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Abstract

Investigating the evolutionary processes influencing the or-
igin, evolution, and turnover of vertebrate sex chromosomes
requires the classification of sex chromosome systems in a
great diversity of species. Among amniotes, squamates (liz-
ards and snakes) — and gecko lizards in particular — are wor-
thy of additional study. Geckos possess all major vertebrate
sex-determining systems, as well as multiple transitions
among them, yet we still lack data on the sex-determining
systems for the vast majority of species. We here utilize re-
striction-site associated DNA sequencing (RADseq) to iden-
tify the sex chromosome system of the Puerto Rican endem-
ic leaf-toed gecko (Phyllodactylidae: Phyllodactylus wir-
shingi), in order to confirm a ZZ/ZW sex chromosome system
within the genus, as well as to better categorize the diversity
within this poorly characterized family. RADseq has proven
an effective alternative to cytogenetic methods for deter-
mining whether a species has an XX/XY or ZZ/ZW sex chro-
mosome system — particularly in taxa with non-differentiat-

ed sex chromosomes - but can also be used to identify which
chromosomes in the genome are the sex chromosomes. We
here identify a ZZ/ZW sex chromosome system in P. wir-
shingi. Furthermore, we show that 4 of the female-specific
markers contain fragments of genes found on the avian Z
and discuss homology with P. wirshingi sex chromosomes.
© 2019 S. Karger AG, Basel

Investigating the number and directionality of transi-
tions among sex-determining systems is a vital prerequi-
site for studying sex chromosome evolution. This in-
volves not only determining whether a species has a het-
erogametic male (XX/XY) or female (ZZ/ZW) sex
chromosome system, but also identifying which chromo-
somes in the genome are the sex chromosomes. However,
we still lack basic knowledge of sex-determining mecha-
nisms for many species [Bachtrog et al., 2014], let alone
the genomic homology of said sex chromosomes. Cyto-
genetic methods, like karyotyping, have long been the
principal means of identifying an organism’s sex chromo-
some system, yet most vertebrate species possess mor-
phologically indistinguishable sex chromosomes [Devlin
and Nagahama, 2002; Matsubara et al., 2006; Stock et al.,
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2011; Gamble and Zarkower, 2014; Otto, 2014]. Further-
more, such data do not address which chromosomes in
the genome are the sex chromosomes in a comparative
framework. However, recent advances in both cytogenet-
ics and DNA sequencing techniques have facilitated the
identification of sex chromosomes in many additional
species, spawning a renewed interest in ascertaining and
classifying the sex chromosome systems of previously in-
tractable taxa [Pokorna et al., 2011; Deakin et al., 2016;
Gamble et al., 2017, 2018; Nielsen et al., 2018].

Even within a group as varied as squamates, the geck-
o0s (Squamata: Gekkota) are a stand-out clade worthy of
more detailed study. Geckos are a species-rich (>1,700
species [Uetz et al., 2017]), near globally distributed clade
of lizards, who possess all major vertebrate sex-determin-
ing systems, as well as multiple transitions among them
[Moritz, 1990; Ezaz et al., 2009; Gamble, 2010; Gamble et
al., 2015a]. The high diversity of geckos makes them an
ideal vertebrate model to study the origins and evolution
of sex chromosomes. However, huge swaths of the gecko
phylogeny lack any information about sex-determining
systems, and fewer than 3% of gecko species have a sex-
determining system known with high confidence [Gam-
ble et al., 2015a]. Despite this paucity of data, roughly
one-half to two-thirds of all observed transitions among
squamate sex-determining systems are in geckos [Gam-
ble et al., 2015a]. Fostering an enhanced knowledge con-
cerning gekkotan, and thus squamate, sex-determining
systems will increase their utility as a model clade to study
the origins and evolution of sex-determining systems
[Janzen and Krenz, 2004]. Therefore, a concentrated ef-
fort to identify sex chromosome systems in additional
clades will serve to fill crucial gaps in our knowledge, and
permit more comprehensive hypothesis testing.

The Phyllodactylidae are distributed throughout the
New World, North Africa, Europe, and the Middle East.
Of the more than 135 species, only 14 have published
karyotypes and just 2 species, Phyllodactylus lanei and
Thecadactylus rapicauda, exhibit evidence of heteromor-
phic sex chromosomes [King, 1981; Pellegrino et al., 2004,
2005, 2010; Olmo and Signorino, 2005; Murphy et al,,
2009; Schmid et al., 2014]. However, in both species, the
story is complex. For example, in P. lanei, different karyo-
typic formulas between sexes were indicative of a ZZ/ZW
sex chromosome system, yet more recent work could not
replicate these findings [Castiglia et al., 2009]. Similarly in
T. rapicauda, the authors conclude that sex chromosomes
are in a “nascent state of differentiation” as not all sampled
populations were heteromorphic. Using a recently devel-
oped restriction-site associated DNA sequencing (RAD-
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Table 1. Phyllodactylus wirshingi samples used in this study

ID Sex Locality

TG2007 Male
TG3210  Male
TG3219 Male
TG3220 Male
TG3221  Male
TG3223  Male
TG3225 Male
TG3228 Male
TG2016* Male
TG3208* Male

Isla de Caja de Muertos, Puerto Rico

Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico
Bosque Estatal de Gudnica, Puerto Rico

TG2004 Female Isla de Caja de Muertos, Puerto Rico

TG2008 Female Isla de Caja de Muertos, Puerto Rico

TG2009  Female Isla de Caja de Muertos, Puerto Rico

TG2385  Female Bosque Estatal de Guanica, Puerto Rico
TG3209 Female Bosque Estatal de Guanica, Puerto Rico
TG3222  Female Bosque Estatal de Guénica, Puerto Rico
TG3224 Female Bosque Estatal de Guanica, Puerto Rico
TG3226  Female Bosque Estatal de Guanica, Puerto Rico
TG3227 Female Bosque Estatal de Gudnica, Puerto Rico
TG2017* Female Bosque Estatal de Gudnica, Puerto Rico

*These samples were used for PCR validation only.

Table 2. PCR primers used to validate female-specific RADseq
markers in Phyllodactylus wirshingi

Primer ID Sequence (5'>3") Annealing
temperature

Pw84-F CAGAAGGCATGAGACTGGAGAG 57°C

Pw84-R CAAATCTCCAGGAGCAGAGTGG

Pwll6-F CGATTCCCTTGCCTTAATCGGT 56°C

Pwl16-R AGATTCTGACCCAGGAAGAGGA

Pw186-F ACTTTCCACTAAGGTGATCCCC 56°C

Pw186-R GGGCCAAGGACTATGACTTGAA

Pw187-F GACTGAGGAGGGTCTGCTCT 56°C

Pw187-R GTCTTCTGGGCTCTGACTGG

seq) methodology [Gamble and Zarkower, 2014], another
population of T. rapicauda from Trinidad and Tobago
was found to also have ZZ/ZW sex chromosomes [Gam-
ble etal., 2015a]. In addition to ZZ/ZW sex chromosomes,
a number of species in the genus Tarentola show strong
evidence of environmentally determined sex (i.e., temper-
ature-dependent sex determination or TSD) [Nettmann
and Rykena, 1985; Hielen, 1992]. Thus, there are some
interesting inferences one can draw within this family.
First, we know very little about the diversity of sex chro-
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male

Fig. 1. A-D PCR validation of 4 female-spe-
cific RADseq markers in Phyllodactylus
wirshingi. A Pw84. B Pwll6. C Pw186.
D Px187. Primers amplified in a female-
specific manner in all examined male and
female samples (see Table 1), generating a
single (presumably W-specific) band in all
but one locus, Pw186. The latter produced
both Z- and W-specific bands. Specimen
ID numbers are listed below each lane.
E Cytogenetic map of the Gallus gallus Z D
chromosome depicting the location of 4
genes identified by BLAST of P. wirshingi
female-specific RAD contigs (Table 3).
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mosome systems within Phyllodactylidae, and given the
diversity observed in other gekkotan groups, data from
additional species are essential before more definitive
conclusions can be drawn. Second, based on our limited
evidence, there is at least 1 transition among sex-deter-
mining systems within Phyllodactylidae - between TSD
and female heterogamety. Lastly, both T. rapicauda and
P. lanei possess ZZ/ZW sex chromosome systems, but are
their sex chromosomes homologous?

Here, we used RADseq to discover the sex chromo-
some system of the Puerto Rican endemic leaf-toed gecko
(Phyllodactylus wirshingi), to confirm the ZZ/ZW sex
chromosome system within the genus, as well as to better
categorize sex chromosome diversity within the Phyllo-
dactylidae. By utilizing paired-end Illumina sequencing,
we generated large RADseq contigs and successfully iden-
tified 4 genes putatively linked to the sex chromosomes.
We discuss sex chromosome homology within Gekkota
and among amniotes, with particular attention paid to
synteny between the newly discovered P. wirshingi ZZ/
ZW chromosomes and the avian Z.

Materials and Methods

Using the Qiagen® DNeasy Blood and Tissue Kit, we extracted
genomic DNA from tail clips, or liver, from 8 adult male and 9
adult female P. wirshingi collected near Gudnica in Puerto Rico
and the island of Caja de Muertos (Table 1). RADseq libraries were
constructed following a modified protocol from Etter et al. [2011]
as described in Gamble et al. [2015a]. Genomic DNA was digested
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with high-fidelity SbfI restriction enzyme (New England Biolabs).
Individually barcoded P1 adapters were ligated to the SbfI cut site
for each sample. We pooled samples into multiple libraries, soni-
cated, and size-selected into 200-500-bp fragments using magnet-
ic beads in a PEG/NaCl buffer [Rohland and Reich, 2012]. Librar-
ies were blunt-end repaired and dA-tailed before ligating a P2
adapter containing unique Illumina barcodes to each pooled li-
brary. We amplified libraries via PCR (16 cycles) with Q5 high-
fidelity DNA polymerase (New England Biolabs) and cleaned/size-
selected a second time into 250-600-bp library fragments using
magnetic beads in PEG/NaCl buffer. Libraries were pooled and
sequenced using paired-end 125-bp reads on an Illumina
HiSeq2500 at the Medical College of Wisconsin.

We demultiplexed, trimmed, and filtered raw Illumina reads
using the process_radtags function in STACKS (v1.4.8) [Catchen
etal, 2011]. We applied RADtools (v1.2.4) [Baxter et al., 2011] to
generate candidate alleles for each individual and candidate loci
across all individuals from the forward reads employing previous-
ly described parameters [Gamble etal., 2015a,2017]. We identified
putative sex-specific markers from the RADtools output using a
custom python script [Gamble et al., 2015a]. This script also pro-
duced a second list of “confirmed” sex-specific RAD markers,
which are a subset of the initial list of sex-specific RAD markers
that excludes any sex-specific marker that also appears in the orig-
inal raw read files from the opposite sex from further consideration
[Gamble and Zarkower, 2014; Gamble et al., 2015a]. We assembled
forward and reverse reads from the confirmed sex-specific RAD
markers into sex-specific RAD contigs using Geneious® (v10)
[Kearse et al., 2012]. We then used these confirmed RAD contigs
to design sex-specific PCR primers, also in Geneious (v10), and
validated the sex specificity of a subset of the confirmed female-
specific markers by PCR (Table 2).

We attempted to assess synteny between the newly identified
sex-specific RAD markers in P. wirshingi with chicken chromo-
somes. The chicken genome is well annotated and widely used as
a reference for comparative genomics in nonavian reptiles [Inter-
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Fig. 2. A time-calibrated genus-level phy-
logeny of the Phyllodactylidae, modified
from Gamble et al. [2015a]. Sex chromo-
some systems, if known, are indicated by
colored circles to the left of taxon names.
Series of numbers under taxon names indi-
cate diploid (2n) chromosomal comple-
ment (when known), the number of de-
scribed species within the genus, the subset
that have been karyotyped, and the number
that exhibit heteromorphic sex chromo-
somes. Karyotype data from Olmo and Si-
gnorino [2005], Pellegrino et al. [2010],
and Gamble et al. [2015a]. * The 2n num-
ber for Homonota is currently unpub-
lished. Photographs of Asaccus and Theca-
dactylus by T. Pierson and A. Snyder, re-
spectively.
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Table 3. The 4 hits from the BLAST of the 539 female-specific Phyllodactylus wirshingi RAD contigs against chicken genes demonstrat-

ing synteny with avian sex chromosomes

Query Gene name Transcript ID Chicken®  E value Hit start Hit end
PwF_429 TRPM3 ENSGALT00000024411 Z 1.21e-56 3,246 3,446
PwF_381 LIX1 ENSGALT00000024678 Z 3.87e-44 241 388
PwF_203 Novel gene ENSGALT00000028259 Z 1.25e-44 442 683
PwF_37 TRABD2A ENSGALT00000043645 Z 2.51e-47 809 656

 The location of these genes on the chicken Z chromosome is shown in Figure 1.
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Fig. 3. Phylogenetic distribution and chromosomal synteny of the
avian Z with the sex chromosomes of a selection of taxa spanning
the amniote tree of life. Boxes at the tips of the phylogeny indicate
the sex chromosome system, followed by sex chromosome synte-
ny, if known, with birds. For example, the ZZ/ZW sex chromo-
somes of the turtle, Pelodiscus sinensis, are homologous with chick-
en (Gallus gallus) chromosome 15. Rectangular boxes share sex
chromosome synteny with birds while curved boxes do not. XY
and ZW indicate male and female heterogamety, respectively. Sev-
eral taxa have unknown sex chromosome synteny (indicated by
“?”), but comparative FISH experiments have shown that their sex
chromosomes do not share homology with the avian Z [Pokornd
etal., 2011; Matsubara et al., 2014]. When indicated by an asterisk,
the pattern is reflective of the broader clade (e.g., Takydromus sex-
lineatus and all other lacertid lizards examined to date share a ho-
mologous ZW sex chromosome system). For more details on sex
chromosome synteny data, we refer the reader to the original data
sources [Matsubara et al., 2006; Graves, 2008; Veyrunes et al., 2008;
Kawagoshi et al., 2009, 2012, 2014; Kawai et al., 2009; Alfoldi et al.,
2011; Deakin et al., 2016; Rovatsos et al., 2016a, b; Montiel et al.,
2016; Gamble et al., 2017]. Phylogeny modified from Anderson
and Wiens [2017].

7Z/ZW Sex Chromosomes in
Phyllodactylus

national Chicken Genome Sequencing Consortium, 2004; Alfoldi
et al,, 2011; Pokorna et al,, 2011; O’Meally et al.,, 2012]. We per-
formed BLAST of the assembled female-specific RAD contigs to
the chicken transcriptome (using Ensembl [Zerbino et al., 2018]),
implemented in Geneious (v10) [Kearse et al., 2012] with a maxi-
mum E-value cutoff of 1e-50 and word size of 15 bp.

Results

Output from the RADtool analysis recovered 143,649
RAD markers with 2 or fewer alleles including 1 male-
specific RAD marker and 574 female-specific RAD mark-
ers. Of these, we identified zero confirmed male-specific
RAD markers and 539 confirmed female-specific RAD
markers. “Confirmed” sex-specific markers, as described
above, are a subset of the total number of sex-specific
RAD markers that excludes RAD markers which oc-
curred in the raw read files of the opposite sex and likely
are false positives. From this pool of confirmed female-
specific RAD contigs, we designed 11 primer pairs, 4 of
which amplified in a sex-specific manner (Fig. 1). These
loci produced either a single band in each of the female
samples with no amplification in male samples (Pw84,
Pw116,and Pw187;i.e.,a RAD marker presumably on the
W chromosome) or 2 bands in females and a single band
in males (Pw186;i.e., different-sized Z and W alleles). The
combined results — an excess of female-specific RAD
markers and PCR amplification of a subset of these mark-
ers only in females - is indicative of a ZZ/ZW sex chro-
mosome system within Phyllodactylus (Fig. 2).

BLAST queries of the 539 female-specific RAD contigs
against chicken genes resulted in 4 hits (Table 3). All 4
matching genes are on the chicken Z chromosome, re-
vealing homology between the avian and the P. wirshingi
ZZ7Z]ZW sex chromosomes (Fig. 3).

Discussion

The discovery of ZZ/ZW sex chromosomes in P. wir-
shingi makes it the second member of the genus with fe-
male heterogamety, the other being P. lanei [King, 1981].
The exact identity of the species King [1981] examined,
however, is up for debate since subsequent karyotypes of
P. lanei revealed different chromosomal arrangements
and no heteromorphic sex chromosomes [Castiglia et al.,
2009]. Because King [1981] apparently did not keep
vouchered specimens from his study, the exact identity of
the species examined remains unknown. Castiglia et al.
[2009] obtained their samples from Jalisco, Mexico, while
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King’s [1981] samples were from Guerrero, Mexico. Pre-
liminary genetic data suggest that P. lanei is likely a spe-
cies complex composed of multiple, undescribed species
[Blair etal., 2015]. Thus, differences between studies may
reflect karyotypic variation among cryptic taxa. Further
complicating matters, 5 Phyllodactylus species (P. del-
campoi, P. bordai, P. tuberculosus, P. papenfussi, and P.
lanei) all occur in Guerrero where King’s samples origi-
nated [Dixon and Kluge, 1964; Murphy et al., 2009; Gam-
ble, 2010], and it is possible that King’s samples were mis-
identified.

The large number of female-specific RAD markers
identified in P. wirshingi suggests significant differentia-
tion between the Z and W chromosomes. Indeed, com-
pared to other squamate species, using similarly prepared
Sbfl RADseq libraries, the 539 sex-specific P. wirshingi
RAD markers are second only to the 855 female-specific
RAD markers identified in the ZZ/ZW gecko Christinus
marmoratus [Gamble et al., 2015a]. Because C. marmora-
tus has heteromorphic sex chromosomes [King and Rofe,
1976], it is probable that P. wirshingi also has cytogeneti-
cally differentiated Z and W chromosomes. However,
since it is not clear whether there is a direct relationship
between the sequence similarity of sex chromosomes and
the degree of chromosomal heteromorphism [Vicoso et
al., 2013; Gamble et al., 2014], this would need to be veri-
fied cytogenetically.

Using sex-specific RAD markers to identify a species’
sex chromosomes typically requires additional genomic
resources because determining chromosomal synteny in-
volves comparing gene identity and order among species.
Although most RAD markers map to noncoding frag-
ments, and thus provide little information as to their ge-
nomic location absent in a sequenced genome, a small
number of RAD markers — usually less than 15% of RAD
contigs — may overlap with a gene or other coding region
[Amores etal., 2011; Baxter et al., 2011; Chutimanitsakun
etal,, 2011; Bruneaux etal., 2013]. Sequencing paired-end
reads, as we have done here, will generate larger RAD
contigs, which in turn increases the probability of identi-
fying genes [Amores et al., 2011; Baxter et al., 2011; Gam-
ble and Zarkower, 2014]. Sex-specific RAD markers with
gene fragments can be used to query genomic assemblies
of related species to identify the sex chromosomes [Bru-
neaux et al., 2013; Gamble and Zarkower, 2014; Fowler
and Buonaccorsi, 2016; Qiu et al., 2016]. This is the ap-
proach we successfully applied here to identify synteny
between the avian Z and the P. wirshingi ZZ/ZW.

Among amniotes, the ancestral autosome that became
the avian Z has been recruited into a sex-determining role

6 Cytogenet Genome Res
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Fig. 4. Evolution of sex-determining mechanisms in geckos. Col-
ored circles at the tips of the phylogenetic tree indicate sex-deter-
mining systems of selected species. Sex chromosomes in Phyllo-
dactylus wirshingi and Gekko hokouensis (highlighted in gray) both
share homology with the avian Z chromosome. Given their phylo-
genetic placement, it is likely that these have evolved independent-
ly. Sex chromosome data were taken from multiple sources [Gam-
ble, 2010, and citations therein; Gornung et al., 2013; Gamble et al.,
2015a, 2018, and citations therein; Rovatsos et al., 2016a]. Phylog-
eny modified from Gamble et al. [2015b].

at least 5 times (Fig. 3): in birds; in the ZZ/ZW gecko,
Gekko hokouensis; in an XX/XY clade of turtles, Stauroty-
pus salvinii and S. triporcatus; as part of the multiple sex
chromosomes in monotremes; and finally, the ZZ/ZW
sex chromosomes of P. wirshingi [Veyrunes et al., 2008;
Kawai et al., 2009; Kawagoshi et al., 2014]. Comparative
analyses, including cytogenetics and genome-scale data-
sets, have identified the sex chromosomes in at least 8
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other amniote lineages, which were recruited from ances-
tral autosomes not homologous with the avian Z [Ma-
tsubara et al., 2006; Veyrunes et al., 2008; Graves, 2008;
Kawagoshi et al., 2009, 2012, 2014; Kawai et al., 2009;
Alfoldi et al.,, 2011; Deakin et al., 2016; Montiel et al.,
2016; Rovatsos et al., 2016b; Gamble et al., 2017]. Further-
more, comparative FISH analyses using fluorescently la-
beled chromosome paints have shown that the sex chro-
mosomes of additional geckos, Lialis burtonis (XXXX/
XXY), Coleonyx elegans (XXXX/XXY), and C. marmora-
tus (ZZ/ZW), are not homologous to the avian ZZ/ZW
[Pokornd et al., 2011; Matsubara et al., 2014]. Because P.
wirshingi and G. hokouensis possess ZZ/ZW sex chromo-
somes that are homologous with the avian Z, it is worth
asking whether their ZZ/ZW sex chromosomes are de-
rived from a common ancestor with “avian ZW” sex
chromosomes [Ezaz et al., 2017]. While not impossible, it
appears unlikely in this case. The phylogenetic distribu-
tion of these taxa, coupled with the numerous transitions
among sex chromosome systems across geckos more gen-
erally, strongly suggests that the P. wirshingi and G. ho-
kouensis ZZ|ZW systems derived independently (Fig. 4).

The repeated recruitment of the avian Z as a sex chro-
mosome in amniotes can inform the search for factors
that determine which ancestral chromosome will become
a sex chromosome. There are several competing hypoth-
eses to address this. For example, it has been hypothesized
that one or more of these extant sex chromosome systems
are ancestral and thus exist in multiple lineages due to
inheritance froma common ancestor [ Graves and Peichel,
2010; O’Meally et al., 2012; Ezaz et al,, 2017]. As men-
tioned above, this seems unlikely, at least in geckos. How-
ever, there remain 2 other hypotheses that we can con-
sider here. First, some autosomes, because of their gene
content, may be “better” at being sex chromosomes than
others. These chromosomes may host genes playing a role
in the sex-determining pathway that can be co-opted into
controlling sex determination [Graves and Peichel, 2010;
O’Meally et al., 2012]. The avian Z, for example, contains
DMRT1,amember of a gene family involved in sex deter-
mination and sexual differentiation in all animals, and the
likely sex-determining gene in birds and several other
vertebrates [Raymond et al., 1998; Matsuda et al., 2002;
Nanda et al., 2002; Yoshimoto et al., 2008; Smith et al.,
2009; Matson and Zarkower, 2012; Chen et al., 2014;
Hirst et al., 2017]. Under this scenario, those chromo-
somes that are “better at being sex chromosomes” should
be preferentially recruited into a sex-determining role in
different lineages. Second, laboratory experiments with
the roundworm Caenorhabditis elegans suggest that al-
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most any kind of gene can become a sex-determining
gene and every chromosome a sex chromosome [Hodg-
kin, 2002]. Thus, sex chromosome recruitment should be
random, and there should be no biases when sex chromo-
some synteny is examined in a phylogenetic context. Dif-
ferentiating between these 2 alternatives is not straight-
forward because we only know the sex chromosomes of a
small number of taxa. Indeed, the sex chromosome iden-
tity of nearly two-thirds of amniote sex chromosome sys-
tems remains unknown (Fig. 3). To resolve this requires
an approach that integrates phylogenetic, cytogenetic,
and genomic analyses, and exploits species-rich verte-
brate model clades in which many transitions among sex
chromosome systems have occurred, e.g., amniotes and/
or squamates. Only after identifying the sex chromo-
somes in most or all of the relevant lineages, we can say
with any certainty whether there have been biases in
which chromosomes get recruited into a sex-determining
role. The current study makes an incremental step in
achieving this objective.
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