on new learning. This is typically referred to as the transfer of knowledge (Lobato, 
2008). What has yet to be well examined, especially in the context of mathematics education, is 
the influence that new learning can have on prior ways of reasoning. 

We use the forward and backward direction to distinguish between the two kinds of 
influences mentioned above. Specifically, we use forward to describe influences that go from 
prior ways of reasoning to new learning and backward to describe influences that go from new 
learning to prior ways of reasoning. While, forward influences (also known as forward transfer) 
have been a well-researched construct in mathematics education, backward influences is a new 
idea for mathematics education research. Our research addresses this gap by examining 
backward influences in real algebra classrooms. 

We know of only a handful of studies about backward influences in the context of 
mathematics education, including Hohensee’s (2014, 2016) studies on middle school students 
reasoning about functions, Macgregor and Stacey’s (1997) study on secondary students’ 
reasoning about algebra symbols, Young’s (2015) study on AP calculus students’ reasoning 
about differentiation and integration, and Moore’s (2012) study on undergraduates’ reasoning 
about calculus concepts. 

Despite the limited research on this topic, these studies have revealed that backward 
influences can be unproductive or productive. Unproductive backward influences are when 
students’ prior ways of reasoning become muddled or shift to a lower level, because they learn 
something new (e.g., Macgregor & Stacey, 1997). More theory and research on backward 
influences are needed to find ways to prevent or at least mitigate unproductive backward 
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influences. Productive backward influences are when students’ prior ways of reasoning become 
refined or enhanced because they learn something new (e.g., Hohensee, 2014). More theory and 
research are needed to uncover ways to promote productive backward influences. The goal for 
this study was to contribute, as an early step, to developing more understanding about backward 
influences that occur in high school algebra classrooms, so as to inform ways to inhibit 
unproductive backward influences and promote productive backward influences. 

 
Theoretical Framework 

Our theoretical framework has two parts. The first part involves how we conceptualized 
backward influences by new learning on prior ways of reasoning. The second part involves the 
theoretical perspective that guided our study about ways to reason about functions. 
Conceptualizing Backward Influences by New Learning on Prior Ways of Reasoning 

Backward influences by new learning on prior ways of reasoning in the context of 
mathematics education have not been well-studied or theorized. However, in other domains, 
backward influences have been regularly referred to as a form of transfer of learning called 
backward transfer. For example, the effect that learning a second language has on individuals’ 
ability to produce and comprehend their native language has been conceptualized as backward 
transfer (e.g., Cook, 2003). Therefore, we conceived of backward influences in the context of 
mathematics education as backward transfer. 

Broadening the conceptualization of transfer to include backward influences is a new idea for 
mathematics education. A theoretical implication from this broad conceptualization is that 
perhaps one of the well-articulated mathematics education theories of transfer may be a suitable 
candidate to extend to include backward transfer. Among the theories we considered, Lobato’s 
(2008) actor-oriented transfer (AOT) perspective is a suitable candidate because of the emphasis 
in the definition on transfer as an influence. In particular, according to AOT perspective, transfer 
is “the influence of a learner’s prior activities on his or her activity in novel situations” (p. 169, 
emphasis added). An assumption underlying the AOT perspective is that transfer has occurred 
whenever a learner’s prior activities influence their activities in a novel situation (i.e., forward 
influence), regardless of whether, from an outside-observer’s perspective, the new activity 
involves normative or non-normative performance. 

Based on the AOT perspective, we defined backward transfer as the “influence that learning 
something new has on a learners’ prior ways of reasoning about a different or related concept” 
(Hohensee, 2014, p. 136). Consistent with the AOT perspective, we consider any backward 
influences by new learning on prior ways of reasoning, regardless of whether they lead to more- 
or less-normative performance, as cases of backward transfer. A primary reason to study 
backward transfer in mathematics education contexts is because of the potential that backward 
transfer unintentionally undermines or weakens learners’ prior ways of reasoning (i.e., leads to 
less-normative performance). Understanding more about backward transfer could enable 
mathematics educators to develop instructional approaches that minimize unproductive effects.  

Note that Young (2015) and Moore (2012), cited previously, adopted the same extension of 
the AOT perspective to conceptualize backward influences, while Macgregor and Stacey (1997) 
conceived of backward influences differently (i.e., as interference of learning). 
Theoretical Perspective on Ways to Reason about Functions 

Within the field of mathematics education research, a number of perspectives on ways of 
reasoning about functions have been put forth. The perspective we used for this study was the 
APOS perspective on ways of reasoning about functions (Breidenbach, Dubinsky, Hawks, & 
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Nichols, 1992). APOS stands for action, process, object and schema, and represents four ways to 
view functions (as well as other mathematical concepts). For our study, action- and process-
views of functions were most relevant. An action view is described as “any repeatable physical 
or mental manipulation that transforms objects (e.g., numbers, geometric figures, sets) to obtain 
objects” (p. 249), and as “a static conception in that the subject will tend to think about it one 
step at a time (e.g., one evaluation of an expression)” (p. 251). In contrast, a process view is 
described as “[the] total action can take place entirely in the mind of the subject, or just be 
imagined as taking place, without necessarily running through all of the specific steps” (p. 249) 
and as “a dynamic transformation of objects according to some repeatable means…a complete 
activity beginning with objects of some kind, doing something to these objects, and obtaining 
new objects as a result of what was done” (p. 251). According to APOS Theory, an action view 
is a necessary precursor to a process view in the development of conceptions of functions. 

One reason the distinction between action- and process-views of functions was important for 
our study was because, as Breidenbach et al. (1992) point out, “many individuals will be in 
transition from action to process…the progress is never in a single direction” (p. 251). In other 
words, an individual can change between action- and process-views of functions. For our study, 
we wondered if students’ views of linear functions would change because of influences by new 
learning about quadratic functions. Our research question was the following: In what ways do 
algebra students’ prior ways of reasoning about linear functions change, if at all, along the 
dimension of an action versus process view, after they participate in an instructional unit on 
quadratic functions? Next, we describe the methods we used to address this question. 

 
Methods 

Participants and Setting 
The participants were Algebra II students from two classrooms at two high schools in the 

Mid-Atlantic region of the US. Both schools were ethnically diverse and drew from an urban 
population. All students in both classes volunteered to participate in the study (24 in Class 1; 33 
in Class 2; N=57). The students reflected the ethnic diversity of their respective schools. The 
study took place from March to May of the school year. Each class had an experienced teacher: 
Ms. Henry (Class 1) had 8-years of teaching experience; Mr. Anderson (Class 2) had 17-years of 
teaching experience. 
Procedure 

The study procedures followed a pre/post format, in which pre- and post-tests on linear 
functions bookended an instructional unit on quadratic functions. Before the instructional unit, 
all students took a 45-minute paper-and-pencil linear functions pre-test. Also, four students from 
each class participated in one-on-one pre-interviews about their responses on the pre-test. 

Students then participated in a multi-day instructional unit on quadratic functions taught by 
their regular algebra teacher. All lessons were observed and video recorded. 

After the instructional unit, all students took a 45-minute paper-and-pencil linear functions 
post-test. Finally, the same four students from each class who participated in the pre-interviews, 
participated in one-on-one post-interviews about their responses on the post-test.  
Linear Functions Pre- and Post-Tests 

We used two versions of the linear functions test. Students were randomly sorted into two 
equal groups and assigned to either take Version A as the pre-test and Version B as the post-test, 
or vice versa. Each problem on Version A had a structurally similar problem on Version B. The 
purpose of having two versions and varying the order was to control for the possibility that 
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students would do better on the post-test if they took the same test pre and post, and for the 
possibility that items on the versions were not comparable. Each version had one problem based 
on a graph, one problem based on a table and one problem based on a picture. Results from the 
picture problem are presented in this report (see Figure 1 for the picture). 
Instructional Unit 

Each teacher taught their instructional unit on quadratic functions using the Integrated 
Mathematic II curriculum and were given no direction by the researchers about how to teach the 
unit. Both teachers typically lectured for part of the class, gave students a seatwork assignment 
and held a whole-class discussion about the solutions. Ms. Henry’s instructional unit was 
comprised of 16 lessons, and each lesson was 70 min. Mr. Anderson’s instructional unit was 
comprised of 11 lessons, and each lesson was 45-80 min., due to a rotating block schedule. Both 
teachers seated students in groups. Both teachers were well liked by their students and their 
lesson were conducted in an orderly manner.  

A difference in teaching styles was that Ms. Henry typically used an online platform that 
students accessed with laptops (i.e., Class Lab), that allowed her to monitor student responses in 
real time. She would then go over students’ responses with the class and provide feedback. In 
contrast, Mr. Anderson typically had students go the board and write down their solutions to 
problems. Then, he would go over the responses with the class and provide feedback. 

 

  
Figure 1: Growing Plant (Version A) and Container Filling with Rain Water (Version B) 

A second difference between teachers was the time spent on specific quadratic functions 
topics. For example, Ms. Henry spent the most lessons on factoring quadratics expressions, real-
world problems modelled with quadratic functions and graphing quadratic functions (see Table 
1). In contrast, Mr. Anderson spent the most lessons on solving quadratic equations.  

 
Table 1: Breakdown of Lessons Devoted to Each Quadratic Functions Topic 

Teacher Lesson Topic # of 
Lessons 

Ms. 
Henry 

Lessons on factoring 
(factoring diamonds, difference of squares, leading coefficient≠1) 

4 

 Lessons on real-world problems 4 
 Lessons on graphing  

(x/y-intercept, max/min, axis of symmetry) 
3 

 Lessons on solving by graphing 2 

Day 1 Day 2 Day 3 Day 4
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 Lessons on solving by factoring 2 
 Lesson on standard, vertex and x-intercept equation forms 1 

Mr. 
Anderson 

Lessons on solving 
(square root both sides, complete the square, quadratic formula) 

5 

 Lessons on graphing 
(x/y-intercepts, max/min, axis of symmetry, translations/dilations) 

2 

 Lesson on solving by factoring  1 
 Lesson on factoring 1 
 Lesson on real-world problems 1 
 Lesson on standard, vertex and x-intercept equation forms 1 

 
Data Set 

Our data set was comprised of the pre-/post-tests, video-recorded pre-/post-interviews (4 
students per class), video-recorded classroom observations and observation field notes.  
Data Analysis 

Analysis of the data was conducted in three stages: (a) analysis of the pre-/post-test responses 
and interviews for students who participated in interviews, (b) analysis of the pre-/post-test 
responses for remaining students, and (c) analysis of fieldnotes from the classroom observations. 

Analysis of pre-/post-test responses and interviews for interviewed students. For stage 1 
of the analysis, the first author compared the pre-/post-test responses and the pre-/post-interviews 
for the 4 students from each class that were interviewed. The unit of analysis was each sub-part 
of each question. From these comparisons, the first author developed an initial set of codes with 
grounded theory (Strauss & Corbin, 1994). Initial codes and supporting evidence were presented 
to the second and third authors for feedback on the validity of the codes. Once agreement was 
reached about the interviewed students, the authors proceeded to the next step in the analysis. 

Analysis of pre-/post-test responses for the remaining students. Each author took one-
third of the remaining tests and again compared sub-parts on one test for each student to the 
associated sub-part on the other test, noting whenever a change in reasoning fit one of the 
existing codes. During this analysis, we blinded ourselves to which tests were pre-tests and 
which were post-tests. The initial codes were in some cases insufficient to capture changes in 
students’ views of functions. In those cases, the coder either refined an existing code or created a 
new code. Once, each author had coded their dataset, we met in pairs to discuss changes in 
reasoning that had been identified, to check for agreement on whether the evidence that a change 
had occurred was compelling and the right code had been applied. Whenever a pair of coders 
failed to reach consensus on a response, it was flagged and discussed by all three authors until 
consensus was reached. As such, we continued to refine our grounded theory with a constant 
comparison approach (Strauss & Corbin, 1994). Once all coded responses had been discussed in 
pairs or by all three authors, and the codes had stabilized, we recoded all the coded responses to 
ensure that the refined codes fit the entire data set. 

Analysis of classroom observations. Analysis of the classroom observations is ongoing. 
Thus far, the first author has summarized the field notes on a spreadsheet, and identified 
differences between the two classes in terms of numbers of lessons devoted to specific quadratic 
functions topic (see Table 1). In future analyses efforts, the three authors will divide up the 
recordings of the lessons and identify particular episodes in which potential connections to the 
changes in reasoning observed in the pre-/post-tests exist. Episodes will be transcribed and 
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analyzed to identify the interactions, visual representations, gestures, etc., that could account for 
to the observed changes in reasoning identified in the pre-/post-test responses. 

 
Results 

Analysis of the pre- and post-tests revealed that, in a number of cases, students’ views of 
functions had changed in terms of an action versus a process view. In some cases, the changes in 
views were similar across the two classes, whereas in other cases, they differed. Next, we show 
how students’ views of functions changed on each of the three sub-parts for the picture problem. 
Reasoning with a Build-up Process or a Repeated Build-up Process 

Our first finding was that several students changed the way they reasoned on the first sub-
part of the pictorial problem, which asked “Explain in words how to find the height of the plant 
on day 17” (Version A) or “Explain in words how to find the total amount of rainfall if the storm 
lasts for 11 hours” (Version B). One reasoning strategy was to repeatedly add the amount of 
growth, one day or one hour at a time, while simultaneously keeping track of the days or hours, 
until the height on the desired day or hour was attained. Kaput and West (1994) called reasoning 
about linear functions in this way a build-up process. The second strategy was to multiply the 
rate of growth by the number of days or hours. Kaput and West (1994) called this an abbreviated 
build-up process. In other words, the abbreviated build-up process required one step, while the 
build-up strategy required multiple steps. A third strategy was to add a combination of given 
heights and times to find a desired height, such as finding the height on day 11 by doubling the 
given height on day 4, and adding the given height on day 3. Since this third strategy also 
required multiple steps, we included this strategy as a build-up process. 

Frequency counts supporting this claim. A change from build-up to abbreviated build-up 
process was observed for 6 of Ms. Henry’s 24 students and 7 of Mr. Anderson’s 33 students (see 
Table 1). A change in the other direction was less common: only 3 of Ms. Henry’s students and 2 
of Mr. Anderson’s students. The remaining students maintained one strategy on both tests or did 
not provide sufficient responses for us to determine if their reasoning had changed. Note that the 
more common change from build-up to abbreviated build-up process was similar across classes. 

 
Table 2: Change Involving Build-up Process and Abbreviated Build-up Process 

Teacher Students 
per class 

From build-up 
to abbreviated 

build-up 

From abbreviated 
build-up to 

build-up 

Maintained build-up: 
Maintained abbreviated 

build-up 

Henry 24 6 3 12:2 

Anderson 33 7 2 8:3 
 
Change interpreted in terms of action versus process view of functions. We interpreted a 

change from reasoning with a build-up process to reasoning with an abbreviated build-up process 
as a possible shift away from an action view towards a process view of functions, because with a 
shift to an abbreviated build-up process, students reasoned as if they knew, without calculating 
each separate change in height, that all the changes in height would be the same and that they 
could simply multiply by how many changes in height there were. This aligns with Asiala et al. 
(1997), who described the process view as “it is not necessary to perform the operations, but to 
only think about them being performed” (p. 8). 
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Reasoning about Independent and Dependent Variables 
Our second finding was that several students changed their way of reasoning on the second 

sub-part of the pictorial problem, which asked “Can you find the day [independent variable] the 
plant was measured if you were given the height [dependent variable]? If yes, explain how. If no, 
explain why not” (Version A), or “Can you find the hour [independent variable] the rain water 
was measured if given the height [dependent variable]? If yes, explain how. If no, explain why 
not” (Version B). Students who exhibited this change, either reasoned on the pre-test it is not 
possible to use the dependent variable to find the corresponding value of the independent 
variable and on the post-test reasoned it is possible, or vice versa. Note that it is possible is 
correct because the independent variable in a linear function can be found (i.e., x = (y - b) / m). 

Frequency counts supporting this claim. This change was more common for Ms. Henry’s 
students than for Mr. Anderson’s students, by a ratio of 9:2 (see Table 2). Additionally, Ms. 
Henry’s students who exhibited this change were almost evenly split on changing from it is to it 
is not possible (4 students) versus changing from it is not to it is possible (5 students). In 
contrast, all of Mr. Anderson’s students who exhibited this change, went from it is not to it is 
possible (2 students). The remaining students maintained the same reasoning on both tests or did 
not provide sufficient responses for us to determine if their reasoning had changed.  
 

Table 3: Change Involving Finding Independent Variable from Dependent Variable 

Teacher Students 
per class 

From not possible 
to possible 

From possible 
to not possible 

Maintained possible: 
Maintained not possible 

Henry 24 5 4 5:1 

Anderson 33 2 0 15:1 
 
Change interpreted in terms of action versus process view of functions. We interpreted a 

change in reasoning from it is not to it is possible, as a possible shift toward a process view of 
functions and a change in the other direction as a possible shift toward an action view of 
functions. This interpretation is based on Asiala et al.’s (1997) characterization of a process view 
of functions as when a person can “reverse the steps of the transformation” (p. 7). 
Reasoning about Specific or General Intervals of Change 

Our third finding was that several students changed their reasoning on the third sub-part of 
the pictorial problem. Version A asked: 

You have to leave the plant in your office over the weekend. You did not measure the plant 
for 2.5 days. The plant grows at the same rate the whole time. How much did the plant grow 
in the 2.5 days you were gone? Show any work that helped you decide. 

Version B asked: 

You fall asleep while watching TV. You did not measure the rain water for 3.5 hours. It 
rained the whole time at the same rate. How much rainwater was collected during the 3.5 
hours that you were sleeping? Show any work that helped you decide. 

Students either reasoned about specific or general intervals on this problem. When they 
reasoned about specific intervals, they either found the height of the plant or rainwater on day 2.5 
or at hour 3.5 or the height 2.5 days or 3.5 hours after the last height depicted in the picture. 
When students reasoned about a general interval, they found the amount the plant would grow or 
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the rainwater would rise over any 2.5-day or 3.5-hour interval in general. Notice that reasoning 
about general intervals is correct because, for each version of the problem, the amount of change 
in the independent variable is for a general interval, not a specific interval. 

Frequency counts supporting this claim. Ms. Henry’s and Mr. Anderson’s classes showed 
opposite (and mixed) trends in changes in reasoning (see Table 4). A greater number of Ms. 
Henry’s students went from reasoning about a specific interval to reasoning about a general 
interval (7 students), than vice versa (3 students). In contrast, a smaller number of Mr. 
Anderson’s students went from reasoning about a specific interval to reasoning about a general 
interval (3 students), than vice versa (8 students). 

Change interpreted in terms of action versus process view of functions. We interpreted 
reasoning with general intervals as more consistent with a process view and reasoning with 
specific intervals as more consistent with an action view. Our rationale was that to reason about 
any general 2.5-day or 3.5-hour interval, an individual would need to think about changes in 
height across all 2.5-day or 3.5-hour intervals in general, without individually calculating 
changes in heights for all those intervals. This aligns with Asiala et al.’s (1997) description of the 
process view as not needing to perform all the operations to think about the results of operations. 

 
Table 4: Change Involving Reasoning about Specific or General Intervals 

Teacher Students 
per class 

From specific  
to general  

From general 
to specific 

Maintained specific: 
Maintained general 

Henry 24 7 3 2:1 

Anderson 33 5 8 5:3 
 

Discussion 
To summarize our results, we saw one type of change in reasoning on each of the three sub-

parts for the pictorial problem. This suggests that backward transfer effects by new learning 
about quadratic functions on prior ways of reasoning about linear functions may be a fairly 
frequent occurrence. However, the effects were more varied than we anticipated: they occurred 
in both classes or in one class only, and in the same direction or in opposite directions. We think 
these results suggest that backward transfer effects, in real classrooms and with teachers who are 
not purposefully trying to produce these effects, may be somewhat messy. 

Messy results for backward transfer effects are significant because they suggest backward 
transfer may be difficult for researchers to detect unless deliberately tuned to them. Our messy 
results may also help explain why teachers may be unaware of backward transfer effects in their 
students. 

To add to the messiness, our findings suggest backward transfer effects can be either 
productive or unproductive. The evidence of productive backward transfer effects is significant 
because it suggests there are aspects of learning about quadratic functions instruction that could 
be emphasized to further enhance productive influences on students’ views of linear functions. 
For example, the finding that a number of students changed productively from a build-up 
strategy to an abbreviated build-up strategy suggests that, with further emphasis, even more 
students could be supported to change along this dimension (e.g., such as by exploring how 
students could engage in a kind of abbreviated build-up strategy in a quadratic context). 

The findings of unproductive backward transfer effects are also significant because they 
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suggest there are aspects of learning about quadratic functions that could be emphasized to 
inhibit unproductive influences on students’ views of linear functions. For example, the finding 
that a number of Mr. Anderson’s students went from reasoning with a general interval to 
reasoning with a specific interval suggests that researchers and educators should look for ways to 
emphasize reasoning with general intervals to inhibit or even eliminate this unproductive 
backward transfer effect. Our future research on the topic of backward transfer in the context of 
linear functions conceptions and quadratic functions instruction will test some of these ideas. 
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