
Saffron: Adaptive Grammar-based Fuzzing for Worst-Case
Analysis

Xuan-Bach D. Le1, Corina Pasareanu2,3, Rohan Padhye4, David Lo5, Willem Visser6, and Koushik Sen4

1The University of Melbourne, Australia, bach.le@unimelb.edu.au

2Carnegie Mellon University, USA, corina.pasareanu@west.cmu.edu

3NASA Ames Research Center, USA, Corina.S.Pasareanu@nasa.gov

4University of California, Berkeley, USA, {rohanpadhye,ksen}@cs.berkeley.edu

5Singapore Management University, Singapore, davidlo@smu.edu.sg

6Stellenbosch University, wvisser@cs.sun.ac.za

ABSTRACT
Fuzz testing has been gaining ground recently with substantial
efforts devoted to the area. Typically, fuzzers take a set of seed
inputs and leverage random mutations to continually improve the
inputs with respect to a cost, e.g. program code coverage, to dis-
cover vulnerabilities or bugs. Following this methodology, fuzzers
are very good at generating unstructured inputs that achieve high
coverage. However fuzzers are less effective when the inputs are
structured, say they conform to an input grammar. Due to the na-
ture of random mutations, the overwhelming abundance of inputs
generated by this common fuzzing practice often adversely hin-
ders the effectiveness and efficiency of fuzzers on grammar-aware
applications. The problem of testing becomes even harder, when
the goal is not only to achieve increased code coverage, but also
to find complex vulnerabilities related to other cost measures, say
high resource consumption in an application.

We propose Saffron an adaptive grammar-based fuzzing ap-
proach to effectively and efficiently generate inputs that expose
expensive executions in programs. Saffron takes as input a
user-provided grammar, which describes the input space of the
program under analysis, and uses it to generate test inputs. Saf-
fron assumes that the grammar description is approximate since
precisely describing the input program space is often difficult as a
program may accept unintended inputs due to e.g., errors in pars-
ing. Yet these inputs may reveal worst-case complexity vulnera-
bilities. The novelty of Saffron is then twofold: (1) Given the
user-provided grammar, Saffron attempts to discover whether
the program accepts unexpected inputs outside of the provided
grammar, and if so, it repairs the grammar via grammar muta-
tions. The repaired grammar serves as a specification of the ac-
tual inputs accepted by the application. (2) Based on the refined
grammar, it generates concrete test inputs. It starts by treat-
ing every production rule in the grammar with equal probability
of being used for generating concrete inputs. It then adaptively
refines the probabilities along the way by increasing the prob-
abilities for rules that have been used to generate inputs that
improve a cost, e.g., code coverage or arbitrary user-defined cost.
Evaluation results show that Saffron significantly outperforms
state-of-the-art baselines.

1. INTRODUCTION
Algorithmic worst-case complexity of software has long been an
important problem. Software vulnerabilities or performance degra-

dation resulted from worst-case executions of programs can be ex-
ploited to launch Denial-of-Service (DoS) attacks, bringing down
entire websites [1], disabling or bypassing web application fire-
walls [2], or consuming a huge amount of CPU resources by sim-
ply performing hash-table insertions [3, 4]. The results of these
attacks are often costly, and thus, it is crucial to identify issues
related to worst-case complexity beforehand.

Several solutions to reason about software’s worst-case complex-
ity have been proposed and shown pragmatic results, e.g., [10,12,
13,22,26,27]. However, they still have their own weaknesses. Ap-
proaches that investigate theoretical analyses such as [10,12,13,27]
often have scalability issue, while more practical and scalable so-
lutions such as fuzzing [22, 26] suffer from inefficiency, i.e., they
take a long time to generate desired test cases. This is especially
true when dealing with applications that take complex structured
inputs, for instance inputs that can be specified by a grammar.
Fuzzers typically generate a large number of unstructured inputs
using random mutations (bit/byte flips) and continually evolve
the inputs according to a cost function, such as program code cov-
erage [8] or resource usage [22, 26]. Due to the nature of random
mutations, the overwhelming abundance of inputs generated by
this common fuzzing practice often adversely hinders the efficiency
and effectiveness of fuzzers, especially on applications whose in-
puts conform to a grammar. That is, the majority of unstructured
inputs generated by fuzzers are often unduly rejected early during
the parsing phase by grammar-aware applications, and hence, fail
to reveal worst-case executions of those programs. On the other
hand, existing grammar-based fuzzers [11,28] aim to only increase
coverage and are thus not tailored for worst-case analysis.

In this paper, we propose Saffron – an adaptive grammar-based
fuzzing approach that aims to generate inputs that expose worst-
case executions of grammar-aware applications. Saffron comple-
ments existing techniques by taking a radical approach to grammar-
based fuzzing. Given a user-provided grammar – which is an
approximate specification of the input space admissible by the
program under test, Saffron evolves the grammar and subse-
quently uses the refined grammar to generate inputs. Saffron
assumes that the user-provided grammar is approximate. This is
because in practice a program may accept unintended inputs due
to e.g. errors in parsing, yet those inputs may reveal worst-case
behaviors. This danger is real as for instance processing mod-
ules for common formats such as JSON or XML have been found

vulnerable with respect to maliciously constructed data [5].

Saffron works in two main phases: grammar refinement and
adaptive grammar-based input generation. Saffron first attempts
to discover whether the grammar correctly describes the actual
admissible input space of the program, and if not, it repairs the
grammar accordingly via a set of grammar mutations. Saffron
then uses the repaired grammar for the input generation phase.
In lieu of random selection of production rules from the gram-
mar to generate inputs, Saffron takes an adaptive approach to
choose production rules more wisely. That is, it starts by treat-
ing every production rule with equal probability to be chosen. It
then adjusts the probability over time by increasing the probabil-
ity for rules that have been used to generate inputs that improve
a cost, e.g., program code coverage or a cost describing a resource
consumption (such as execution time). Overall, the co-evolution
of the grammar’s production rules (via grammar refinement) and
the probability of production rules (via adaptive input genera-
tion) is the key novelty that empowers Saffron’s efficiency and
effectiveness with respect to finding worst-cost executions in a
program.

We compare Saffron against a random grammar-based fuzzer
and PerfFuzz – a very recent state-of-the-art fuzzer that targets
worst-case inputs [21]. We performed experiments on five Java
subject programs in the DARPA cybersecurity challenges [6]. Ex-
periment results are encouraging: Saffron is twice to eight times
better than the baselines. More interestingly, Saffron reveals a
vulnerability that the baselines are unable to discover.

The rest of the paper is organized as follow. Section 2 presents
an example to motivate our approach. Section 3 explains our
framework, followed by Section 4 that describes the evaluations
of our approach against baselines. Section 5 presents related work.
Section 6 concludes and presents future work.

2. MOTIVATING EXAMPLE
We present a motivating example, which is taken from recent
DARPA engagements [6]. It is a calculator program that com-
putes the value of a given mathematical expression that involves
addition, subtraction, multiplication, division, exponentiation, and
root (+,−, ∗, /,̂ , r). The program, which contains approximately
6000 lines of code, is designed to handle exceptionally large num-
bers and thus consists of complex algorithms that involve several
nested looping constructs. The use of these nested loops makes
it hard for either manual or automated analysis techniques. The
calculator accepts inputs of different forms such as large numer-
ical or roman numbers. It terminates outright if the calculation
results in a too-large number or some exceptions happen. The
challenge question is then: Can an attacker derive an input that
renders the calculator to consume memory or runtime over a pre-
defined budget? An attack, if can be synthesized, can be used
to inform developers of the application on security problems and
fix it before the application is deployed. Note that, synthesizing
such attack is feasible, yet challenging because: (1) the grammar
of the inputs that the calculator actually accepts is not known
in advance, and (2) the calculator terminates early without much
resource consumption if the given input is inadmissible by the
calculator.

To compose such an attack, a naive attacker can just make initial
guesses on what forms of inputs that the calculator may accept,
e.g., prefix expressions such as (+ 3 4), infix expressions such as
(3 + 4), etc. Traditional fuzzers such as AFL [8] can then be em-
ployed to generate more random inputs based on the seed inputs

1 grammar Calculator;
2 INT : [0-9]+;
3 WS : [\t\r]+ →skip;
4 input : exp EOF ;
5 exp : exp ’+’ exp | exp ’-’ exp
6 | exp ’*’ exp | exp ’/’ exp
7 | exp ’^’ exp | exp ’r’ exp
8 | ’(’ exp ’)’ | INT ;

Figure 1: Grammar Calculator for infix expressions.

given by the attacker’s initial guesses. This approach, however,
is ineffective since such fuzzers often generate an overwhelmingly
large number of unstructured inputs which can be unduly rejected
early by the application without much resource consumption.

A seemingly more effective solution to derive an attack could be
that the attacker first writes a grammar that expresses her/his an-
ticipation on the input space that the application may accept, e.g.,
grammar for infix expressions as depicted in Figure 1. This gram-
mar can then be used by a random grammar-based fuzzer which
randomly generates inputs conforming to the grammar. However,
this approach, despite being able to generate more valid inputs,
still cannot generate a desired attack as we confirmed empirically.
What could possibly hinder the effectiveness of such supposedly
judicious approach? The answer lies in the user-provided gram-
mar and how it is used to generate inputs.

First, user’s anticipation on admissible input space of the appli-
cation, as expressed via a user-provided grammar, may not be
accurate nor complete. Also, in lieu of random selection of pro-
duction rules for input generation, the rules should be chosen more
wisely. That is, production rules that can be used to generate in-
puts that consume more resources, e.g., running time, should be
favored. For example, input (123 r 3) can be more expensive to
compute than input (123 + 3) due to the use of root versus addi-
tion. To realize these ideas, our approach Saffron enhances the
random grammar-based approach by employing two steps: gram-
mar refinement and adaptive grammar-based fuzzing.

Our approach Saffron first uses a grammar refinement phase to
discover that the user-provided grammar actually under-approximates
the actual input space accepted by the calculator. That is, the
calculator indeed accepts inputs outside the grammar that users
expect the application to accept. Saffron then refines the gram-
mar accordingly to better capture the application’s input space.
In this example, suppose that user anticipates the input space
of the calculator as grammar Calculator depicted in Figure 1.
Saffron discovers that the calculator indeed accepts a grammar
Calculator+ that generalizes the grammar Calculator. Calculator+

accepts inputs of the form (LPAR exp RPAR)+. Concretely, the
application accepts inputs such as (2 + 3)(4∗5)(9−12) that users
do not expect. Saffron subsequently uses an adaptive grammar-
based fuzzing, which judiciously favors production rules that have
been used to generate more expensive inputs. In short, the inter-
play of the two phases, i.e., grammar refinement and adaptive
grammar-based fuzzing, enables Saffron to generate costly in-
puts more efficiently and effectively. Based on the repaired gram-
mar, Saffron adaptively finds an input that exposes a trace that
has cost twice as large as inputs found with competing techniques,
for the same input budget.

3. OVERALL FRAMEWORK
Saffron takes as input a user-provided grammar, refines the
grammar, and then generates inputs based on the refined gram-

AFL

Figure 2: Grammar Refinement in Saffron

Figure 3: Adaptive Grammar-based Fuzzing in Saffron

mar. It thus has two phases: grammar refinement (Figure 2) and
adaptive input generation (Figure 3). We describe each phase of
the framework below.

3.1 Phase I: Grammar refinement.
The goal of this phase is to refine the user-provided grammar to
better capture the program’s actual admissible input space. To
achieve this goal, Saffron first attempts to discover unexpected
inputs that are accepted by the program but fall outside of the
given grammar representing user’s anticipation on input space
that the program should accept. Next, Saffron attempts to
repair the grammar, rendering the discovered unexpected inputs
(if any) to be admissible. We describe these steps below.

Discovery of unexpected inputs. Overall, this step tries to
discover a set of inputs that witnesses the behaviors that users
do not expect a program under analysis P to hold. Given a user-
provided grammar G that expresses user’s intention on the input
space that P should accept, Saffron randomly generates a set
of inputs I admissible by G. It then explores the input space I∗
nearby I by allowing coverage-guided fuzzing such as AFL [8] to
randomly mutate inputs in I. Note that AFL-like fuzzing tech-
niques are typically very good at generating unstructured inputs
that are likely to violate an underlying grammar. Saffron thus
takes advantages of this fact and employs AFL to generate inputs
I∗ that are not admissible by G, but unexpectedly accepted by
the program under analysis P. In other word, I∗ witnesses the
behaviors that users did not anticipate the program P to have.

Grammar repair. Given I∗ containing inputs admissible and
inadmissible by program P and grammar G respectively, Saffron
attempts to derive a grammar G∗ that accepts I∗. Compared to
the user-provided grammar G, G∗ thus serves as a better approx-
imation for the actual input space accepted by program P. Note
that when evaluating I∗ on G, we can derive a set of locations L in
G that possibly renders I∗ inadmissible. To derive G∗, Saffron
continually applies a number of grammar-based mutation opera-
tors on locations L in G to create a set of candidate grammars
{Gi}. We adopted the mutation operators proposed by Offutt
et al. [23]. Next, each candidate grammar in {Gi} is evaluated
against I∗. Candidates are then ranked by the number of inputs
in I∗ that they accept. The best candidate is then chosen to be
further mutated. This process is repeated until G∗ that accepts all
inputs in I∗ is found or a number of iterations is reached. Recall
that our main goal is not to find a perfect grammar that precisely
reflects the input space of program P. Instead, any grammar
accepted by P, that is unexpected by users, is of our interest.

3.2 Phase II: Adaptive grammar-based inputs gen-
eration.

This phase takes as input the refined grammar G∗ discovered in
previous phase, and generates inputs conforming to G∗. This
process is parameterized by a depth d that limits how deep the
grammar can be explored. Let us now informally define G∗ and
then explain the intuition behind the design of this phase. We
will then explain the algorithm in details.

Rationale and intuition of algorithm design. Let us first
simply consider G∗ as a set of production rules {Ri}. To gener-
ate inputs conforming to G∗, one can just naively choose Ri at
random to explore the grammar until a terminal node and the
depth limit d are reached. However, this random approach may
not be effective at generating inputs that can expose worst-case
complexity, e.g., running time. Our intuition is that not every
production rule is equally useful for generating worst-case inputs.
Some rules can indeed be used to generate inputs that are more
expensive, e.g., cause program P a longer running time, than in-
puts generated by using other rules.

We thus propose to favor those rules that lead to inputs that
increase a cost when exploring the grammar. To achieve this,
Saffron assigns a probability pi to account for the likelihood of
each production rule Ri to be used for generating inputs. Over
time, Saffron refines this probability by increasing pi according
to the number of times the rule Ri have been used to generate
costly inputs, e.g., inputs rendering the program under analysis
P to run longer or to consume more resources. The higher the
probability pi is, the more likely that the corresponding rule Ri

can be used to generate inputs.

Algorithm in details. Let us now explain the algorithm in
more details. This phase keeps track of a maximum cost Cmax by
the best input generated so far, e.g., input that causes program
P longest running time. It tries to increase this cost Cmax over
several iterations. In each iteration, it generates a number of
inputs based on the given grammar and then selects top n inputs
that improve the maximum cost Cmax of the previous iteration.
These selected inputs are then used to update the probability
of grammar rules that have been used to generate them. The
probability of a grammar rule is accounted by the number of times
the rule has been used to generate costly inputs. The updated
probability renders the algorithm adaptive, i.e., over time, rules
that accumulate higher probabilities are more likely to be used
for input generation in the next iteration. The whole process is
repeated several times and ultimately outputs the best input that
it generated so far in terms of cost.

At the core of our algorithm, the most crucial step is how input
generation can be guided by the probability of production rules,
which is adaptively adjusted over time. Algorithm 1 gives more
details about this step. Particularly, the grammar is traversed
starting from a rule name until a depth d is reached (Line 9).
Production rules associated with the given rule name are then
identified (Line 11). Among these rules, a tournament selection
based on the rules’ probability is then used to choose the rule
to explore next (Line 17). Note that this selection favors rules
with higher probability. Once a rule is elected, all elements of
the rule will be visited. If an element is a nonterminal, i.e., a
rule name, the traversal procedure is recursively called on that
element with depth limit decreased by one (Line 24). If the depth
limit is exceeded (Line 13), the algorithm allows backtracking and
then chooses a different rule to explore.

Algorithm 1 Saffron’s cost-guided grammar-based input gen-
eration algorithm

Input:
G . Grammar to explore
d . Depth limit to explore a grammar
b . A loop bound
r . Rule name to start exploring the grammar

Output:
Set of inputs generated

1: function InputGeneration(G, d, b, r)
2: I ← {}
3: for k ← 0 to b do
4: i ← RecursiveGen(G, d, r)
5: I ← I ∪ i
6: end for
7: return I
8: end function
9: function RecursiveGen(G, d, r)

10: G ← {(rj → {(R
rj
i , p

rj
i)})} . Let G be a set

of mapping from each rule name rj to a set of tuples of (rule
Rrj

i , probability p
rj
i). r0 denotes root rule name.

11: rRules ← {(Rr
i , p

r
i)} . By finding r in G

12: result ← None
13: if d < 0 then
14: return result
15: end if
16: while rRules.size > 0 ∧ result == None do
17: chosenRule ← TournamentSelection(rRules) .

Selection guided by pri . Higher pri , more likely Rr
i be chosen

18: rRules ← rRules ∩ chosenRule
19: for all node ∈ chosenRule do
20: if node is terminal then
21: result ← result ++ node
22: else . node is nonterminal
23: rN ← node.GetName()
24: result ← RecursiveGen(G, d− 1, b, rN)
25: end if
26: end for
27: end while
28: end function

4. IMPLEMENTATION & EVALUATION
We implemented Saffron using ANTLR4 [25], which allows Saf-
fron to generically work on grammars written in ANTLR. We
compared Saffron against two baselines: (1) A random grammar-
based fuzzing approach, denoted as GramRand. GramRand’s
design basically follows our framework Saffron. However, Gram-
Rand does not favor production rules like our approach, but in-
stead randomly selects production rules for generating concrete
inputs, and (2) PerfFuzz – a recent state-of-the-art fuzzer for
generating worst-case inputs [21]. Note that PerfFuzz does not
exploit input structure, but instead, treats inputs as sequence
of bytes. We could not compare directly with a grammar-based
fuzzer that generate worst-case inputs since to our knowledge,
our approach is the first to directly exploit input grammar for
generating inputs that expose performance problems.

Subject Programs and Experiment Settings. We experi-
mented with Java subject programs from DARPA engagements [6],
which include four implementations of Calculator and a Python
Static Analysis (PSA) tool. These programs, whose sizes range
from 6600 to 8300 lines of code, are algorithmically nontrivial.
The calculators are designed to handle exceptionally large num-
bers and thus contain sophisticated algorithms which involve abun-

Table 1: Experiment Results

Programs Eval. Metric Saffron GramRand Perfuzz
Calculator 1 #Jumps 56,164,514 31,883,572 23,847,851
Calculator 2 #Jumps 45,510,716 32,626,634 21,670,056
Calculator 3 #Jumps 30,129,208 11,929,974 10,982,233
Calculator 4 #Jumps 39,501,218 18,736,256 12,181,585

PSA File size (Kb) 33,347 4,420 N/A

dance of complex looping constructs. The PSA is a static analyzer
for a subset of the Python language. It takes as input a Python
program, compiles and writes intermediate files in JSON format
to physical disk to serve static analyses. For the calculators exam-
ples, we wrote the grammars ourselves, based on the description
provided by DARPA, while for the PSA we used the JSON gram-
mar in ANTLR [7]. On fuzzing these programs, we capped the size
of the inputs to the programs at 10KB (following the challenge
questions by DARPA). We run each tool against each subject pro-
gram five times, each of which with a different seed and is timed
out after 5 hours, and report best results. Experiments were con-
ducted on a Intel(R) Core(TM) i7-6820HK CPU @ 2.70GHz, 2701
Mhz, 4 Core(s), 8 Logical Processor(s), and 8GB of RAM.

Evaluation Metrics and Results. The challenge questions
that we pose are: “can an input render the calculators to run
longer than a predefined budget?”, and “can an input cause the
PSA to write a file larger than a predefined budget?”. These ques-
tions translate to two evaluation metrics used for the calculators
and the PSA respectively. The evaluation metric used for the
calculators is the largest number of jump instructions (#Jumps)
that an input can execute. The #Jumps commonly serves as a
proxy for running time [21, 22]. The evaluation metric used for
the PSA is the largest size of file that an input can render the
PSA to write to disk. On both metrics, the higher the #Jumps
and file size, the better.

Table 1 shows the experiment results. Overall, Saffron signifi-
cantly outperforms both baselines. On the calculators, Saffron
generates inputs that execute up to approximately three times
more jump instructions than GramRand and PerfFuzz. We
note that both Saffron and PerfFuzz also generated inputs
that cause the calculator 3 to hang, which are (5 − 7 − 6 −
1000000)r8 − 1/1 − 1 − 1000000 ∗ 3 ∗ 2 and 100 − 84184100 −
840000− 500− 840000− 55rr2 respectively. The results shown in
Table 1 are for inputs that do not cause the programs to hang.
On the PSA, Saffron generates an input that causes the PSA
to write to disk a large file, which is approximately eight times
larger than that by the Random approach. More interestingly,
Saffron-generated input reveals a real vulnerability which can
crash the PSA’s server down due to the large file written to disk.
Note that PerfFuzz cannot handle the PSA due to its lack of
support in generating inputs that particularly optimize for size of
file written out to physical disk.

5. RELATED WORK
Despite the abundance of fuzzers proposed recently, e.g., [11, 26,
28], only a few address worst-case analysis, e.g., PerfFuzz [21]
and SlowFuzz [26], which however, are not aware of input struc-
ture. We show experimentally that our grammar-based fuzzer
outperforms state-of-the-art fuzzer PerfFuzz. PerfFuzz is orig-
inally designed to work on programs written in C programming
languages but it has an extended interface that allows it to work
on Java programs. We compare PerfFuzz with our approach
Saffron by using JQF [24], which is an interface of PerfFuzz

for Java programs. We could not compare with SlowFuzz since
it does not work on Java programs. We assume that the devel-
oper has an idea of a starting grammar (or the application itself
comes with a grammar) and we attempt to refine it, unlike recent
works on grammar synthesis [9, 14] which synthesize grammars
from scratch. Our work is also related to automated program re-
pair, e.g., [16–20,29,30]. Similar to those works, we use mutations,
but we focus on grammar refinement/repair for grammar-based
fuzzing.

6. CONCLUSION AND FUTURE WORK
We presented Saffron – an adaptive grammar-based fuzzing ap-
proach to generate inputs that expose costly executions in pro-
grams. Based on an input grammar, Saffron adaptively selects
production rules that can potentially be used to generate more
costly inputs. Preliminary evaluations showed superior perfor-
mance of Saffron over a state-of-the-art performance fuzzer on
five subject programs from the recent DARPA challenges.

In the future, we will extend the evaluations to more subjects
with larger size to further validate the current preliminary re-
sults. Also, it would be interesting to explore different ways to
perform the probabilistic grammar-based fuzzing, e.g., learning a
probabilistic automaton to predict which production rule should
be chosen next after a previous rule. We also plan to extend
our approach to generate test cases that can facilitate automated
program repair as suggested in [15]. Overall, our work pragmat-
ically complements the existing research in fuzzing and opens up
interesting future directions.

Acknowledgement
This work was partially supported by NSF Grant CCF 1901136.

7. REFERENCES
[1] http://stackstatus.net/post/147710624694/outage-

postmortem-july-20-2016.

[2] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2011-5021.

[3] https://www.phpclasses.org/blog/post/171-PHP-
Vulnerability-May-Halt-Millions-of-Servers.html.

[4] https://meta.stackoverflow.com/questions/32837/why-does-
stack-overflow-use-a-backtracking-regex-implementation.

[5] https://github.com/codehaus-plexus/plexus-util/issues/57.

[6] https://www.darpa.mil/program/space-time-analysis-for-
cybersecurity.

[7] https://github.com/antlr/grammars-
v4/blob/master/json/JSON.g4.

[8] American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

[9] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy
Liang. Synthesizing program input grammars. In ACM
SIGPLAN Notices, volume 52, pages 95–110. ACM, 2017.

[10] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao.
Compositional certified resource bounds. ACM SIGPLAN
Notices, pages 467–478, 2015.

[11] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. PLDI ’08, pages
206–215. ACM, 2008.

[12] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi.
Speed: Precise and efficient static estimation of program
computational complexity. POPL ’09, pages 127–139. ACM,
2009.

[13] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards
automatic resource bound analysis for ocaml. POPL ’17,
pages 359–373, 2017.

[14] Matthias Höschele, Alexander Kampmann, and Andreas
Zeller. Active learning of input grammars. arXiv preprint
arXiv:1708.08731, 2017.

[15] Xuan-Bach D Le, Lingfeng Bao, David Lo, Xin Xia,
Shanping Li, and Corina Pasareanu. On reliability of patch
correctness assessment. In 41st International Conference on
Software Engineering, pages 524–535. IEEE Press, 2019.

[16] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire
Le Goues, and Willem Visser. Jfix: semantics-based repair
of java programs via symbolic pathfinder. In 26th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 376–379. ACM, 2017.

[17] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire
Le Goues, and Willem Visser. S3: Syntax- and
semantic-guided repair synthesis via programming by
examples. ESEC/FSE, pages 593–604. ACM, 2017.

[18] Xuan-Bach D Le, Quang Loc Le, David Lo, and Claire
Le Goues. Enhancing automated program repair with
deductive verification. In IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
428–432. IEEE, 2016.

[19] Xuan Bach D Le, David Lo, and Claire Le Goues. History
driven program repair. In 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 213–224. IEEE, 2016.

[20] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire
Le Goues. Overfitting in semantics-based automated
program repair. Empirical Software Engineering,
23(5):3007–3033, 2018.

[21] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn
Song. Perffuzz: Automatically generating pathological
inputs. In ISSTA ’18, pages 254–265. ACM, 2018.

[22] Yannic Noller, Rody Kersten, and Corina S Păsăreanu.
Badger: complexity analysis with fuzzing and symbolic
execution. In ISSTA ’18, pages 322–332. ACM, 2018.

[23] Jeff Offutt, Paul Ammann, and Lisa Liu. Mutation testing
implements grammar-based testing. In Mutation-ISSRE
Workshops ’06, pages 12–12.

[24] Rohan Padhye, Caroline Lemieux, and Koushik Sen. Jqf:
Coverage-guided property-based testing in java. In 28th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA, pages 398–401, New York,
NY, USA, 2019. ACM.

[25] Terence Parr. The definitive ANTLR 4 reference. 2013.

[26] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and
Suman Jana. Slowfuzz: Automated domain-independent
detection of algorithmic complexity vulnerabilities. CCS
’17, pages 2155–2168. ACM, 2017.

[27] Moritz Sinn, Florian Zuleger, and Helmut Veith.
Complexity and resource bound analysis of imperative
programs using difference constraints. J. Autom. Reason.,
59(1):3–45, June 2017.

[28] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu.
Superion: Grammar-aware greybox fuzzing. In ICSE, 2018.

[29] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and
Shing-Chi Cheung. Context-aware patch generation for
better automated program repair. In 40th International
Conference on Software Engineering, pages 1–11. ACM,
2018.

[30] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi
Han, Gang Huang, and Lu Zhang. Precise condition
synthesis for program repair. In 39th International
Conference on Software Engineering (ICSE), pages
416–426. IEEE, 2017.

