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Summary: Neuroscientists have enjoyed much success in understanding brain functions by constructing brain

connectivity networks using data collected under highly controlled experimental settings. However, these experimental

settings bear little resemblance to our real-life experience in day-to-day interactions with the surroundings. To address

this issue, neuroscientists have been measuring brain activity under natural viewing experiments in which the subjects

are given continuous stimuli, such as watching a movie or listening to a story. The main challenge with this approach

is that the measured signal consists of both the stimulus-induced signal, as well as intrinsic-neural and non-neuronal

signals. By exploiting the experimental design, we propose to estimate stimulus-locked brain network by treating non-

stimulus-induced signals as nuisance parameters. In many neuroscience applications, it is often important to identify

brain regions that are connected to many other brain regions during cognitive process. We propose an inferential

method to test whether the maximum degree of the estimated network is larger than a pre-specific number. We prove

that the type I error can be controlled and that the power increases to one asymptotically. Simulation studies are

conducted to assess the performance of our method. Finally, we analyze a functional magnetic resonance imaging

dataset obtained under the Sherlock Holmes movie stimuli.

Key words: Gaussian multiplier bootstrap; Hypothesis testing; Inter-subject; Latent variables; Maximum degree;

Subject specific effects.
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1. Introduction

In the past few decades, much effort has been put into understanding task-based brain

connectivity networks. For instance, in a typical visual mapping experiment, subjects are

presented with a simple static visual stimulus and are asked to maintain fixation at the visual

stimulus, while their brain activities are measured. Under such highly controlled experimental

settings, numerous studies have shown that there are substantial similarities across brain

connectivity networks constructed for different subjects (Hasson et al., 2003). However, such

experimental settings bear little resemblance to our real-life experience in several aspects:

natural viewing consists of a continuous stream of perceptual stimuli; subjects can freely

move their eyes; there are interactions among viewing, context, and emotion (Hasson et al.,

2004). To address this issue, neuroscientists have started measuring brain activity under

continuous natural stimuli, such as watching a movie or listening to a story (Hasson et al.,

2004; Simony et al., 2016; Chen et al., 2017). The main scientific question is to understand

the dynamics of the brain connectivity network that are specific to the natural stimuli.

Graphical models have been used in modeling brain connectivity networks: graphical

models encode conditional dependence relationships between each pair of brain regions,

given the others. A graph consists of d nodes, each representing a random variable, and

a set of edges joining pairs of nodes corresponding to conditionally dependent variables.

We refer the reader to Drton and Maathuis (2017) for a review on learning the structure

of undirected graphical models. Under natural continuous stimuli, it is often of interest

to estimate a dynamic brain connectivity network, i.e., a graph that changes over time. A

natural candidate for this purpose is the time-varying Gaussian graphical model (Zhou et al.,

2010; Kolar et al., 2010). The time-varying Gaussian graphical model assumes

X(z) | Z = z ∼ Nd{0,ΣX(z)}, (1)

where ΣX(z) is the covariance matrix of X(z) given Z = z, and Z ∈ [0, 1] has a continuous
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density. The inverse covariance matrix {ΣX(z)}−1 encodes conditional dependence relation-

ships between pairs of random variables at time Z = z: {ΣX(z)}−1
jk = 0 if and only if the jth

and kth variables are conditionally independent given the other variables at time Z = z.

In natural viewing experiments, the main goal is to construct a brain connectivity network

that is locked to the processing of external stimuli, referred to as a stimulus-locked network

(Simony et al., 2016; Chen et al., 2017; Regev et al., 2018; Musch et al., 2020). Constructing a

stimulus-locked network can better characterize the dynamic changes of brain patterns across

the continuous stimulus (Simony et al., 2016). The main challenge in constructing stimulus-

locked network is the lack of highly controlled experiments that remove spontaneous and

individual variations. The measured blood-oxygen-level dependent (BOLD) signal consists

of not only signal that is specific to the stimulus, but also intrinsic neural signal (random

fluctuations) and non-neuronal signal (physiological noise) that are specific to each subject.

The intrinsic neural signal and non-neuronal signal can be interpreted as measurement error

or latent variables that confound the stimuli-specific signal. We refer to non-stimulus-induced

signals as subject specific effects throughout the manuscript. Thus, directly fitting (1) using

the measured data will yield a time-varying graph that primarily reflects intrinsic BOLD

fluctuations within each brain rather than BOLD fluctuations due to the natural continuous

stimulus.

We exploit the experimental design aspect of natural viewing experiments and propose to

estimate a dynamic stimulus-locked brain connectivity network by treating the intrinsic and

non-neuronal signals as nuisance parameters. Our proposal exploits the fact that the same

stimulus will be given to multiple independent subjects, and that the intrinsic neural and

non-neuronal signals for different subjects are independent. This motivates us to estimate a

brain connectivity network across two brains rather than within each brain. In fact, Simony
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et al. (2016) considered the aforementioned idea where they estimated brain connectivity

networks by calculating pairwise covariance for brain regions between two brains.

After estimating the stimulus-locked brain connectivity network, the next important ques-

tion is to infer whether there are any regions of interest that are connected to many other

regions during cognitive process (Hagmann et al., 2008). These highly connected brain regions

are referred to as hub nodes, and the number of connections for each brain region is referred

to as degree. Identifying hub brain regions that are specific to the given natural continuous

stimulus will lead to a better understanding of the cognitive processes in the brain, and may

shed light on various cognitive disorders. Several authors have proposed methods to estimate

networks with hubs (see, for instance, Tan et al., 2014). In this paper, we instead focus on

developing a novel inferential framework to test the hypothesis whether there exists at least

one time point such that the maximum degree of the graph is greater than k.

The proposed inferential framework is motivated by two major components: (1) the Gaus-

sian multiplier bootstrap for approximating the distribution of supreme of empirical processes

(Chernozhukov et al., 2013, 2014), and (2) the step-down method for multiple hypothesis

testing problems (Romano and Wolf, 2005). Neykov et al. (2019) proposed a framework for

testing general graph structures on a static graph. In Appendix A, we show that our proposed

method can be extended to testing graph structures similar to that of Neykov et al. (2019).

2. Stimulus-Locked Time-Varying Brain Connectivity Networks

2.1 A Statistical Model

Let X(z), S(z), E(z) be the observed data, stimulus-induced signal, and subject specific

effects at time Z = z, respectively. Assume that Z is a continuous random variable with a

continuous density. For a given Z = z, we model the observed data as the summation of



4 Biometrics, December 2008

stimulus-induced signal and the subject specific effects:

X(z) = S(z) +E(z), S(z) | Z = z ∼ Nd{0,Σ(z)}, E(z) | Z = z ∼ Nd{0,LX(z)}, (2)

where Σ(z) is the covariance matrix of the stimulus-induced signal, and LX(z) is the covari-

ance matrix of the subject specific effects. We assume that S(z) andE(z) are independent for

all z. Thus, estimating the stimulus-locked brain connectivity network amounts to estimating

{Σ(z)}−1. Fitting the model in (1) using X(z) will yield an estimate of {Σ(z) + LX(z)}−1,

and thus, (1) fails to estimate the stimulus-locked brain connectivity network {Σ(z)}−1.

To address this issue, we exploit the experimental design aspect of natural viewing exper-

iments. In many studies, neuroscientists often measure brain activity for multiple subjects

under the same continuous natural stimulus (Chen et al., 2017; Simony et al., 2016). Let

X(z) and Y (z) be measured data for two subjects at time point Z = z. Since the same

natural stimulus is given to both subjects, this motivates the following statistical model:

X(z) = S(z) +EX(z), Y (z) = S(z)+EY (z), S(z)|Z = z ∼ Nd{0,Σ(z)},

EX(z)|Z = z ∼ Nd{0,LX(z)}, EY (z)|Z = z ∼ Nd{0,LY (z)},
(3)

where S(z) is the stimulus-induced signal, and EX(z) and EY (z) are the subject specific

effects at Z = z. Model (3) motivates the calculation of inter-subject covariance between two

subjects rather than the within-subject covariance. For a given time point Z = z, we have

E[X(z){Y (z)}T | Z = z] = E[S(z){S(z)}T | Z = z] + E[EX(z){EY (z)}T | Z = z] = Σ(z).

That is, we estimate Σ(z) via the inter-subject covariance by treating LX(z) and LY (z)

as nuisance parameters. In the neuroscience literature, several authors have proposed to

calculate an inter-subject covariance matrix to estimate marginal dependencies among brain

regions that are stimulus-locked, and have found that such an approach better captures the

stimulus-locked marginal relationships among pairs of brain regions (Simony et al., 2016).

For simplicity, throughout the paper, we focus on two subjects. When there are multiple

subjects, we can split the subjects into two groups, and obtain an average of each group to
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estimate the stimulus-locked brain network. We also discuss a U -statistic type estimator for

the case when there are multiple subjects in Appendix B.

2.2 Inter-Subject Time-Varying Gaussian Graphical Models

We now propose inter-subject time-varying Gaussian graphical models for estimating stimulus-

locked time-varying networks. Let (Z1,X1,Y 1), . . . , (Zn,Xn,Y n) be n independent realiza-

tions of the triplets (Z,X,Y ). Both subjects share the same Z1, . . . , Zn since they are given

the same continuous stimulus. Let K : R→ R be a symmetric kernel function. To obtain an

estimate for Σ(z), we propose the inter-subject kernel smoothed covariance estimator

Σ̂(z) =

∑
i∈[n] Kh(Zi − z)X iY

T
i∑

i∈[n] Kh(Zi − z)
, (4)

where Kh(Zi − z) = K{(Zi − z)/h}/h, h > 0 is the bandwidth parameter, and [n] =

{1, . . . , n}. For simplicity, we use the Epanechnikov kernel K(u) = 0.75 · (1− u2) · 1{|u|61},

where 1{|u|61} is an indicator function that takes value one if |u| 6 1 and zero otherwise. The

choice of kernel is not essential as long as it satisfies the regularity conditions in Section 5.1.

Let Θ(z) = {Σ(z)}−1. Given the kernel smoothed inter-subject covariance estimator in (4),

there are multiple approaches to obtain an estimate of the inverse covariance matrix Θ(z).

We consider the CLIME estimator proposed by Cai et al. (2011). Let ej be the jth canonical

basis in Rd. For a vector v ∈ Rd, let ‖v‖1 =
∑d

j=1 |vj| and let ‖v‖∞ = maxj |vj|. For each

j ∈ [d], the CLIME estimator takes the form

Θ̂j(z) = argmin
θ∈Rd

‖θ‖1 subject to
∥∥∥Σ̂(z) · θ − ej

∥∥∥
∞

6 λ, (5)

where λ > 0 is a tuning parameter that controls the sparsity of Θ̂j(z). We construct an

estimator for the stimulus-locked brain network as Θ̂(z) = [{Θ̂1(z)}T , . . . , {Θ̂d(z)}T ].

There are two tuning parameters in our proposed method: a bandwidth parameter h that

controls the smoothness of the estimated covariance matrix, and a tuning parameter λ that

controls the sparsity of the estimated network. The bandwidth parameter h can be selected

according to the scientific context. For instance, in many neuroscience applications that
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involve continuous natural stimuli, we select h such that there are always at least 30% of

the time points that have non-zero kernel weights. In the following, we propose a L-fold

cross-validation type procedure to select λ. We first partition the n time points into L folds.

Let C` be an index set containing time points for the `th fold. Let Θ(z)(−`) be the estimated

inverse covariance matrix using data excluding the `th fold, and let Σ(z)(`) be the estimated

kernel smoothed covariance estimated using data only from the `th fold. We calculate the

following quantity for various values of λ :

cvλ =
1

L

L∑
`=1

∑
i∈C`

‖Σ̂(zi, λ)(`)Θ̂(zi, λ)(−`) − Id‖max, (6)

where ‖ · ‖max is the element-wise max norm for matrix. Let λmin be the λ value that yields

the minimum cross-validation error cvλmin
across a range of values of λ. From performing

extensive numerical studies, we find that picking λmin tends to lead to more false positives

in terms of identifying the edges. We instead propose to pick the largest λ that yields a cvλ

that is less than cvλmin
plus its corresponding two standard errors across the L folds.

2.3 Inference on Maximum Degree

We consider testing the hypothesis:

H0 : for all z ∈ [0, 1], the maximum degree of the graph is not greater than k,

H1 : there exists a z0 ∈ [0, 1] such that the maximum degree of the graph is greater than k.

(7)

In the existing literature, many authors have proposed to test whether there is an edge

between two nodes in a graph (see, Neykov et al., 2018, and the references therein). Due

to the `1 penalty used to encourage a sparse graph, classical test statistics are no longer

asymptotically normal. We employ the de-biased test statistic

Θ̂
de

jk(z) = Θ̂jk(z)−

{
Θ̂j(z)

}T {
Σ̂(z)Θ̂k(z)− ek

}
{

Θ̂j(z)
}T

Σ̂j(z)
, (8)

where Θ̂j(z) is the jth column of Θ̂(z). The subtrahend in (8) is the bias introduced by

imposing an `1 penalty during the estimation procedure.

We use (8) to construct a test statistic for testing the maximum degree of a time-varying



Stimulus-Locked Brain Connectivity Networks 7

graph. Let G(z) = {V,E(z)} be an undirected graph, where V = {1, . . . , d} is a set of d

nodes and E(z) ⊆ V × V is a set of edges connecting pairs of nodes. Let

TE = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣Θ̂de

jk(z)−Θjk(z)
∣∣∣ ·
 1

n

∑
i∈[n]

Kh(Zi − z)

 . (9)

The edge set E(z) is defined based on the hypothesis testing problem. In the context of

testing maximum degree of a time-varying graph as in (7), E(z) = V × V , and therefore the

maximum is taken over all possible edges between pairs of nodes. We will use the notation

E(z) to indicate some predefined known edge set. Note that the edge set will be different for

testing different graph structures, and we refer the reader to Appendix A for details.

Since the test statistic (9) involves taking the supreme over z and the maximum over

all edges in E(z), it is challenging to evaluate its asymptotic distribution. To this end, we

generalize the Gaussian multiplier bootstrap proposed in Chernozhukov et al. (2013) and

Chernozhukov et al. (2014) to approximate the distribution of the test statistic TE. Let

ξ1, . . . , ξn
i.i.d.∼ N(0, 1). We construct the bootstrap statistic as

TBE = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣∣
∑

i∈[n]

{
Θ̂j(z)

}T
Kh(Zi − z)

{
X iY

T
i Θ̂k(z)− ek

}
ξi/n{

Θ̂j(z)
}T

Σ̂j(z)

∣∣∣∣∣∣∣ . (10)

We denote the conditional (1− α)-quantile of TBE given {(Zi,X i,Y i)}i∈[n] as

c(1− α,E) = inf
(
t ∈ R | P

[
TBE 6 t | {(Zi,X i,Y i)}i∈[n]

]
> 1− α

)
. (11)

The quantity c(1−α,E) can be calculated numerically using Monte-Carlo. In Section 5.2, we

show that the quantile of TE in (9) can be estimated accurately by the conditional (1− α)-

quantile of the bootstrap statistic.

We now propose an inference framework for testing the hypothesis problem of the form

(7). Our proposed method is motivated by the step-down method in Romano and Wolf

(2005) for multiple hypothesis tests. The details are summarized in Algorithm 1. Algorithm 1

involves evaluating all values of z ∈ [0, 1]. In practice, we implement the proposed method

by discretizing values of z ∈ [0, 1] into a large number of time points. We note that there
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will be approximation error by taking the maximum over the discretized time points instead

of the supremum of the continuous trajectory. The approximation error could be reduced

to arbitrarily small if we increase the density of the discretization. The proposed method

can be generalized to testing a wide variety of structures that satisfy the monotone graph

property. Such a generalization will be presented in Appendix A.

Algorithm 1 Testing Maximum Degree of a Time-Varying Graph.

Input: type I error α; pre-specified degree k; de-biased estimator Θ̂
de

(z) for z ∈ [0, 1].

(1) Compute the conditional quantile

c(1− α,E) = inf
[
t ∈ R | P (TBE ) 6 t | {(Zi,X i,Y i)}i∈[n] > 1− α

]
,

where TBE is the bootstrap statistic defined in (10).

(2) Construct the rejected edge set

R(z) =

e ∈ E(z) |
√
nh · |Θ̂

de

e (z)| ·
∑
i∈[n]

Kh(Zi − z)/n > c(1− α,E)

 .

(3) Compute drej as the maximum degree of the dynamic graph based on the rejected edge set.

Output: Reject the null hypothesis if drej > k.

3. Simulation Studies

We perform numerical studies to evaluate the performance of our proposal using the inter-

subject covariance relative to the typical time-varying Gaussian graphical model using within-

subject covariance. To this end, we define the true positive rate as the proportion of correctly

identified non-zeros in the true inverse covariance matrix, and the false positive rate as the

proportion of zeros that are incorrectly identified to be non-zeros. To evaluate our testing

procedure, we calculate the type I error rate and power as the proportion of falsely rejected

H0 and correctly rejected H0, respectively, over a large number of data sets.

To generate the data, we first construct the inverse covariance matrix Θ(z) for z =
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{0, 0.2, 0.5}. At z = 0, we set (d− 2)/4 off-diagonal elements of Θ(0) to equal 0.3 randomly

with equal probability. At z = 0.2, we set an additional (d − 2)/4 off-diagonal elements of

Θ(0) to equal 0.3. At z = 0.5, we randomly select two columns of Θ(0.2) and add k + 1

edges to each of the two columns. This guarantees that the maximum degree of the graph

is greater than k. To ensure that the inverse covariance matrix is smooth, for z ∈ [0, 0.2],

we construct Θ(z) by taking linear interpolations between the elements of Θ(0) and Θ(0.2).

For z ∈ [0.2, 0.5], we construct Θ(z) in a similar fashion based on Θ(0.2) and Θ(0.5). The

construction is illustrated in Figure 1.

[Figure 1 about here.]

To ensure that the inverse covariance matrix is positive definite, we set Θjj(z) = |Λmin{Θ(z)}|+

0.1, where Λmin{Θ(z)} is the minimum eigenvalue of Θ(z). We then rescale the matrix

such that the diagonal elements of Θ(z) equal one. The covariance Σ(z) can be obtained

by taking the inverse of Θ(z) for each value of z. Model (3) involves the subject specific

covariance matrix LX(z) and LY (z). For simplicity, we assume that these covariance matrices

stay constant over time. We generate LX by setting the diagonal elements to be one and

the off-diagonal elements to be 0.3. Then, we add random perturbations εmε
T
m to LX for

m = 1, . . . , 10, where εm ∼ Nd(0, Id). The matrix LY is generated similarly.

To generate the data according to (3), we first generate Zi ∼ Unif(0, 1). Given Z1, . . . , Zn,

we generate S(Zi) | Z = Zi ∼ Nd{0,Σ(Zi)}. We then simulate EX(Zi) | Z = Zi ∼

Nd(0,LX) and EY (Zi) | Z = Zi ∼ Nd(0,LY ). Finally, for each value of Z, we generate

X(Zi) = S(Zi) +EX(Zi) and Y (Zi) = S(Zi) +EY (Zi).

Note that both X(Zi) and Y (Zi) share the same generated S(Zi) since both subjects are

given the same natural continuous stimulus. In the following sections, we will assess the

performance of our proposal relative to that of a. typical approach for time-varying Gaussian



10 Biometrics, December 2008

graphical models using the within-subject covariance matrix as input. We then evaluate the

proposed inferential procedure in Section 2.3 by calculating its type I error and power.

3.1 Estimation

To mimic the data application we consider, we generate the data with n = 945, d = 172, and

k = 10. Given the data (Z1,X1,Y 1), . . . , (Zn,Xn,Y n), we estimate the covariance matrix

at Z = z using the inter-subject kernel smoothed covariance estimator as defined in (4). To

obtain estimates of the inverse covariance matrices Θ̂(Z1), . . . , Θ̂(Zn), we use the CLIME

estimator as described in (5), implemented using the R package clime. There are two tuning

parameters h and λ: we set h = 1.2 · n−1/5 and vary the tuning parameter λ to obtain the

receiver operating characteristic (ROC) curve in Figure 2. The smoothing parameter h is

selected such that there are always at least 30% of the time points that have non-zero kernel

weights. We compare our proposal to time-varying Gaussian graphical models with the kernel

smoothed within-subject covariance matrix. The true and false positive rates, averaged over

100 data sets, are in Figure 2.

[Figure 2 about here.]

From Figure 2, we see that our proposed method outperforms the typical approach for time-

varying Gaussian graphical models by calculating the within-subject covariance matrix. This

is because the typical approach is not estimating the parameter of interest, as discussed in

Section 2.2. Our proposed method treats the subject specific effects as nuisance parameters

and is able to estimate the stimulus-locked graph accurately.

3.2 Testing the Maximum Degree of a Time-Varying Graph

We evaluate Algorithm 1 by calculating its type I error and power. In all of our simulation

studies, we consider d = 50 and B = 500 bootstrap samples, across a range of samples n.

Similarly, we select the smoothing parameter to be h = 1.2 · n−1/5. The tuning parameter λ
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is then selected using the cross-validation criterion defined in (6). The tuning parameter λ =

0.9·[h2 +
√
{log(d/h)}/(nh)] is selected for one of the simulated data sets. For computational

purposes, we use this value of tuning parameter across all replications.

We construct the test statistic TE and the Gaussian multiplier bootstrap statistic TBE

as defined in (9) and (10), respectively. Both the statistics TE and TBE involve evaluating

the supreme over z ∈ [0, 1]. In our simulation studies, we approximate the supreme by

taking the maximum of the statistics over 50 evenly spaced grid z ∈ [zmin, zmax], where

zmin = min {Zi}i∈[n] and zmax = max {Zi}i∈[n]. Our testing procedure tests the hypothesis

H0 : for all z ∈ [zmin, zmax], the maximum degree of the graph is no greater than k,

H1 : there exists a z0 ∈ [zmin, zmax] such that the maximum degree of the graph is greater than k.

For power analysis, we construct Θ(z) according to Figure 1 by randomly selecting two

columns of Θ(0.2) and adding k + 1 edges to each of the two columns. This ensure that

the maximum degree of the graph is greater than k. To evaluate the type I error under H0,

instead of adding k + 1 edges to the two columns, we instead add sufficient edges such that

the maximum degree of the graph is no greater than k. For the purpose of illustrating the

type I error and power in the finite sample setting, we increase the signal-to-noise ratio of

the data by reducing the effect of the nuisance parameters in the data generating mechanism

described in Section 3. The type I error and power for k = {5, 6}, averaged over 500 data sets,

are reported in Table 1. We see that the type I error is controlled and that the power increases

to one as we increase the number of time points n. Note that the hypothesis problem (8) is

a composite hypothesis. In general, a size α test is not achievable unless the true underlying

parameter is at the boundary between the null and alternative hypotheses. In our numerical

studies, the true underlying parameter is not generated such that it is at the boundary and

therefore the size of the test is smaller than the specified level.

[Table 1 about here.]
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4. Sherlock Holmes Data

We analyze a brain imaging data set studied in Chen et al. (2017). This data set consists

of fMRI measurements of 17 subjects while watching audio-visual movie stimuli in an fMRI

scanner. The subjects were asked to watch a 23-minute segment of BBC television series

Sherlock, taken from the first episode of the series. The fMRI measurements were taken every

1.5 seconds, yielding n = 945 brain images for each subject. To understand the dynamics

of the brain connectivity network under natural continuous stimuli, we partition the movie

into 26 scenes (Chen et al., 2017). The data were pre-processed for slice time correction,

motion correction, linear detrending, high-pass filtering, and coregistration to a template

brain (Chen et al., 2017). Furthermore, for each subject, we attempt to mitigate issues

caused by non-neuronal signal sources by regressing out the average white matter signal.

There are measurements for 271,633 voxels in this data set. For interpretation purposes, we

reduce the dimension from 271,633 voxels to d = 172 regions of interest (ROIs) as described

in Baldassano et al. (2015). We map the n = 945 brain images taken across the 23 minutes

into the interval [0, 1] chronologically. We then standardize each of the 172 ROIs to have

mean zero and standard deviation one. Note that the statistical model is assumed on the

standardized data.

We first estimate the stimulus-locked time-varying brain connectivity network. To this

end, we construct the inter-subject kernel smoothed covariance matrix Σ̂(z) as defined

in (4). Since there are 17 subjects, we randomly split the 17 subjects into two groups,

and use the averaged data to construct (4). Note that we could also construct a brain

connectivity network for each pair of subjects separately. We then obtain estimates of the

inverse covariance matrix using the CLIME estimator as in (5). We set the smoothing

parameter h = 1.2 · n−1/5 so that at least 30% of the kernel weights are non-zero across

all time points Z. For the sparsity tuning parameter, our theoretical results suggest picking



Stimulus-Locked Brain Connectivity Networks 13

λ = C ·{h2+
√

log(d/h)/nh} to guarantee a consistent estimator. We select the constant C by

considering a sequence of numbers using a 5-fold cross-validation procedure described in (6),

and this yields λ = 1.4 · {h2 +
√

log(d/h)/(nh)}. Heatmaps of the estimated stimulus-locked

brain connectivity networks for three different scenes in Sherlock are in Figure 3.

[Figure 3 about here.]

From Figure 3, we see that there are quite a number of connections between brain regions

that remain the same across different scenes in the movie. It is also evident that the graph

structure changes across different scenes. We see that most brain regions are very sparsely

connected, with the exception of a few ROIs. This raises the question of identifying whether

there are hub ROIs that are connected to many other ROIs under audio-visual stimuli.

To answer this question, we perform a hypothesis test to test whether there are hub nodes

that are connected to many other nodes in the graph across the 26 scenes. If there are such

hub nodes, which ROIs do they correspond to? More formally, we test the hypothesis

H0 : for all z ∈ [0, 1], the maximum degree of the graph is no greater than 15,

H1 : there exists a z0 ∈ [0, 1] such that the maximum degree of the graph is greater than 15.

The number 15 is chosen since we are interested in testing whether there is any brain

region that is connected to more than 10% of the total number of brain regions. We apply

Algorithm 1 with 26 values of z corresponding to the middle of the 26 scenes. Figure 4 shows

the ROIs that have more than 12 rejected edges across the 26 scenes based on Algorithm 1.

Since the maximum degree of the rejected nodes in some scenes are larger than 15, we reject

the null hypothesis that the maximum degree of the graph is no greater than 15. In Figure 5,

we plot the sagittal snapshot of the brain connectivity network, visualizing the rejected edges

from Algorithm 1 and the identified hubs ROIs.

[Figure 4 about here.]

[Figure 5 about here.]
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From Figure 4, we see that the rejected hub nodes (nodes that have more than 15 rejected

edges) correspond to the frontal pole (7), temporal fusiform cortex (16, 100), lingual gyrus

(17), and precuneus (102) regions of the brain. Many studies have suggested that the frontal

pole plays significant roles in higher order cognitive operations such as decision making

and moral reasoning (Okuda et al., 2003). The fusiform cortex is linked to face and body

recognition (Iaria et al., 2008). In addition, the lingual gyrus is known for its involvement in

processing of visual information about parts of human faces (McCarthy et al., 1999). Thus,

it is not surprising that both of these ROIs have more than 15 rejected edges since the brain

images are collected while the subjects are exposed to an audio-visual movie stimulus.

Compared to the lingual gyrus, temporal fusiform cortex, and the frontal pole, the pre-

cuneus is the least well-understood brain literature in the current literature. We see from

Figure 4 that the precuneus is the most connected ROI across many scenes. This is supported

by the observation in Hagmann et al. (2008) where the precuneus serves as a hub region that

is connected to many other parts of the brain. In recent years, Lerner et al. (2011) and Ames

et al. (2015) conducted experiments where subjects were asked to listen to a story under

an fMRI scanner. Their results suggest that the precuneus represents high-level concepts in

the story, integrating feature information arriving from many different ROIs of the brain.

Interestingly, we find that the precuneus has the highest number of rejected edges during

the first half of the movie and that the number of rejected edges decreases significantly

during the second half of the movie. Our results correspond well to the findings of Lerner

et al. (2011) and Ames et al. (2015) in which the precuneus is active when the subjects

comprehend the story. However, it also raises an interesting scientific question for future

study: is the precuneus active only when the subjects are trying to comprehend the story,

that is, once the story is understood, the precuneus is less active.
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5. Theoretical Results

We establish uniform rates of convergence for the proposed estimators, and show that the

testing procedure in Algorithm 1 is a uniformly valid test. We study the asymptotic regime

in which n, d, and s are allowed to increase. In the context of the Sherlock Holmes data set, n

is the total number of brain images obtained under the continuous stimulus, d is the number

of brain regions, and s is the maximum number of connections for each brain region in the

true stimulus-locked network. The theoretical results assume that Z is a random variable

with continuous density. Our results can be relaxed to the case when {Zi}i∈[n] are fixed.

5.1 Theoretical Results on Parameter Estimation

Our proposed estimator involves a kernel function K(·): we require K(·) to be symmetric,

bounded, unimodal, and compactly supported. More formally, for l = 1, 2, 3, 4,∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
ulK(u)du <∞,

∫
K l(u)du <∞. (12)

In addition, we require the total variation of K(·) to be bounded, i.e., ‖K‖TV < ∞, where

‖K‖TV =
∫
|K̇|. In other words, we require the kernel function to be a smooth function.

A unimodal kernel function is extremely plausible in our setting: for instance, to estimate

brain network in the “police press conference scene”, we expect the brain images within that

scene to play a larger role than brain images that are far away from the scene. One practical

limitation of the conditions on the kernel function is the symmetric kernel condition. When

we are estimating a stimulus-locked brain network for a particular time point, the ideal case

is to weight the previous images more heavily than the future brain images. The scientific

reasoning is that there may be some time lag for information processing. In order to capture

this effect, a carefully designed kernel function is needed and is out of the scope of this paper.

Next, we impose regularity conditions on the marginal density fZ(·).

Assumption 1: There exists a constant f
Z

such that infz∈[0,1] fZ(z) > f
Z
> 0. Further-
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more, fZ is twice continuously differentiable and that there exists a constant f̄Z < ∞ such

that max {‖fZ‖∞, ‖ḟZ‖∞, ‖f̈Z‖∞} 6 f̄Z .

Next, we impose smoothness assumptions on the inter-subject covariance matrix Σ(·). Our

theoretical results hold for any positive definite subject specific covariance matrices LX(z)

and LY (z), since these matrices are treated as nuisance parameters.

Assumption 2: There exists a constant Mσ such that

sup
z∈[0,1]

max
j,k∈[d]

max
{
|Σjk(z)|, |Σ̇jk(z)|, |Σ̈jk(z)|

}
6Mσ.

In other words, we assume that the inter-subject covariance matrices are smooth and do

not change too rapidly in neighboring time points. This assumption clearly holds in a

dynamic brain network where we expect the brain network to change smoothly over time.

Assumptions 1 and 2 on f(z) and Σ(z) are standard assumptions in the nonparametric

statistics literature (see, for instance, Chapter 2 of Pagan and Ullah, 1999).

The following theorem establishes the uniform rates of convergence for Σ̂(z).

Theorem 1: Assume that h = o(1) and that log2(d/h)/(nh) = o(1). Under Assump-

tions 1–2, we have

sup
z∈[0,1]

∥∥∥Σ̂(z)−Σ(z)
∥∥∥

max
= OP

{
h2 +

√
log(d/h)

nh

}
.

Theorem 1 guarantees that our estimator always converges to the population parameter

under the max norm, if the smoothing parameter h goes to zero asymptotically. For instance,

this will satisfy if h = C · n−1/5 for some constant C > 0. The quantity supz∈[0,1]‖Σ̂(z) −

Σ(z)‖max can be upper bounded by the summation of two terms: supz∈[0,1]‖E[Σ̂(z)]−Σ(z)‖max

and supz∈[0,1]‖Σ̂(z) − E[Σ̂(z)]‖max, which are known as the bias and variance terms, re-

spectively, in the kernel smoothing literature (Pagan and Ullah, 1999). The terms h2 and√
log(d/h)/(nh) on the upper bound correspond to the bias and variance terms, respectively.

Next, we establish theoretical results for Θ̂(z). Recall that the stimulus-locked brain
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connectivity network is encoded by the support of the inverse covariance matrix Θ(z):

Θjk(z) = 0 if and only if the jth and kth brain regions are conditionally independent given

all of the other brain regions. We consider the class of inverse covariance matrices:

Us,M =

{
Θ ∈ Rd×d | Θ � 0, ‖Θ‖2 6 ρ, max

j∈[d]
‖Θj‖0 6 s, max

j∈[d]
‖Θj‖1 6M

}
. (13)

Here, ‖Θ‖2 is the largest singular value of Θ and ‖Θj‖0 is the number of non-zeros in Θj.

Brain connectivity networks are usually densely connected due to the intrinsic-neural and

non-neuronal signals. Our method allows the intrinsic brain network unrelated to the stimulus

to be dense, and assume that the stimulus-locked brain network Θ(z) is sparse.The sparsity

assumption on the stimulus-locked network is plausible since it characterizes brain activities

that are specific to the stimulus. For instance, we may believe that only certain brain regions

are active under cognitive process. The other conditions are satisfied since Θ(z) is the inverse

of a positive definite covariance matrix. Given Theorem 1, the following corollary establishes

the uniform rates of convergence for Θ̂(z) using the CLIME estimator as defined in (5). It

follows directly from the proof of Theorem 6 in Cai et al. (2011).

Corollary 1: Assume that Θ(z) ∈ Us,M for all z ∈ [0, 1]. Let λ > C·{h2+
√

log(d/h)/(nh)}

for C > 0. Under the same conditions in Theorem 1,

sup
z∈[0,1]

∥∥∥Θ̂(z)−Θ(z)
∥∥∥

max
= OP

{
h2 +

√
log(d/h)

nh

}
; (14)

sup
z∈[0,1]

max
j∈[d]

∥∥∥Θ̂j(z)−Θj(z)
∥∥∥

1
= OP

[
s ·

{
h2 +

√
log(d/h)

nh

}]
; (15)

sup
z∈[0,1]

max
j∈[d]

∥∥∥∥{Θ̂j(z)
}T

Σ̂(z)− ej

∥∥∥∥
∞

= OP

{
h2 +

√
log(d/h)

nh

}
. (16)

Corollary 1 is helpful in terms of selecting the sparsity tuning parameter λ: it motivates

a sparsity tuning parameter of the form λ > C · {h2 +
√

log(d/h)/(nh)} to guarantee

statistically consistent estimated stimulus-locked brain networks. We consider a sequence

of numbers and select the appropriate C using the cross-validation procedure in (6).
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5.2 Theoretical Results on Topological Inference

In this section, we first show that the distribution of the test statistic TE can be approximated

by the conditional (1 − α)-quantile of the bootstrap statistic TBE . Next, we show that the

proposed testing method in Algorithm 1 is valid in the sense that the type I error can be

controlled at a pre-specified level α.

Recall from (11) the definition of c(1 − α,E). The following theorem shows that the

Gaussian multiplier bootstrap is valid for approximating the quantile of the test statistic TE

in (9). Our results are based on the series of work on Gaussian approximation on multiplier

bootstrap in high dimensions (see, e.g., Chernozhukov et al., 2013, 2014). We see from (9)

that TE involves taking the supremum over z ∈ [0, 1] and a dynamic edge set E(z). Due to

the dynamic edge set E(z), existing theoretical results for the Gaussian multiplier bootstrap

methods cannot be directly applied. We construct a novel Gaussian approximation result

for the supreme of empirical processes of TE by carefully characterizing the capacity of the

dynamic edge set E(z).

Theorem 2: Assume that
√
nh5+s·

√
nh9 = o(1). In addition, assume that s

√
log4(d/h)/(nh2)+

log22(s) · log8(d/h)/(nh) = o(1). Under the same conditions in Corollary 1, we have

lim
n→∞

sup
Θ(·)∈Us,M

PΘ(·) {TE > c(1− α,E)} 6 α.

Some of the scaling conditions are standard conditions in nonparametric estimation (Tsy-

bakov, 2009). The most notable scaling conditions are s
√

log4(d/h)/(nh2) = o(1) and

log22(s) · log8(d/h)/(nh) = o(1): these conditions arise from Gaussian approximation on

multiplier bootstrap (Chernozhukov et al., 2013). These scaling conditions will hold asymp-

totically as long as the number of brain images n is much larger than the maximum degree

in the graph s. This corresponds well with the data analysis where we expect only certain

ROIs are active during information processing on the stimulus-locked network.

Recall the hypothesis testing problem in (7). We now show that the type I error of the
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proposed inferential method for testing the maximum degree of a time-varying graph can be

controlled at a pre-specified level α.

Theorem 3: Assume that the same conditions in Theorem 2 hold. Under the null hy-

pothesis in (7), we have

lim
n→∞

Pnull(Algorithm 1 rejects the null hypothesis) 6 α.

To study the power analysis of the proposed method, we define the signal strength of a

precision matrix Θ as

Sigdeg(Θ) := max
E′⊆E(Θ),Deg(E)>k

min
e∈E′
|Θe|, (17)

where Deg(E) is the maximum degree of graph G = (V,E). Under the alternative hypothesis

in (7), there exists a z0 ∈ [0, 1] such that the maximum degree of the graph is greater than

k. We define the parameter space under the alternative:

G1(θ) =
[
Θ(·) ∈ Us,M

∣∣∣ Sigdeg{Θ(z0)} > θ for some z0 ∈ [0, 1]
]
. (18)

The following theorem presents the power analysis of Algorithm 1.

Theorem 4: Assume that the same conditions in Theorem 2 hold and select the smooth-

ing parameter such that h = o(n−1/5). Under the alternative hypothesis in (7) and the

assumption that θ > C
√

log(d/h)/nh, where C is a fixed large constant, we have

lim
n→∞

inf
Θ∈G1(θ)

PΘ(Algorithm 1 rejects the null hypothesis) = 1, (19)

for any fixed α ∈ (0, 1).

The signal strength condition defined in (17) is weaker than the typical minimal signal

strength condition required on testing a single edge on a conditional independent graph,

mine∈E(Θ) |Θe|. The condition in (17) requires only that there exists a subgraph whose

maximum degree is larger than k and the minimal signal strength on that subgraph is

above certain level. In our real data analysis, this requires only the edges for brain regions
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that are highly connected to many other brain regions to be strong, which is plausible since

these regions should have high brain activity.

6. Discussion

We consider estimating stimulus-locked brain connectivity networks from data obtained

under natural continuous stimuli. Due to lack of highly controlled experiments that remove

all spontaneous and individual variations, the measured brain signal consists of not only

stimulus-induced signal, but also intrinsic neural signal and non-neuronal signal that are

subject specific. Typical approach for estimating a time-varying Gaussian graphical model

will fail to estimate the stimulus-locked brain connectivity network accurately due to the

presence of subject specific effects. By exploiting the experimental design aspect of the

problem, we propose a simple approach to estimating a stimulus-locked brain connectivity

network. In particular, rather than calculating a within-subject smoothed covariance matrix

as in the typical approach for modeling time-varying Gaussian graphical models, we propose

to construct the inter-subject smoothed covariance matrix instead, treating the subject

specific effects as nuisance parameters.

To answer the scientific question on whether there are any hub brain regions during the

given stimulus, we propose an inferential method for testing the maximum degree of a

stimulus-locked time-varying graph. In our analysis, we found that several interesting brain

regions such as the fusiform cortex, lingual gyrus, and precuneus are highly connected. From

the neuroscience literature, these brain regions are mainly responsible for high order cognitive

operations, face and body recognition, and serve as control region that integrates information

from other brain regions. We have also extended the proposed inferential framework to testing

various topological graph structures in Appendix A.

The practical limitation of our proposed method is the Gaussian assumption on the data.

While we focus on the time-varying Gaussian graphical model in this paper, our framework
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can be extended to other types of time-varying graphical models such as the time-varying

discrete graphical model or the time-varying nonparanormal graphical model (Kolar et al.,

2010; Lu et al., 2018). Another limitation is the independence assumption on the data across

time points. All of our theoretical results can be generalized to the case when the data

across time points are correlated by imposing an α-mixing condition on Z, and we leave

such a generalization for future work.
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(a) z = 0 (b) z = 0.2 (c) z = 0.5

Figure 1. (a): A graph corresponding to Θ(0) with maximum degree no greater than four.
(b): A graph corresponding to Θ(0.2) with maximum degree less than or equal to four. The
red dash edges are additional edges that are added to Θ(0). (c): A graph corresponding to
Θ(0.5) with maximum degree larger than four. The red dash edges are additional edges that
are added to Θ(0.2) such that the maximum degree of the graph is larger than four.
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Figure 2. The true and false positive rates for the numerical study with n = 952, d = 172,
and k = 10. Panels (a), (b), and (c) correspond to Z = {0.25, 0.50, 0.75}, respectively. The
two curves represent our proposal (black solid line) and within-subject time-varying Gaussian
graphical model (black dash), respectively.
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(a) (b) (c)

0.0

0.1

0.2

0.3

Figure 3. Heatmaps of the estimated stimulus-locked brain connectivity network for three
different scenes in Sherlock. (a) Watson psychiatrist scene; (b) Park run in scene; and (c)
Watson joins in scene. Colored elements in the heatmaps correspond to edges in the estiamted
brain network.
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Figure 4. The x-axis displays the 26 scenes in the movie and the y-axis displays the number
of rejected edges from Algorithm 1. The numbers correspond to the regions of interest (ROIs)
in the brain. The ROIs correspond to frontal pole (7, 155), temporal fusiform cortex (16,
100), lingual gyrus (17), cingulate gyrus (19), cingulate gyrus (20), temporal pole (42),
paracingulate gyrus (70), precuneus cortex (102), and postcentral gyrus (109).
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(a) Teens in rain scene (b) Police press conference scene (c) Lab flirting scene

Figure 5. Sagittal snapshots of the rejected edges based on Algorithm 1. Panels (a)-(c)
contain the snapshots for the “teens in rain”, “police press conference”, and “lab flirting”
scenes, respectively. The red nodes and red edges are regions of interest that have more than
15 rejected edges. The grey edges are rejected edges from nodes that have no greater than
15 rejected edges. For (c), the green nodes and edges are regions of interest that have more
than 12 rejected edges.
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Table 1
The type I error and power for testing the maximum degree of the graph at the 0.05 significance level are calculated

as the proportion of falsely rejected and correctly rejected null hypotheses, respectively, over 500 data sets.
Simulation results with d = 50 and k = {5, 6}, over a range of n are shown.

n = 400 n = 600 n = 800 n = 1000 n = 1500
k=5 Type I error 0.014 0.024 0.030 0.034 0.028

Power 0.068 0.182 0.690 0.976 1
k=6 Type I error 0.032 0.040 0.034 0.028 0.018

Power 0.050 0.142 0.446 0.898 1


