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This study was conducted to gain understanding about potential influences that learning about
quadratic functions has on high school algebra students’ action versus process views of linear
functions. Pre/post linear functions tests were given to two classrooms of Algebra Il students
(N=57) immediately before and immediately after they participated in a multi-day unit on
quadratic functions. The purpose was to identify ways that their views of linear functions had
changed. Results showed that on some measures, students across both classes shifted their views
of linear functions similarly. However, on other measures, the results were different across the
classes. These findings suggest that learning about quadratic functions can influence students’
action or process views of linear. Furthermore, the instructional differences between classes
provide insights into how to promote those influences that are productive for students’ views.
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A well-established and widely-held idea in the mathematics education research community is
the importance of the relationship between prior ways of reasoning and new learning (e.g.,
Bransford & Schwartz, 1999; Roschelle, 1995; Vosniadou & Brewer, 1987). However, most of
this prior research focuses on the foundational role that prior knowledge plays in new learning.
In other words, this research has primarily examined the influence that prior ways of reasoning
can have on new learning. This is typically referred to as the transfer of knowledge (Lobato,
2008). What has yet to be well examined, especially in the context of mathematics education, is
the influence that new learning can have on prior ways of reasoning.

We use the forward and backward direction to distinguish between the two kinds of
influences mentioned above. Specifically, we use forward to describe influences that go from
prior ways of reasoning to new learning and backward to describe influences that go from new
learning to prior ways of reasoning. While, forward influences (also known as forward transfer)
have been a well-researched construct in mathematics education, backward influences is a new
idea for mathematics education research. Our research addresses this gap by examining
backward influences in real algebra classrooms.

We know of only a handful of studies about backward influences in the context of
mathematics education, including Hohensee’s (2014, 2016) studies on middle school students
reasoning about functions, Macgregor and Stacey’s (1997) study on secondary students’
reasoning about algebra symbols, Young’s (2015) study on AP calculus students’ reasoning
about differentiation and integration, and Moore’s (2012) study on undergraduates’ reasoning
about calculus concepts.

Despite the limited research on this topic, these studies have revealed that backward
influences can be unproductive or productive. Unproductive backward influences are when
students’ prior ways of reasoning become muddled or shift to a lower level, because they learn
something new (e.g., Macgregor & Stacey, 1997). More theory and research on backward
influences are needed to find ways to prevent or at least mitigate unproductive backward
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influences. Productive backward influences are when students’ prior ways of reasoning become
refined or enhanced because they learn something new (e.g., Hohensee, 2014). More theory and
research are needed to uncover ways to promote productive backward influences. The goal for
this study was to contribute, as an early step, to developing more understanding about backward
influences that occur in high school algebra classrooms, so as to inform ways to inhibit
unproductive backward influences and promote productive backward influences.

Theoretical Framework

Our theoretical framework has two parts. The first part involves how we conceptualized
backward influences by new learning on prior ways of reasoning. The second part involves the
theoretical perspective that guided our study about ways to reason about functions.
Conceptualizing Backward Influences by New Learning on Prior Ways of Reasoning

Backward influences by new learning on prior ways of reasoning in the context of
mathematics education have not been well-studied or theorized. However, in other domains,
backward influences have been regularly referred to as a form of transfer of learning called
backward transfer. For example, the effect that learning a second language has on individuals’
ability to produce and comprehend their native language has been conceptualized as backward
transfer (e.g., Cook, 2003). Therefore, we conceived of backward influences in the context of
mathematics education as backward transfer.

Broadening the conceptualization of transfer to include backward influences is a new idea for
mathematics education. A theoretical implication from this broad conceptualization is that
perhaps one of the well-articulated mathematics education theories of transfer may be a suitable
candidate to extend to include backward transfer. Among the theories we considered, Lobato’s
(2008) actor-oriented transfer (AOT) perspective is a suitable candidate because of the emphasis
in the definition on transfer as an influence. In particular, according to AOT perspective, transfer
is “the influence of a learner’s prior activities on his or her activity in novel situations” (p. 169,
emphasis added). An assumption underlying the AOT perspective is that transfer has occurred
whenever a learner’s prior activities influence their activities in a novel situation (i.e., forward
influence), regardless of whether, from an outside-observer’s perspective, the new activity
involves normative or non-normative performance.

Based on the AOT perspective, we defined backward transfer as the “influence that learning
something new has on a learners’ prior ways of reasoning about a different or related concept”
(Hohensee, 2014, p. 136). Consistent with the AOT perspective, we consider any backward
influences by new learning on prior ways of reasoning, regardless of whether they lead to more-
or less-normative performance, as cases of backward transfer. A primary reason to study
backward transfer in mathematics education contexts is because of the potential that backward
transfer unintentionally undermines or weakens learners’ prior ways of reasoning (i.e., leads to
less-normative performance). Understanding more about backward transfer could enable
mathematics educators to develop instructional approaches that minimize unproductive effects.

Note that Young (2015) and Moore (2012), cited previously, adopted the same extension of
the AOT perspective to conceptualize backward influences, while Macgregor and Stacey (1997)
conceived of backward influences differently (i.e., as interference of learning).

Theoretical Perspective on Ways to Reason about Functions

Within the field of mathematics education research, a number of perspectives on ways of
reasoning about functions have been put forth. The perspective we used for this study was the
APOS perspective on ways of reasoning about functions (Breidenbach, Dubinsky, Hawks, &
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Nichols, 1992). APOS stands for action, process, object and schema, and represents four ways to
view functions (as well as other mathematical concepts). For our study, action- and process-
views of functions were most relevant. An action view is described as “any repeatable physical
or mental manipulation that transforms objects (e.g., numbers, geometric figures, sets) to obtain
objects” (p. 249), and as “a static conception in that the subject will tend to think about it one
step at a time (e.g., one evaluation of an expression)” (p. 251). In contrast, a process view is
described as “[the] total action can take place entirely in the mind of the subject, or just be
imagined as taking place, without necessarily running through all of the specific steps” (p. 249)
and as “a dynamic transformation of objects according to some repeatable means...a complete
activity beginning with objects of some kind, doing something to these objects, and obtaining
new objects as a result of what was done” (p. 251). According to APOS Theory, an action view
is a necessary precursor to a process view in the development of conceptions of functions.

One reason the distinction between action- and process-views of functions was important for
our study was because, as Breidenbach et al. (1992) point out, “many individuals will be in
transition from action to process...the progress is never in a single direction” (p. 251). In other
words, an individual can change between action- and process-views of functions. For our study,
we wondered if students’ views of linear functions would change because of influences by new
learning about quadratic functions. Our research question was the following: In what ways do
algebra students’ prior ways of reasoning about linear functions change, if at all, along the
dimension of an action versus process view, after they participate in an instructional unit on
quadratic functions? Next, we describe the methods we used to address this question.

Methods
Participants and Setting

The participants were Algebra II students from two classrooms at two high schools in the
Mid-Atlantic region of the US. Both schools were ethnically diverse and drew from an urban
population. All students in both classes volunteered to participate in the study (24 in Class 1; 33
in Class 2; N=57). The students reflected the ethnic diversity of their respective schools. The
study took place from March to May of the school year. Each class had an experienced teacher:
Ms. Henry (Class 1) had 8-years of teaching experience; Mr. Anderson (Class 2) had 17-years of
teaching experience.

Procedure

The study procedures followed a pre/post format, in which pre- and post-tests on linear
functions bookended an instructional unit on quadratic functions. Before the instructional unit,
all students took a 45-minute paper-and-pencil linear functions pre-test. Also, four students from
each class participated in one-on-one pre-interviews about their responses on the pre-test.

Students then participated in a multi-day instructional unit on quadratic functions taught by
their regular algebra teacher. All lessons were observed and video recorded.

After the instructional unit, all students took a 45-minute paper-and-pencil linear functions
post-test. Finally, the same four students from each class who participated in the pre-interviews,
participated in one-on-one post-interviews about their responses on the post-test.

Linear Functions Pre- and Post-Tests

We used two versions of the linear functions test. Students were randomly sorted into two
equal groups and assigned to either take Version A as the pre-test and Version B as the post-test,
or vice versa. Each problem on Version A had a structurally similar problem on Version B. The
purpose of having two versions and varying the order was to control for the possibility that
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students would do better on the post-test if they took the same test pre and post, and for the
possibility that items on the versions were not comparable. Each version had one problem based
on a graph, one problem based on a table and one problem based on a picture. Results from the
picture problem are presented in this report (see Figure 1 for the picture).

Instructional Unit

Each teacher taught their instructional unit on quadratic functions using the Integrated
Mathematic II curriculum and were given no direction by the researchers about how to teach the
unit. Both teachers typically lectured for part of the class, gave students a seatwork assignment
and held a whole-class discussion about the solutions. Ms. Henry’s instructional unit was
comprised of 16 lessons, and each lesson was 70 min. Mr. Anderson’s instructional unit was
comprised of 11 lessons, and each lesson was 45-80 min., due to a rotating block schedule. Both
teachers seated students in groups. Both teachers were well liked by their students and their
lesson were conducted in an orderly manner.

A difference in teaching styles was that Ms. Henry typically used an online platform that
students accessed with laptops (i.e., Class Lab), that allowed her to monitor student responses in
real time. She would then go over students’ responses with the class and provide feedback. In
contrast, Mr. Anderson typically had students go the board and write down their solutions to
problems. Then, he would go over the responses with the class and provide feedback.
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Figure 1: Growing Plant (Version A) and Container Filling with Rain Water (Version B)

A second difference between teachers was the time spent on specific quadratic functions
topics. For example, Ms. Henry spent the most lessons on factoring quadratics expressions, real-
world problems modelled with quadratic functions and graphing quadratic functions (see Table
1). In contrast, Mr. Anderson spent the most lessons on solving quadratic equations.

Table 1: Breakdown of Lessons Devoted to Each Quadratic Functions Topic

Teacher Lesson Topic f# of
Lessons
Ms. Lessons on factoring 4
Henry (factoring diamonds, difference of squares, leading coefficient+1)
Lessons on real-world problems 4
Lessons on graphing 3
(x/y-intercept, max/min, axis of symmetry)
Lessons on solving by graphing 2
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Lessons on solving by factoring
Lesson on standard, vertex and x-intercept equation forms

— N

Mr. Lessons on solving 5
Anderson (square root both sides, complete the square, quadratic formula)
Lessons on graphing 2
(x/y-intercepts, max/min, axis of symmetry, translations/dilations)
Lesson on solving by factoring
Lesson on factoring
Lesson on real-world problems
Lesson on standard, vertex and x-intercept equation forms
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Data Set

Our data set was comprised of the pre-/post-tests, video-recorded pre-/post-interviews (4
students per class), video-recorded classroom observations and observation field notes.
Data Analysis

Analysis of the data was conducted in three stages: (a) analysis of the pre-/post-test responses
and interviews for students who participated in interviews, (b) analysis of the pre-/post-test
responses for remaining students, and (c) analysis of fieldnotes from the classroom observations.

Analysis of pre-/post-test responses and interviews for interviewed students. For stage 1
of the analysis, the first author compared the pre-/post-test responses and the pre-/post-interviews
for the 4 students from each class that were interviewed. The unit of analysis was each sub-part
of each question. From these comparisons, the first author developed an initial set of codes with
grounded theory (Strauss & Corbin, 1994). Initial codes and supporting evidence were presented
to the second and third authors for feedback on the validity of the codes. Once agreement was
reached about the interviewed students, the authors proceeded to the next step in the analysis.

Analysis of pre-/post-test responses for the remaining students. Each author took one-
third of the remaining tests and again compared sub-parts on one test for each student to the
associated sub-part on the other test, noting whenever a change in reasoning fit one of the
existing codes. During this analysis, we blinded ourselves to which tests were pre-tests and
which were post-tests. The initial codes were in some cases insufficient to capture changes in
students’ views of functions. In those cases, the coder either refined an existing code or created a
new code. Once, each author had coded their dataset, we met in pairs to discuss changes in
reasoning that had been identified, to check for agreement on whether the evidence that a change
had occurred was compelling and the right code had been applied. Whenever a pair of coders
failed to reach consensus on a response, it was flagged and discussed by all three authors until
consensus was reached. As such, we continued to refine our grounded theory with a constant
comparison approach (Strauss & Corbin, 1994). Once all coded responses had been discussed in
pairs or by all three authors, and the codes had stabilized, we recoded all the coded responses to
ensure that the refined codes fit the entire data set.

Analysis of classroom observations. Analysis of the classroom observations is ongoing.
Thus far, the first author has summarized the field notes on a spreadsheet, and identified
differences between the two classes in terms of numbers of lessons devoted to specific quadratic
functions topic (see Table 1). In future analyses efforts, the three authors will divide up the
recordings of the lessons and identify particular episodes in which potential connections to the
changes in reasoning observed in the pre-/post-tests exist. Episodes will be transcribed and
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analyzed to identify the interactions, visual representations, gestures, etc., that could account for
to the observed changes in reasoning identified in the pre-/post-test responses.

Results

Analysis of the pre- and post-tests revealed that, in a number of cases, students’ views of
functions had changed in terms of an action versus a process view. In some cases, the changes in
views were similar across the two classes, whereas in other cases, they differed. Next, we show
how students’ views of functions changed on each of the three sub-parts for the picture problem.
Reasoning with a Build-up Process or a Repeated Build-up Process

Our first finding was that several students changed the way they reasoned on the first sub-
part of the pictorial problem, which asked “Explain in words how to find the height of the plant
on day 17" (Version A) or “Explain in words how to find the total amount of rainfall if the storm
lasts for 11 hours” (Version B). One reasoning strategy was to repeatedly add the amount of
growth, one day or one hour at a time, while simultaneously keeping track of the days or hours,
until the height on the desired day or hour was attained. Kaput and West (1994) called reasoning
about linear functions in this way a build-up process. The second strategy was to multiply the
rate of growth by the number of days or hours. Kaput and West (1994) called this an abbreviated
build-up process. In other words, the abbreviated build-up process required one step, while the
build-up strategy required multiple steps. A third strategy was to add a combination of given
heights and times to find a desired height, such as finding the height on day 11 by doubling the
given height on day 4, and adding the given height on day 3. Since this third strategy also
required multiple steps, we included this strategy as a build-up process.

Frequency counts supporting this claim. A change from build-up to abbreviated build-up
process was observed for 6 of Ms. Henry’s 24 students and 7 of Mr. Anderson’s 33 students (see
Table 1). A change in the other direction was less common: only 3 of Ms. Henry’s students and 2
of Mr. Anderson’s students. The remaining students maintained one strategy on both tests or did
not provide sufficient responses for us to determine if their reasoning had changed. Note that the
more common change from build-up to abbreviated build-up process was similar across classes.

Table 2: Change Involving Build-up Process and Abbreviated Build-up Process
From build-up  From abbreviated =~ Maintained build-up:

Teacher S:rlﬁ:stz to abbreviated build-up to Maintained abbreviated
p build-up build-up build-up

Henry 24 6 3 12:2

Anderson 33 7 2 8:3

Change interpreted in terms of action versus process view of functions. We interpreted a
change from reasoning with a build-up process to reasoning with an abbreviated build-up process
as a possible shift away from an action view towards a process view of functions, because with a
shift to an abbreviated build-up process, students reasoned as if they knew, without calculating
each separate change in height, that all the changes in height would be the same and that they
could simply multiply by how many changes in height there were. This aligns with Asiala et al.
(1997), who described the process view as “it is not necessary to perform the operations, but to
only think about them being performed” (p. 8).
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Reasoning about Independent and Dependent Variables

Our second finding was that several students changed their way of reasoning on the second
sub-part of the pictorial problem, which asked “Can you find the day [independent variable] the
plant was measured if you were given the height [dependent variable]? If yes, explain how. If no,
explain why not” (Version A), or “Can you find the hour [independent variable] the rain water
was measured if given the height [dependent variable]? If yes, explain how. If no, explain why
not” (Version B). Students who exhibited this change, either reasoned on the pre-test it is not
possible to use the dependent variable to find the corresponding value of the independent
variable and on the post-test reasoned it is possible, or vice versa. Note that it is possible is
correct because the independent variable in a linear function can be found (i.e., x = (y - b) / m).

Frequency counts supporting this claim. This change was more common for Ms. Henry’s
students than for Mr. Anderson’s students, by a ratio of 9:2 (see Table 2). Additionally, Ms.
Henry’s students who exhibited this change were almost evenly split on changing from it is to it
is not possible (4 students) versus changing from it is not to it is possible (5 students). In
contrast, all of Mr. Anderson’s students who exhibited this change, went from it is not to it is
possible (2 students). The remaining students maintained the same reasoning on both tests or did
not provide sufficient responses for us to determine if their reasoning had changed.

Table 3: Change Involving Finding Independent Variable from Dependent Variable

Teacher Students From not possible ~ From possible Maintained possible:
per class to possible to not possible ~ Maintained not possible

Henry 24 5 4 5:1

Anderson 33 2 0 15:1

Change interpreted in terms of action versus process view of functions. We interpreted a
change in reasoning from it is not to it is possible, as a possible shift toward a process view of
functions and a change in the other direction as a possible shift toward an action view of
functions. This interpretation is based on Asiala et al.’s (1997) characterization of a process view
of functions as when a person can “reverse the steps of the transformation” (p. 7).

Reasoning about Specific or General Intervals of Change

Our third finding was that several students changed their reasoning on the third sub-part of

the pictorial problem. Version A asked:

You have to leave the plant in your office over the weekend. You did not measure the plant
for 2.5 days. The plant grows at the same rate the whole time. How much did the plant grow
in the 2.5 days you were gone? Show any work that helped you decide.

Version B asked:

You fall asleep while watching TV. You did not measure the rain water for 3.5 hours. It
rained the whole time at the same rate. How much rainwater was collected during the 3.5
hours that you were sleeping? Show any work that helped you decide.

Students either reasoned about specific or general intervals on this problem. When they
reasoned about specific intervals, they either found the height of the plant or rainwater on day 2.5
or at hour 3.5 or the height 2.5 days or 3.5 hours after the last height depicted in the picture.
When students reasoned about a general interval, they found the amount the plant would grow or
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the rainwater would rise over any 2.5-day or 3.5-hour interval in general. Notice that reasoning
about general intervals is correct because, for each version of the problem, the amount of change
in the independent variable is for a general interval, not a specific interval.

Frequency counts supporting this claim. Ms. Henry’s and Mr. Anderson’s classes showed
opposite (and mixed) trends in changes in reasoning (see Table 4). A greater number of Ms.
Henry’s students went from reasoning about a specific interval to reasoning about a general
interval (7 students), than vice versa (3 students). In contrast, a smaller number of Mr.
Anderson’s students went from reasoning about a specific interval to reasoning about a general
interval (3 students), than vice versa (8 students).

Change interpreted in terms of action versus process view of functions. We interpreted
reasoning with general intervals as more consistent with a process view and reasoning with
specific intervals as more consistent with an action view. Our rationale was that to reason about
any general 2.5-day or 3.5-hour interval, an individual would need to think about changes in
height across all 2.5-day or 3.5-hour intervals in general, without individually calculating
changes in heights for all those intervals. This aligns with Asiala et al.’s (1997) description of the
process view as not needing to perform all the operations to think about the results of operations.

Table 4: Change Involving Reasoning about Specific or General Intervals

Students From specific From general Maintained specific:
Teacher . o
per class to general to specific Maintained general
Henry 24 7 3 2:1
Anderson 33 5 8 5:3
Discussion

To summarize our results, we saw one type of change in reasoning on each of the three sub-
parts for the pictorial problem. This suggests that backward transfer effects by new learning
about quadratic functions on prior ways of reasoning about linear functions may be a fairly
frequent occurrence. However, the effects were more varied than we anticipated: they occurred
in both classes or in one class only, and in the same direction or in opposite directions. We think
these results suggest that backward transfer effects, in real classrooms and with teachers who are
not purposefully trying to produce these effects, may be somewhat messy.

Messy results for backward transfer effects are significant because they suggest backward
transfer may be difficult for researchers to detect unless deliberately tuned to them. Our messy
results may also help explain why teachers may be unaware of backward transfer effects in their
students.

To add to the messiness, our findings suggest backward transfer effects can be either
productive or unproductive. The evidence of productive backward transfer effects is significant
because it suggests there are aspects of learning about quadratic functions instruction that could
be emphasized to further enhance productive influences on students’ views of linear functions.
For example, the finding that a number of students changed productively from a build-up
strategy to an abbreviated build-up strategy suggests that, with further emphasis, even more
students could be supported to change along this dimension (e.g., such as by exploring how
students could engage in a kind of abbreviated build-up strategy in a quadratic context).

The findings of unproductive backward transfer effects are also significant because they
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suggest there are aspects of learning about quadratic functions that could be emphasized to
inhibit unproductive influences on students’ views of linear functions. For example, the finding
that a number of Mr. Anderson’s students went from reasoning with a general interval to
reasoning with a specific interval suggests that researchers and educators should look for ways to
emphasize reasoning with general intervals to inhibit or even eliminate this unproductive
backward transfer effect. Our future research on the topic of backward transfer in the context of
linear functions conceptions and quadratic functions instruction will test some of these ideas.
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